Transformers and Mutual Inductance · 2020-02-17 · 理想變壓器 II. 其中,N = N. 2. N. 1....

75
Transformers and Mutual Inductance Chen-Ching Ting () Mechanical Engineering, National Taipei University of Technology (台北) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected] January 8, 2015 Chen-Ching Ting () Mechanical Engineering, National Taipei University of Technology (http Transformers and Mutual Inductance January 8, 2015 1 / 75

Transcript of Transformers and Mutual Inductance · 2020-02-17 · 理想變壓器 II. 其中,N = N. 2. N. 1....

  • 變壓器與互感Transformers and Mutual Inductance

    Chen-Ching Ting(丁振卿)

    Mechanical Engineering, National Taipei University of Technology(國立台北科技大學機械系)

    Homepage: http://cct.me.ntut.edu.tw/E-mail: [email protected]

    January 8, 2015

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 1 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 課程大綱

    1 理想變壓器

    2 磁耦合與互感

    3 互感電路

    4 電力變壓器

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 2 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 參考文獻

    A.B. Carlson, Circuits, Cengage Learning, 歐亞書局有限公司,ISBN-13: 978-981-2650-98-9, Chapter 8, 2005.

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 3 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 理理理想想想變變變壓壓壓器器器

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 4 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 理想變壓器 I

    左圖為理想變壓器(Ideal Transformer)示意圖,其中,線圈N1為一次繞組(Primary Winding);線圈N2為二次繞組(Secondary Winding),理想變壓器為兩線圈間沒有阻抗。根據法拉第感應定律(Faraday’s Induction Law):

    ε = −N dφBdt

    (1)

    其中,ε為感應電動勢、N為線圈匝數、φB為磁通量。變壓器通過線圈二次繞組的磁場是由線圈一次繞組產生並同步提供的,當兩個線圈之面積相同時,則兩個線圈之磁通量變化率(dφBdt )相同,得到:

    ε ∝ N, v1v2

    =N1N2

    (2)

    v2 =N2N1

    v1 = Nv1 (3)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 5 / 75

  • 理想變壓器 II

    其中,N = N2N1為匝數比(Turns Ratio)。得到:

    v2(t) = Nv1(t) (4)

    如左圖(a)所示,一般變壓器的線圈繞組之電壓正負極性為同方向,根據右手定則可得輸出電流與電壓的方向。另外,理想變壓器因為兩線圈間沒有阻抗,因此,輸入與輸出之電功率不變,即

    p = vi , i ∝ 1v, i2(t) = −

    i1(t)

    N(5)

    其中,負號乃是輸入電流與輸出電流之方向相反的意思。當理想變壓器為升壓(Step-up)時,得到:

    N > 1, |v2| > |v1|, |i2| < |i1| (6)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 6 / 75

  • 理想變壓器 III

    當理想變壓器為降壓(Step-down)時,得到:

    N < 1, |v2| < |v1|, |i2| > |i1| (7)

    當理想變壓器為隔離(Isolation)時,得到:

    N = 1, |v2| = |v1|, |i2| = |i1| (8)

    理想變壓器在進行轉換時,因為兩線圈間沒有阻抗,也就是沒有內部功率損耗。令總瞬間功率p:

    p = v1i1 + v2i2 = v1i1 + Nv1(−i1N

    ) = 0 (9)

    變壓器的電壓正負極表達習慣在正極位置打個點,稱為點常規(DotConvention)。交流電的正負極實際上隨著時間改變,習慣將送電端視為正極,接地端視為負極。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 7 / 75

  • 理想變壓器 IV

    變壓器的工作過程如同控制電源,也就是,二次線圈繞組的輸出情形受到一次線圈繞組控制。因此,前述的變壓器可表達成控制電源模式(Controlled-SourceModels)。左圖(a)為以VCVS與CCCS進行的替換,因為:

    v2 = Nv1, i1 = −Ni2 (10)

    相同地,左圖(b)為以CCCS與VCVS進行的替換,因為:

    v1 =v2N, i2 = −

    i1N

    (11)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 8 / 75

  • 理想變壓器 V

    當變壓器包含三個以上的線圈時,或一個線圈中有增加的端點時,稱為接頭(Taps)。左圖(a)為二次繞組有接頭的理想變壓器,得到:

    v2 =N2N1

    v1, v3 =N3N1

    v1 (12)

    理想變壓器在進行轉換時,沒有內部功率損耗。令總瞬間功率p:

    p = v1i1 + v2i2 + v3i3 = 0 (13)

    i1 = −v2v1

    i2 −v3v1

    i3 (14)

    = −N2N1

    i2 −N3N1

    i3 (15)

    左圖(b)為以VCVS與CCCS進行的替換。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 9 / 75

  • 課堂練習-轉換電路分析 I

    如左圖(a),當電壓源之電壓v = 60cos5000t V時,求解電流及平均功率?

    解解解答答答:::首先將左圖(a)之時域圖改成左圖(b)之頻域圖,分析電壓與電流:

    V 1 = V (16)

    V 2 = 3V 1 = 3V = 180 V∠0◦ (17)

    I 2 = IC − IR (18)

    其中,IR =

    3V 190

    = 2 A (19)

    IC =V 1 − 3V 1−j20

    = −j6 A (20)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 10 / 75

  • 課堂練習-轉換電路分析 II

    得到

    I = IC − 3I 2= IC − 3(IC − IR)= 6 + j12

    =√

    180 A∠63.4◦ (21)

    Z =V

    I= 2− j4 Ω (22)

    P =1

    2Re[Z ][I ]2 = 180 W (23)

    平均功率其實就是電阻90 Ω的損耗功率:

    PR =1

    2× 90[IR ]2 = 180 W (24)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 11 / 75

  • 提交電網 I

    左上圖(a)為提交電網(Referred Network),為理想變壓器作為界面,連接交流電源與負載,其中,輸入與輸出電流同方向(iout = −i2)。左下圖(b)為左上圖(a)將左邊的交流電源改成戴維寧電源網,右邊的負載改成阻抗,得到:

    I in = NI out (25)

    I out =I inN

    (26)

    V in =V outN

    , V out = NV in (27)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 12 / 75

  • 提交電網 II

    為了方便進行電路分析,將前一頁上圖(a)繪成等價電路,如左圖(a)與(b)。左圖(a)為左邊電源部分,稱為初級電網;左下圖(b)為右邊阻抗部分,稱為二級電網。左圖(a)與(b)均為前一頁上圖(a)的等價電路。根據歐姆定律:

    I out =V outZ

    =NV inZ

    (28)

    I in = NI out = N(NV inZ

    ) =N2V inZ

    (29)

    Zin =V inI in

    =Z

    N2(30)

    其中, ZN2為初級電網的提交負載(Referred

    Load Impedance)。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 13 / 75

  • 提交電網 III

    若負載電網為RLC電路,則:

    Z = R + jωL− jωC

    (31)

    Z

    N2=

    R

    N2+ jω(

    L

    N2)− J

    ωN2C(32)

    V in = V s − Zs I in = V s − Zs(NI out)(33)V out = NV in = N[V s − Zs(NI out)] (34)

    = NV s − (N2Zs)I out (35)

    上面式子為提交電源網(Referred SourceNetwork)的輸出電壓。提交電網簡單說就是透過變壓器的電力傳輸方向不變,即一般作為電力傳輸用途的變壓器電路。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 14 / 75

  • 課堂練習-使用變壓器的功率傳輸 I

    左圖(a)為電功率傳輸,當經過傳輸線之導線電阻時會造成電功率損耗,進而降低電功率傳輸效率,若將左圖(a)在電流即將通過傳輸線之導線電阻前,裝上變壓器進行升壓以降低電流值,如左圖(b),試分析得到的電功率傳輸效率為何?

    解解解答答答:::首先,分析沒有使用變壓器的電功率傳輸,根據上左圖(a)的電功率傳輸之輸出功率P = 15 kW,則輸出電流與電壓分別為:

    P =1

    2RI 2m, |I out | =

    √2P

    3 Ω=

    √2× 15000 W

    3 Ω= 100 A (36)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 15 / 75

  • 課堂練習-使用變壓器的功率傳輸 II

    Vm = RIm, |V out | = 3 Ω× |I out | = 3 Ω× 100 A = 300 V (37)

    比較電源提供的電功率:

    |I | = |I out | = 100 A (38)|V s | = (2 + 3)Ω× |I | = 500 V (39)

    η =R

    Rs + R=

    3

    2 + 3= 60% (40)

    其中,損失的電功率乃是被傳輸線電阻所消耗:

    Ps =1

    2RI 2m =

    1

    2× 2× |I |2 = 1

    2× 2× 1002 = 10 kW (41)

    η =P

    Ps + P=

    15

    10 + 15= 60% (42)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 16 / 75

  • 課堂練習-使用變壓器的功率傳輸 III

    接著分析裝上變壓器後的電功率傳輸如左圖(b),電功率傳輸之輸出功率維持相同P = 15 kW,假設∠I out = 0

    ◦,則:

    I out = 100 A∠0◦ (43)

    V out = 300 V∠0◦ (44)

    根據上圖(b),左邊透過線圈匝數1 : Na的升壓變壓器得到:

    V a = NaV in = NaV s = 500Na∠φv (45)

    再根據上圖(b),右邊透過線圈匝數為4:1(1 : Nb, Nb =14)的降壓變壓器

    得到中間電源網的等價阻抗(Zin):

    Zin =Z

    N2b=

    3 Ω

    (14)2

    = 48 Ω (46)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 17 / 75

  • 課堂練習-使用變壓器的功率傳輸 IV

    I =I inNa

    = NbI out

    =100 A∠0◦

    4= 25 A∠0◦ (47)

    V b = 4V out = 4× 300 V∠0◦ = 1200 V∠0◦ (48)

    將電網重新繪成上圖(c),得到電功率傳輸效率:

    η =R

    Rs + R=

    48

    2 + 48= 96% (49)

    進一步確定Na,根據:

    I =500Na∠φv

    2 + 48= 10Na∠φv =

    I out4

    = 25 A∠0◦ (50)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 18 / 75

  • 課堂練習-使用變壓器的功率傳輸 V

    得到

    φv = 0◦ (51)

    Na =25

    10= 2.5 (52)

    其中,被傳輸線電阻所消耗的電功率:

    Ps =1

    2RI 2m =

    1

    2× 2× |I |2 = 1

    2× 2× 252 = 625 W (53)

    電源提供的電流與電壓分別為:

    I in = NaI = 62.5 A∠0◦ (54)

    V a = NaV in = V b + 2I = 1250 V∠0◦ (55)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 19 / 75

  • 課堂練習-連接變壓器的振盪器 I

    左圖(a)為電子振盪器電路,振盪器產生電壓v(t)為:

    v(t) = 12cos50000t V

    還有一個電源內電阻Rs = 1 kΩ。另外,一個12 V電池直接提供電力給

    振盪器,電子振盪器電路經由一個線圈匝數比2:1的理想降壓變壓器進行降壓,並連接RC負載,其中,直流電池與RC負載的負端分別接地,求解輸入電流(iin)與輸出電流(iout)?

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 20 / 75

  • 課堂練習-連接變壓器的振盪器 II

    解解解答答答:::根據圖(a),電源的輸入電流(iin)分別由交流振盪器(iin−1)與直流電池(iin−2)所提供,另外,直流電池並不會對變壓器產生任何效應:

    iin−2 =−20 V1 kΩ

    = −20 mA (56)

    iout = Imcos50000t (57)

    因為變壓器的線圈匝數比為2:1,也就是N = 12,得到

    iin−1 = Niout =1

    2iout (58)

    左圖(b)為提交電網的阻抗電網等價電路頻域圖,並將戴維寧電源網改成諾頓電源網,其電源網並聯電阻與電流分別是

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 21 / 75

  • 課堂練習-連接變壓器的振盪器 III

    N2 × Rs = 250 ΩN × 12 VN2 × Rs

    = 24 mA∠0◦

    根據節點方程:

    (1

    250+ j0.005 +

    1

    500)V out = 24× 10−3 (59)

    ⇒ V out ≈ 3 V∠− 40◦ (60)

    進一步根據並聯等價阻抗與歐姆定律得到

    I out = (j0.005 +1

    500)V out ≈ 16 mA∠20◦ (61)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 22 / 75

  • 課堂練習-連接變壓器的振盪器 IV

    因此

    I in−1 = NI out

    ≈ 8 mA∠20◦ (62)I in = I in−1 + I in−2

    ≈ 8cos(50000t + 20◦)− 20 mA (63)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 23 / 75

  • 阻抗配對

    電網提供最大功率需要搭配適當的阻抗(Matched Impedance, Z):

    Z = Z ∗s = Rs − jXs (64)當Z = R + jX時,最大輸出功率(Pmax)需滿足R = Rs、X = −Xs,則:

    Pmax =V 2rms4Rs

    (65)

    其中,Vrms為開路電壓均方根值。如果Rs 6= R,則根據變壓器提交負載:

    Z

    N2= Z ∗s (66)

    必須滿足 R

    N2= Rs ,

    X

    N2= −Xs (67)

    如果R或X值都不能調整時,則無法得到最大功率。此時,可能得到之最大的功率條件為: |Z |

    N2= |Zs | (68)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 24 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 課堂練習-使用變壓器的阻抗配對 I

    左圖(a)為頻域圖,放大器的輸出角頻率為ω = 105,電網負載包含一個500 Ω的固定電阻,求解電抗X及最大功率傳輸時的變壓器匝數比N?

    解解解答答答:::首先將左圖(a)的諾頓電源改成戴維寧電源如左圖(b):

    Zs = 400 ‖ (−j200)= 80− j160 Ω

    |V s | = |Zs ||I s | ≈ 18 V

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 25 / 75

  • 課堂練習-使用變壓器的阻抗配對 II

    得到阻抗配對:

    Z

    N2= Z ∗s (69)

    500

    N2= Rs = 80 Ω (70)

    ωL

    N2= −Xs = 160 Ω (71)

    (72)

    因此

    N =

    √500

    80= 2.5 (73)

    L =160N2

    ω= 10 mH (74)

    Pmax =V 2rms4Rs

    =( 18√

    2)2

    4× 80≈ 510 mW (75)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 26 / 75

  • 磁磁磁耦耦耦合合合與與與互互互感感感

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 27 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 磁耦合與互感 I

    根據安培定律,導線中流動的電流及平行板電場方向外圍會感應產生磁場,電流感應磁場的方向遵守右手定則,分成導線電流及平行板電場感應產生磁場時,大拇指所指方向為電流方向,握拳時之四指指向方向為磁場方向;另外,導線線圈電流感應產生磁場時,握拳時之四指指向方向為電流方向,大拇指所指方向為磁場方向。磁通量φ為:

    φ =µrµ0NiA

    l(76)

    其中,A為線圈平均截面積、l為磁通穿過線圈的平均路徑。左下圖(b)為磁路(Magnetic Circuit)。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 28 / 75

  • 磁耦合與互感 II

    左圖比照電動勢(Electromotive Force, EMF)的概念,提出磁動勢(Magnetomotive Force, MMF,=)與磁阻(Reluctance,

  • 磁耦合與互感 III

    左上圖(a)為兩個線圈的磁路,其中,圖(a)左邊磁動勢(=1 = Ni1),驅動線圈φ1及φ2;圖(a)右邊磁動勢(=2 = Ni2),驅動線圈φ2。比照電路中的電源轉換,左下圖(b)為透過磁源轉換的磁路。也就是磁源改成磁動勢串聯磁阻。以上所使用的方法僅適用在線性的磁路,當磁動勢太大時,將出現非線性的狀況。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 30 / 75

  • 磁耦合與互感 IV

    左上圖(a)為兩個線圈的磁路,其中,圖(a)左邊磁動勢(=1 = Ni1)、圖(a)右邊磁動勢(=2 = Ni2)。比照電路中的電源轉換,左下圖(b)為透過磁源轉換的磁路。也就是磁源改成磁動勢串聯磁阻。另外,磁通可能造成逃漏情況,假設逃漏的磁通量φl(Leakage Flux),根據網狀矩陣方程表達如下:[

  • 磁耦合與互感 V

    得到:

    φ1 =N1i1

  • 磁耦合與互感 VI

    假設線圈忽略電阻,則線圈的端電壓分別為:

    v1 = N1dφ1dt

    =N21

  • 磁耦合與互感 VII

    當di2dt = 0時,即右邊第二電感為開路:

    v1 = L1di1dt, v2 = M

    di1dt

    (93)

    當di1dt = 0時,即左邊第一電感為開路:

    v1 = Mdi2dt, v2 = L2

    di2dt

    (94)

    其中,M稱為互感(Mutual Inductance)。根據式(90)可得:

    M =

  • 磁耦合與互感 VIII

    左圖(a)為相同繞線形式:

    v1 = L1di1dt

    + Mdi2dt

    (97)

    v2 = +Mdi1dt

    + L2di2dt

    (98)

    左圖(b)為相反繞線形式:

    v1 = L1di1dt−Mdi2

    dt(99)

    v2 = −Mdi1dt

    + L2di2dt

    (100)

    M = k√

    L1L2, 0 ≤ k ≤ 1 (101)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 35 / 75

  • 磁耦合與互感 IX

    1 自感:隨時間變動的電流通過封閉迴路將感應生成隨時間變動的磁場,而被感應生成的隨時間變動之磁場又會對封閉迴路感應生成電動勢。

    2 互感:隨時間變動的電流通過封閉迴路將感應生成隨時間變動的磁場,而被感應生成的隨時間變動之磁場對另外的封閉迴路感應生成電動勢。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 36 / 75

  • 課堂練習-串聯等價電感 I

    左圖(a)為串聯線圈電路,當兩個線圈不存在互感時:

    v = Leqdi

    dt(102)

    其中,串聯等價電感為Leq = L1 + L2。請問等價電感的互感效應為何?

    解解解答答答:::首先將圖(a)改畫成圖(b),得到:

    i1 = i , i2 = −i (103)v = v1 − v2 (104)

    兩個線圈有相反的繞線方向,則

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 37 / 75

  • 課堂練習-串聯等價電感 II

    v1 = L1di1dt−Mdi2

    dt= L1

    di

    dt−Md(−i)

    dt

    = (L1 + M)di

    dt(105)

    v2 = −Mdi1dt

    + L2di2dt

    = −M didt

    + L2d(−i)dt

    = −(M + L2)di

    dt(106)

    ⇒ v = v1 − v2 = (L1 + 2M + L2)di

    dt= Leq

    di

    dt(107)

    ⇒ Leq = L1 + L2 + 2M ≥ L1 + L2, 0 ≤ k ≤ 1 (108)

    電感器互感增加串聯等價電感。當兩個線圈有相同的繞線形式,則

    Leq = L1 + L2 − 2M ≤ L1 + L2, 0 ≤ k ≤ 1 (109)

    電感器互感減少串聯等價電感。Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 38 / 75

  • 儲能與單位耦合 I

    如左圖,傳輸進入線圈的能量傳遞率,即線圈的能力儲存如下:

    p =dw

    dt= v1i1 + v2i2

    根據下列數學關係式:

    Mi1di2dt

    + Mi2di1dt

    = Md(i1i2)

    dt

    v1 = L1di1dt

    + Mdi2dt

    v2 = Mdi1dt

    + L2di2dt

    dw

    dt= L1i1

    di1dt

    + Md(i1i2)

    dt+ L2i2

    di2dt

    (110)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 39 / 75

  • 儲能與單位耦合 II

    將式(110)在時間t進行積分得到儲存能量:

    w(t) = L1

    ˆ t−∞

    i1(λ)di1(λ) + M

    ˆ t−∞

    d [i1(λ)i2(λ)] + L2

    ˆ t−∞

    i2(λ)di2(λ)

    =1

    2L1i

    21 (t) + Mi1(t)i2(t) +

    1

    2L2i

    22 (t) (111)

    其中,i(−∞) = 0。如果沒有磁耦合(Magnetic Coupling),即M = 0,則:

    w =1

    2L1i

    21 +

    1

    2L2i

    22 (112)

    因為M = k√L1L2 ≥ 0,當Mi1i2 > 0,即電流i1與i2同方向,則w增加;

    當Mi1i2 < 0,即電流i1與i2反方向,則w減小。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 40 / 75

  • 儲能與單位耦合 III

    左圖曲線為式(111)中,假設i1 = const. > 0所繪製的儲能(w)與電流(i2)關係曲線,為一條二次方程式,當取dwdi2 = 0時,可得曲線的極小值(wmin)。

    dw

    di2= Mi1 + L2i2 = 0 (113)

    i2 = −M

    L2i1 (114)

    wmin =L1L2 −M2

    2L2i21 (115)

    因為w ≥ 0,所以

    L1L2 −M2 ≥ 0, M2 ≤ L1L2 (116)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 41 / 75

  • 儲能與單位耦合 IV

    又因為

    M2 = k2L1L2 ≤ L1L2 (117)

    假如單位耦合(Unity Coupling)k = 1,即沒有磁通洩漏(FluxLeakage)時,則M2 = L1L2:

    wmin = 0 (118)

  • 儲能與單位耦合 V

    因為M = k√L1L2 =

    √L1L2,得到:

    L2L1

    =N22N21

    (123)

    v1 = L1di1dt

    +√L1L2

    di2dt

    (124)

    v2 =√L1L2

    di1dt

    + L2di2dt

    =

    √L2L1

    (L1di1dt

    +√

    L1L2di2dt

    )

    =

    √L2L1

    v1 =N2N1

    v1 = Nv1 (125)

    其中,N = N2N1為線圈匝數比率(Turns Ratio)。

    i2 = −M

    L2i1 = −

    N1N2

    i1 = −i1N

    (126)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 43 / 75

  • 互互互感感感電電電路路路

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 44 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 阻抗分析 I

    左上圖為變壓器電路的時域圖,其電壓與電流方程為:

    v1 = L1di1dt±Mdi2

    dt(127)

    v2 = ±Mdi1dt

    + L2di2dt

    (128)

    左下圖為變壓器電路的頻域圖,其電壓與電流方程為:

    V 1 = jωL1I 1 ± jωMI 2 (129)V 2 = ±jωMI 1 + jωL2I 2 (130)

    因為M = k√L1L2及k ≤ 1,得到

    ωM = k√ωL1ωL2 ≤

    √ωL1ωL2 (131)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 45 / 75

  • 阻抗分析 II

    將左圖(a)改成左圖(b)的控制電源頻域圖,左圖(b)的左右迴路根據KVL:

    jωL1I in − jωMI out = V in (132)(jωL2 + Z )I out = jωMI in (133)

    得到

    I outI in

    =jωM

    jωL2 + Z

    Zin =V inI in

    = jωL1 +(ωM)2

    jωL2 + Z

    =jωL1Z + (ωM)

    2 − ωL1ωL2jωL2 + Z

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 46 / 75

  • 阻抗分析 III

    根據歐姆定律,V out = ZI out:

    V outV in

    =jωMZ

    jωL1Z + (ωM)2 − ωL1ωL2(134)

    當k = 1時,(ωM)2 − ωL1ωL2 = 0,則

    I outI in

    = (M

    L2)(

    1

    1 + ZjωL2) = (

    1

    N)(

    1

    1 + ZjωL2) (135)

    Zin = (L1L2

    )(Z

    1 + ZjωL2) = (

    1

    N2)(

    Z

    1 + ZjωL2) (136)

    V outV in

    =M

    L1=

    N2N1

    = N (137)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 47 / 75

  • 阻抗分析 IV

    當| ZjωL2 | � 1,則1 +Z

    jωL2≈ 1:

    I outI in

    ≈ 1N

    (138)

    Zin ≈Z

    N2(139)

    當k ≈ 1,則

    | ZjωL2

    | � 1 (140)

    ⇒ ωL2 � |Z | (141)

    上式為真實變壓器(Real Transformer)模擬理想變壓器(IdealTransformer)的條件。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 48 / 75

  • 課堂練習-真實與理想變壓器比較 I

    令左圖(a)為有電阻負載電路,其中

    ωL1 = 100 Ω (142)

    ωM = 490 Ω (143)

    ωL2 = 2500 Ω (144)

    Z = 200 Ω (145)

    因為

    ωL2 � |Z |

    k =ωM√ωL1ωL2

    = 0.98

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 49 / 75

  • 課堂練習-真實與理想變壓器比較 II

    理想變壓器:

    N =N2N1

    =

    √L2L1

    =

    √ωL2ωL1

    = 5 (146)

    進一步得到:

    I outI in

    =j490

    j2500 + 200= 0.195∠4.5◦ (147)

    Zin =j20000− 9900j2500 + 200

    = 8.90 Ω∠30.9◦ (148)

    V outV in

    =j98000

    j20000− 9900= 4.39∠− 26.3◦ (149)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 50 / 75

  • 等價T與π電磁網 I

    左上圖(a)之π電磁網可改成左下圖(b)的等價T電磁網,圖(b)左右迴路根據KVL::

    v1 = (L1 ∓M)di1dt±M d

    dt(i1 + i2)

    = L1di1dt±Mdi2

    dt(150)

    v2 = (L2 ∓M)di2dt±M d

    dt(i1 + i2)

    = ±Mdi1dt± L2

    di2dt

    (151)

    等價T電磁網適合求解電流i1與i2。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 51 / 75

  • 等價T與π電磁網 II

    左上圖(b)之T電磁網可改成左下圖的等價π電磁網:

    L11 =L1L2 −M2

    L2 ∓M(152)

    L12 =L1L2 −M2

    ±M(153)

    L22 =L1L2 −M2

    L1 ∓M(154)

    等價π電磁網適合求解電壓v1與v2。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 52 / 75

  • 課堂練習-具有T電磁網的變壓器電路分析 I

    如左圖(a)的變壓器電路,求解I in、I out、V out?

    解解解答答答:::將左圖(a)的電路改成左圖(b)的等價T電磁網,得到三個電感分別是:

    L1 −M = 2− 4 = −2 mHL2 −M = 20− 4 = 16 mH

    M = 4 mH

    乘上角頻率ω = 1000得到電感的頻域圖如圖(b):

    jω(L1 −M) = −j2 Ω (155)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 53 / 75

  • 課堂練習-具有T電磁網的變壓器電路分析 II

    根據網孔矩陣方程:[−j2 + j4 −j4−j4 j4 + j16− j20 + 6

    ][I in

    I out

    ]=

    [10

    0

    ](156)

    得到

    I in = 3 A∠− 36.9◦ (157)I out = 2 A∠53.1

    ◦ (158)

    V out = (6− j20)I out = 41.8 V∠− 20.2◦ (159)

    其中,

    V in = 10 V∠0◦ (160)

    變壓器為升壓效應。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 54 / 75

  • 課堂練習-升壓自動變壓器 I

    左圖(a)為升壓自動變壓器(Step-upAutotransformer),由交流電源連接負載而成的電路,請以等價T電磁網求解

    I outI in及

    V outV in?

    解解解答答答:::首先將左圖(a)的兩個線圈改畫成左圖(b)的樣式,其中,左圖(b)的兩個線圈之繞線方向相反,節點n連接節點a與b。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 55 / 75

  • 課堂練習-升壓自動變壓器 II

    左圖(c)為上頁圖(a)的等價T電磁網;左圖(d)為頻域圖:

    jω(−M) = −jωM (161)

    根據網孔矩陣方程:

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 56 / 75

  • 課堂練習-升壓自動變壓器 III

    [−jωM + jω(L1 + M) −jω(L1 + M)−jω(L1 + M) jω(L1 + M) + jω(L1 + M) + Z

    ][I in

    I out

    ]=

    [V in

    0

    ]

    解得

    I outI in

    =jω(L1 + M)

    jω(L1 + 2M + L2) + Z(162)

    V outV in

    =ZI outV in

    =jω(L1 + M)Z

    jωL1Z − ω2(L1L2 −M2)(163)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 57 / 75

  • 課堂練習-升壓自動變壓器 IV

    當|jω(L1 + 2M + L2)| � |Z |及線圈為單位耦合(Unity Coupling),則上兩式可簡化成:

    I outI in

    ≈ L1 + ML1 + 2M + L2

    =N1

    N1 + N2(164)

    V outV in

    ≈ L1 + ML1

    =N1 + N2

    N1(165)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 58 / 75

  • 其他等價電磁網 I

    左圖(a)為修改過的T電磁網,其中,理想變壓器的線圈比為1 : N0。假設

    N0 = ±L2M

    得到

    ∓MN0

    = −M2

    L2= −k2L1

    L2N20∓ M

    N0= 0

    得到左圖(b)的兩個電感電磁網。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 59 / 75

  • 其他等價電磁網 II

    假設

    N0 = ±M

    L1

    得到

    L1 ∓M

    N0= 0

    L2N20

    =L1k2

    得到圖(c)的兩個電感電磁網。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 60 / 75

  • 課堂練習-調諧放大器設計 I

    左圖(a)的電流源為電晶體放大器輸出,變壓器耦合到RC負載產生並聯共振效應,如此的放大器稱為調諧(tuned)。電路在ω0 = 10

    6達共振,其品質因子(QualityFactor)為Qpar = 25。

    解解解答答答:::左圖(b)為變壓器等價電磁網,其中,電磁網的參數為:

    k2 =M2

    L1L2= 0.8, (1− k2)L1 = 1 µH (166)

    k2L1 = 4 µH,L2M

    = 2 (167)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 61 / 75

  • 課堂練習-調諧放大器設計 II

    左圖(c)為等價電磁網,則

    ω20 =1

    LC⇒ C = 1

    ω20L= 62.5 nF (168)

    Qpar =R

    ω0L⇒ R = ω0LQpar = 400 Ω (169)

    其中,L = 22 × 4 = 16 µH。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 62 / 75

  • 電電電力力力變變變壓壓壓器器器

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 63 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 功率損耗與效率 I

    一般操作下,變壓器的二次自感阻抗大於負載阻抗時,其功率傳輸接近理想變壓器。變壓器的功率損耗主要是由繞組電阻產生的歐姆加熱(Ohmic Heating)或線圈核心加熱(Core Heating)造成,主要由兩個效應造成。一、滯後效應(Hysteresis Effect);二、渦電流(Eddy Current)。滯後效應根據斯坦因米茲經驗式(Steinmetz’s Empirical Formula):

    Ph = Khf φnmax (170)

    其中,f為交流電頻率、φmax為最大磁通量、Kh與n = 1.5 ∼ 2.0為線圈核心特性。滯後效應:磁場穿過線圈之鐵心將消耗能量對鐵材產生磁化,此磁化的鐵材不會因為磁場消失而改變磁化方向。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 64 / 75

  • 功率損耗與效率 II

    左圖為渦電流(Eddy Current)示意圖,渦電流的產生是由於隨時間變動的磁通量(φ(t))通過線圈鐵心,根據法拉第電磁感應定律,感應生成電流(ie),得到電功率損耗(Pe):

    Pe =Ke f

    2φ2maxRe

    (171)

    其中,Re為鐵心電阻、Ke為鐵心的另一特性。很幸運地,渦電流造成的電功率損耗可透過層狀設計來減少損耗,如左圖(b),例如:製造m個層狀核心渦電流,每個渦電流的磁通量為φmaxm 、電阻為mRe,則電功率損耗變成:

    m ×Ke f

    2(φmaxm )2

    mRe=

    Pem2

    (172)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 65 / 75

  • 功率損耗與效率 III

    左圖為變壓器頻域圖,兩個電感器的磁化電抗(Magnetizing Reactance,Xm)與洩漏電抗(LeakageReactance, Xl),其中,

    Xm = ωL1, Xl =ω(1− k2)L1

    k2(173)

    當k ≈ 1時,XlXm

    =1− k2

    k2� 1 ⇒ Xl � Xm (174)

    上左圖的兩個電阻為了說明電感器的內部電阻,其中,Rc為造成電感器之核心損耗的電阻,滿足

    Ph + Pe =|V in|2

    Rc(175)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 66 / 75

  • 功率損耗與效率 IV

    兩個電感器的內電阻合併簡化成Rw,則電感器的內電阻功率損耗(Pw )為:

    Pw = Rw |NI out |2 (176)

    左圖為相位量說明圖,電感器內部電阻造成的功率損耗(Pdis)為:

    Pdis = Rc |I c |2 + Rw |NI out |2

    變壓器功率傳輸效率(η)為:

    η =Pout

    Pdis + Pout其中,Pout為電磁網負載功率損耗。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 67 / 75

  • 課堂練習-電力變壓器效率 I

    一個升壓變壓器,N=5、f=60 Hz,及

    Rc = 40 Ω, Xm = 24 Ω, Rw = 0.08 Ω, Xl = 0.5 Ω (177)

    連接交流電壓v = 120 V (rms)及R = 36 Ω電阻負載,理想變壓器提供電壓與電功率分別為:

    |V out | = N × v = 5× 120 = 600 V (178)

    Pout =|V out |2

    R=

    6002

    36= 10000 W (179)

    求解電力變壓器效率(η)?

    解解解答答答:::左圖為等價電路,阻抗為:

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 68 / 75

  • 課堂練習-電力變壓器效率 II

    36

    52= 1.44 Ω (180)

    I c =120

    40= 3 A (181)

    Im =120

    j24= −j5 A (182)

    5I out =120

    0.08 + j0.5 + 1.44

    = 71.2− j23.4 = 75.0 A∠− 18.2◦ (183)I in = I c + Im + 5I out

    = 74.2− j25.4 = 79.5 A∠− 21.2◦ (184)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 69 / 75

  • 課堂練習-電力變壓器效率 III

    得到

    I out = 15.0 A∠− 18.2◦ (185)V out = 36I out = 540 V∠− 18.2◦ (186)Pout = 36× 15.02 = 8100 W (187)Pdis = 40× 32 + 0.08× 75.02 = 810 W (188)

    η =8100

    8910≈ 91% (189)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 70 / 75

  • 參數量測 I

    上圖為開路量測:

    Rc =|V in|2

    Poc, Xm =

    |V in|2

    Qoc(190)

    其中,Qoc =

    √|V in|2|I in|2 − P2oc , N =

    |V out ||V in|

    (191)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 71 / 75

  • 參數量測 II

    上圖為短路量測:

    Rw ≈Psc|I in|2

    , Xl ≈Qsc|I in|2

    (192)

    其中,

    Qsc =√|V in|2|I in|2 − P2sc (193)

    |(Rc ‖ jXm)| � |Rw + jXl | (194)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 72 / 75

  • 參數量測 III

    Rw =Psc − |V in|

    2

    Rc

    N2|I out |2(195)

    Xl =Qsc − |V in|

    2

    Xm

    N2|I out |2(196)

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 73 / 75

  • 結結結論論論

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 74 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

  • 結論

    變壓器為兩個並排線圈所組成,交流電流經第一個線圈,遵守右手定則,電流將感應生成隨時間變化的磁場,感應磁場穿過線圈中心從線圈一端離開,並順著線圈外圍回到線圈的另一端,進而構成封閉的磁力線迴路,在第一個線圈外圍的磁場會通過第二個線圈中心,通過線圈中心的磁場會對第二個線圈產生感應電動勢,如此可以透過改變線圈匝數的方法,改變輸出的電壓大小,並將電力進行傳輸。在輸出電功率不變的情況下,透過電壓的改變同步改變電流,可進而減小導線電阻的損耗。電磁網的分析可以透過類似電動勢的概念定義磁動勢,便可利用電動勢相關理論進行磁動勢等電磁路分析。

    Chen-Ching Ting (丁振卿) Mechanical Engineering, National Taipei University of Technology (國立台北科技大學機械系) Homepage: http://cct.me.ntut.edu.tw/ E-mail: [email protected]變壓器與互感Transformers and Mutual Inductance January 8, 2015 75 / 75

    flip_clock_black_12.swfMedia File (application/x-shockwave-flash)

    理想變壓器磁耦合與互感互感電路電力變壓器