THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système...

246
1 T T H H È È S S E E En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Paul Sabatier – Toulouse III Discipline ou spécialité : immunologie JURY Pr Salvatore VALITUTTI Président Pr José BOUCRAUT Rapporteur Pr Serge NATAF Rapporteur Pr Patrick VERMERSCH Rapporteur Pr Roland LIBLAU Directeur de thèse Ecole doctorale : Biologie – santé - Biotechnologie Unité de recherche : U563 INSERM Directeur(s) de Thèse : Roland LIBLAU Présentée et soutenue par Emilie BERGEREAU Le 22 septembre 2010 Titre : ROLE DES LT-CD8+ DANS L’AUTO-IMMUNITE DU SNC : INFLUENCE DES AUTRES EFFECTEURS DE L’IMMUNITE ADAPTATIVE

Transcript of THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système...

Page 1: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

1

TTHHÈÈSSEE

En vue de l'obtention du

DDOOCCTTOORRAATT DDEE LL’’UUNNIIVVEERRSSIITTÉÉ DDEE TTOOUULLOOUUSSEE

Délivré par : l’Université Paul Sabatier – Toulouse III Discipline ou spécialité : immunologie

JURY

Pr Salvatore VALITUTTI Président Pr José BOUCRAUT Rapporteur Pr Serge NATAF Rapporteur Pr Patrick VERMERSCH Rapporteur

Pr Roland LIBLAU Directeur de thèse

Ecole doctorale : Biologie – santé - Biotechnologie Unité de recherche : U563 INSERM

Directeur(s) de Thèse : Roland LIBLAU

Présentée et soutenue par Emilie BERGEREAU Le 22 septembre 2010

Titre : ROLE DES LT-CD8+ DANS L’AUTO-IMMUNITE DU SNC : INFLUENCE DES AUTRES EFFECTEURS DE L’IMMUNITE ADAPTATIVE

Page 2: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

2

REMERCIEMENTSREMERCIEMENTSREMERCIEMENTSREMERCIEMENTS

J’exprime toute ma reconnaissance aux membres du jury de cette thèse pour le temps

et l’énergie qu’ils y ont consacré. Merci à vous Mr Nataf, Mr Boucraut et Mr Vermersh

pour vos disponibilités et vos qualités scientifiques incontestables.

Je remercie le professeur Salvatore Valitutti pour avoir accepté la présidence de ma

soutenance de thèse.

J’exprime ma gratitude à mon directeur de thèse, le professeur Roland Liblau, pour

ses encouragements et l’investissement qu’il a eu au cours de ces quatre années difficiles et

riches en émotion. Merci pour l’apport scientifique de grande qualité et l’ouverture d’esprit

que vous m’avez offert.

Je remercie également toute l’équipe auto-immunité et immuno-régulation qui m’a

permis de mener à bien mes expériences et qui a su me conseiller, m’aider, m’épauler tout au

long de ce travail.

Pour terminer, je voudrai exprimer une tendresse et reconnaissance particulière à mes

proches pour leur soutien et leur affection. Merci d’avoir cru en moi, de m’avoir permis de

réaliser mes projets et d’avoir fait que ces années soient ce qu’elles ont été. La dernière phrase

sera pour ma fille sans qui tout cela n’aurait pu aboutir.

Page 3: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

3

SOMMAIRESOMMAIRESOMMAIRESOMMAIRE

RRRRESUMEESUMEESUMEESUME………………………………………………………………………………………………………………………………………………………..…………..…p7……………………………………………..…………..…p7……………………………………………..…………..…p7……………………………………………..…………..…p7

LLLLISTES DES ILLUSTRATIISTES DES ILLUSTRATIISTES DES ILLUSTRATIISTES DES ILLUSTRATIONSONSONSONS…………………………………………………………………………………………………………………..……p………………………………………..……p………………………………………..……p………………………………………..……p9999

LLLLISTES DES ABBREVIATIISTES DES ABBREVIATIISTES DES ABBREVIATIISTES DES ABBREVIATIONSONSONSONS……………………………………………………………………………………………………………………………...…………..…………………...…………..…………………...…………..…………………...…………..............…p…p…p…p10101010

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..…..…..…..……p……p……p……p11113333

LE LE LE LE SYSTEME ISYSTEME ISYSTEME ISYSTEME IMMUNITAIREMMUNITAIREMMUNITAIREMMUNITAIRE………………………………………………………………………………………………………………..………………………..………………………..………………………..…………………………..….p1………..….p1………..….p1………..….p13333

1. Généralités……………………………………………………………………………p13

a. Définition et rôles du système immunitaire………………………… .p13

b. Description générale du système immunitaire…………………….…p17

i. Les organes…………………………………………….……………p17

ii . Les cellules …………………………………………………………p19

2. Les lymphocytes Tααααββββ………………………………………………………………...…p23

a. Le récepteur à l’antigène des lymphocytes T (TCR) …………………..p24

i. Le complexe majeur d’histocompatibilité (CMH)

et ses interactions peptidiques……..…………………………………p24

ii. Le complexe TCR/CD3……………………..………………………p34

ii i. Les co-récepteurs CD4 et CD8………………..……………………p37

b. Signalisation et activation des LTααααββββ ………………………………...…..p39

i. Les cellules présentatrices d’antigènes (CPA) ……………………..p39

ii . La migration et l’adhésion des LT avec leur CPA……………...…..p41

ii i. La co-stimulation…………………………………………………...p43

iv. La synapse immunologique………………………………………....p45

v. Activation …………………………………………………………..p46

c. Les lymphocytes T-CD4 et T-CD8……………………………………....p49

i. Ontogénie …………………………………………………………..p49

ii . Les lignages CD4/CD8……………………………………………..p52

ii i. Description ………………………………………………….……..p56

iv. Rôles………………………………………………………………..p59

Page 4: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

4

3. La tolérance des lymphocytes Tααααββββ aux antigènes de l’organisme…………………...p64

a. Tolérance intrathymique ………………………………… ……………....p64

i. Sélection négative….…………………………….……………….....p64

ii. Les Auto-antigènes………………………………………..………..p68

iii. Les lymphocytes T régulateurs générés dans le thymus………… ..p69

b. Tolérance périphérique……………………………………….…………..p71

i. La tolérance passive………………………………….……………..p71

ii. Tolérance active……………………………………………………..p78

LES MALADIES AUTOLES MALADIES AUTOLES MALADIES AUTOLES MALADIES AUTO----IMMUNES ET MODELES AIMMUNES ET MODELES AIMMUNES ET MODELES AIMMUNES ET MODELES ANIMAUXNIMAUXNIMAUXNIMAUX………………………..…………………………..…………………………..…………………………..… ...p8...p8...p8...p87777

1. Les maladies auto-immunes ………………………………...……………………p87

a. Généralités…………………………………………………..................…..p87

b. Maladies systémiques……………………………………………….…….p87

c. Maladies spécifiques d’organes…………………………………………...p89

2. Les modèles animaux de SEP……………………………………………….……p94

a. Les modèles viraux………………………………………………………..p94

b. Le modèle auto-immun : l’encéphalomyélite auto-immue expérimentale

i. Historique………………………………………………………………p95

ii. Les antigènes……………………………………………………………p96

iii. Les différentes formes d’EAE…………….……………………………p97

3. EAE et sclérose en plaques (SEP) ………………………………………….……p99

a. Le SNC…………………………………………………………………….p99

i. Les cellules du SNC…………………………………………………..p99

ii. Spécificité ………………………………………...…………………p102

b. Similarités entre EAE et SEP………………………………………….p113

i. Les caractéristiques et le déclenchement de la pathologie………….p113

ii. L’évolution…………………………………..............………………p114

iii. L’histologie……………………………………..……………………p115

iv. Les facteurs de susceptibilité…………………………………………p116

c. Rôles des cellules immunitaires…………………………………….….p118

i. Immunité innée……………………………………….……………..p118

ii. LB et anticorps ……………………………………………………....p120

iii. LT…………… ;……………………………………………………..p127

iv. Cytokines …………………………………………………………….p141

d. Pathogenèse……………………………………………….……….p145

Page 5: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

5

LES MODELES D’AUTOLES MODELES D’AUTOLES MODELES D’AUTOLES MODELES D’AUTO----IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME NERVEUX CENTRALNERVEUX CENTRALNERVEUX CENTRALNERVEUX CENTRAL …………….P …………….P …………….P …………….P141414147777

1. Elaboration des modèles d’auto-immunité dans le SNC …………………………..p147

a. Les outils expérimentaux.…………………..………………………p147

b. Applications au SNC…………………………………………………p149

i. Généralités……………………………………………………..p149

ii. Quelques exemples…………………………………………....p150

2 . Les différents modèles utilisés………………………………………………………. p152

a. Souris TCR transgéniques………………………………………………p152

i. Souris CL4 – TCR Tg…………………………………………p152

ii. Souris 6.5 –TCR Tg………………………………………….p153

b. Souris MOG-HA………………………………………...……………p154

i. Souris MOG-Cre…………………………….……………….p154

ii. Souris Rosa26-HA………………………………………....p155

iii. Souris MOG-HA……………………………………..…….p156

OBJECTIFSOBJECTIFSOBJECTIFSOBJECTIFS………………………………………………………………………………….p157157157157

MATERIELS ET METHODESMATERIELS ET METHODESMATERIELS ET METHODESMATERIELS ET METHODES………………………………………………………...…….p151515158888

Les souris………………………………………………………………………….. p159

Extraction d’ADN pour le génotypage des souris ……………………………… p160

Les milieux de cultures …………………………………………………………... p160

Les anticorps ……………………………………………………………………… p160

Les réactifs ………………………………………………………………………... p161

Culture Th1 …………………………………………………………………….. p162

Culture Tc1 ……………………………………………………………………….. p163

Transfert adoptif des lymphocytes ………………………………………………p164

Suivi des souris ………………………………………………………………….. p164

Histologie …………………………………………………………………………. p165

Préparation de lymphocytes du cerveau ……………………………………….. p166

Analyses en cytométrie de flux ………………………………………………….. p166

Page 6: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

6

RESULTATSRESULTATSRESULTATSRESULTATS……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….... pppp161616167777

1. Coopération des Tc1 et des Th1 ? ……………………………………………..p169

a. Pureté des cellules mises en culture ….…………………………..….p169

b. Activation des LT transférés……………………………...…..…….p171

c. Suivi clinique………………………………..……………………..…..p174

d. Histologie……………………………..……………………………….p178

e. Etude des cellules inflammatoires par cytométrie en flux. …….….p181

f. conclusion……………………………..…………………………...….p184

2. Coopération des Tc1 et des anticorps ? …………………………………….....p185

a. Suivi clinique………………………………………………..……..…….p185

b. Histologie…………………………………………………………..…….p188

DISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVES………………………………………………………………………………………………………………………………………………………………………………………………………………………………............ pppp191919191111

1. Implication des Tc1 …………………………………...………………………….p192

a. Dans la SEP et l’EAE ………………………………….…………..…….p192

b. Dans d’autres maladies auto-immunes………………..………….…….p194

2. Implication des Th1 …………………………………………………………...….p194

a. Dans la SEP et l’EAE ………………………………….…………..…….p194

b. Dans d’autres maladies auto-immunes………………..………….…….p196

3. Une possible collaboration Tc1/Th1 ? ……………………………….……...….p196

a. Dans la SEP et l’EAE ………………………………….…………..…….p196

b. Dans d’autres maladies auto-immunes………………..………….…….p201

4. Une hypothétique synergie d’action entre Tc1 et Ac……………………...…..p202

BIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIE………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… pppp202020204444

ANNEXESANNEXESANNEXESANNEXES………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………................ pppp240240240240

Page 7: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

7

RESUMERESUMERESUMERESUME La sclérose en plaques est une maladie inflammatoire chronique multifactorielle caractérisée par

de nombreux infiltrats inflammatoires (lymphocytes T, lymphocytes B, macrophages activés, cellules

de la microglie) et par des lésions focales résultant en une démyélinisation des axones et une perte

d’oligodendrocytes. Afin de comprendre le rôle pathogène des LT-CD8+ et l’implication des autres

effecteurs de l’immunité adaptative comme les LT-CD4+ auto-réactifs et les auto-Ac, des transferts

adoptifs de LT-CD8+ spécifiques de l’Hémaglutinine du virus Influenza (HA) différenciés in vitro en

Tc1 spécifiques de HA et/ou de LT-CD4+ spécifiques de HA différenciés in vitro en Th1 ont été

réalisés dans les souris MOG-HA (exprimant le néo-auto-antigène exclusivement dans les

oligodendrocytes). Il a ainsi pu être évalué les conséquences cliniques et pathologiques de

l’inflammation du système nerveux central (SNC).

Les résultats obtenus ont montré que le transfert de Th1 seuls ne provoque pas de signes

cliniques apparents : pas de perte de poids ni de diminution des performances physiques suite à un

effort malgré la présence d’une inflammation (sans démyélinisation) au niveau du SNC. Le transfert

de Tc1 seuls induit dans 30% des cas, des pertes de poids ainsi qu’une mobilité réduite et des

défaillances motrices. Au niveau histologique, il existe une infiltration massive de LT suite à ce

transfert conduisant à une inflammation sévère du SNC et une démyélinisation des axones. Le co-

transfert des deux populations aggrave ces signes cliniques et histologiques suggérant une coopération

des deux populations lymphocytaires au niveau du SNC. Des analyses complémentaires en cytométrie

de flux ont permis de caractériser les cellules immunes qui infiltrent le SNC. Nous avons ainsi pu

montrer qu’il existe une différence au niveau de l’activation de la microglie entre les différents types

de transfert. En effet, lors du co-transfert Tc1/Th1, il y a une activation très importante de la microglie,

des macrophages et un recrutement plus important de cellules dendritiques et de LT au niveau du SNC

comparé aux transferts isolés des populations.

Dans le même esprit de recherche d’une synergie entre les effecteurs de l’immunité adaptative,

des transferts adoptifs de LT-CD8+ spécifiques de HA différenciés in vitro en Tc1 suivis d’injection

d’anticorps démyélinisants (anti-MOG) ont été réalisés chez les souris MOG-HA. Cette injection

d’anticorps potentialise également le phénotype induit par le transfert de Tc1 seuls. Ceci est associé à

un recrutement précoce des molécules du complément au niveau des lésions.

Ces travaux ont ainsi permi de conclure en une synergie d’action entre les LT-CD8+ spécifique

d’un auto-antigène et d’autres effecteurs de l’immunité adaptotive tels que les LT-CD4+ et les Ac.

Page 8: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

8

SUMMSUMMSUMMSUMMAAAARYRYRYRY

Multiple sclerosis is a multifactoriral chronic inflammatory disease characterized by numerous

inflammatory infiltrats (T lymphocyte, B lymphocyte, activated macrophages, microglia) and by focal

lesions resulting in a demyelination of axons and loss of oligodendrocytes. To understand the

pathogenic role of LT-CD8+ and the implication of the other effectors of the adaptive immunity such

as auto-reactive CD4+-T cells and auto-Ab, adoptive transfers of CD8+-T cells specific for HA

differentiated in vitro in Tc1 and\or CD4+-T cells specific of HA differentiated in vitro in Th1 were

performed in mice MOG-HA (expressing the neo-auto-antigen exclusively in oligodendrocytes). We

then followed the clinical and pathological consequences of the inflammation of central nervous

system (CNS).

The obtained results showed that the isolated transfer of Th1 does not provoke visible clinical

signs: no weight loss nor decrease of the physical performances during an effort in spite of the

presence of an inflammation (without demyelination). The isolated transfer of Tc1 resulted in 30 % of

cases in weight loss as well as a reduced mobility. At the histological level, there is a massive

infiltration of T cells after this Tc1 transfer leading to a severe inflammation of CNS and a

demyelination of axons. The co-transfer of both populations aggravates these clinical and histological

signs suggesting a cooperation of both lymphocytes populations in the CNS. Complementary analyses

by flow cytometry allowed to characterize the immune cells that had infiltrated the CNS. We were so

able to show that there was a difference at the level of the activation of the microglia between the

various types of transfer. Indeed, during the co-transfer Tc1 / Th1, an important activation of

microglia, macrophages and a more important recruitment of dendritic cells and T cells in the CNS

was observed compared to transfers of isolated populations.

In the same spirit of research for synergy between the effectors of the adaptive immunity,

adoptive transfers of CD8+-T cells specific of HA differentiated in vitro in Tc1 followed by injection

of demyelinating antibody ( anti-MOG ) were realized in mice MOG-HA. This injection of antibody

also potentialise the phenotype induced by the transfer of Tc1. This is associated with an early

recruitment of complement factors at the level of the lesions.

So, these works permit to conclude in a synergy between CD8+-T cells specific of an auto-

antigene and others effectors of the adaptative immunity such as CD4+-T cells and Ab.

Page 9: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

9

LISTE DES ILLUSTRATIOLISTE DES ILLUSTRATIOLISTE DES ILLUSTRATIOLISTE DES ILLUSTRATIONSNSNSNS

FIGURE 1 : Organisation tissulaire du système immunitaire

FIGURE 2 : Les composants cellulaires du système immunitaire

FIGURE 3 : Structure d’une molécule de classe I du CMH

FIGURE 4 : Structure d’une molécule de classe II du CMH

FIGURE 5 : Le complexe TCR-CD3

FIGURE 6 : La molécule CD4 et son interaction avec le CMH de classe II

FIGURE 7 : La molécule CD8 et son interaction avec le CMH de classe I

FIGURE 8 : Adhésion des lymphocytes T et diapédèse

FIGURE 9: La synapse immunologique

FIGURE 10 : Voie de transduction du signal et d’activation d’une cellule T

FIGURE 11: Le développement thymique

FIGURE 12: Le développement thymique

FIGURE 13 : Mécanisme de tolérance thymique

FIGURE 14: Le choix du lignage CD4/CD8 : les modèles instructifs et sélectifs

FIGURE 15 : Le choix du lignage CD4/CD8 : le modèle force du signal

FIGURE 16 : Influence des signaux environnementaux et des facteurs de transcription

sur le choix du lignage CD4/CD8

FIGURE 17 : Les voies de différenciation des lymphocytes T CD4+

FIGURE 18 : Nature des antigènes restreints aux tissus périphériques exprimés

par les cellules épithéliales thymiques médullaires

FIGURE 19 : Les différents mécanismes d’induction de tolérance périphérique

FIGURE 20: Les cellules myéloïdes tolérogènes dans la tolérance active

FIGURE 21: Composition de la gaine de myéline

FIGURE 22 : Représentation schématique des cellules constituants le SNC.

FIGURE 23 : Les différentes barrières au niveau du SNC

FIGURE 24 : Hypothèse du trajet intracérébral d’un antigène.

FIGURE 25 : Le système humoral dans la sclérose en plaques et l’EAE

FIGURE 26 : Schéma récapitulatif de la pathogenèse de la SEP et EAE

FIGURE 27 : Souris MOG-HA

FIGURE 28 : Schéma de la construction de la souris transgénique MOG-Cre

FIGURE 29 : Schéma de la construction de la souris transgénique RoSA26-HA .

TABLEAU 1 : liste non exaustive des produits des gènes activés au cours de la

signalisation au sein des lymphocytes T (adapté (Crabtree 1989)

TABLEAU 2 : Les différentes classes de maladies auto-immunes

Page 10: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

10

ABBREVIATIONSABBREVIATIONSABBREVIATIONSABBREVIATIONS A2AR Adenosine Receptor 2A Ac Anticorps ADCC Antibody-Dependant Cell-mediated Cytotoxicity ADE Encéphalomyélite aiguë dissiminée ADN Acide DésoxyriboNucléique AEP Asparagine Endopeptidase Ag Antigène AHR Aryl Hydrocarbon Recepteur AICD Activation Induced Cell Death AIRE AutoImmuneREgulator gene AMP Adenosine MonoPhosphate APECED Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dstrophy AQP4 Aquaporine 4 ARN Acide RiboNucléique ATP Adenosine TriPhosphate B-reg B régulateur BAFF B cell Activating Factor of TNF Family BCR B-Cell Recepteur BHE Barrière Hémato-Encéphalique BME Barrière MéningoEncéphalique CAM Complexe d'Attaque Membranaire CD Cellule Dendritique CD (xx) Cluster of Differenciation (xx) CDR Complementarity Determining Region cellule ES cellule Souche Embryonnaire CLIP Class II associated Invariant chain Peptides CMH Complexe Majeur d'Histocompatibilité CNS Central Nervous system CPA Cellule Présentatrice d'Antigène cTEC Cellule corticale de l'Epithélium Thymique CTL Cellule T Lytique DN Double Négatif DP Double Positif EAE Encéphalomyélite Autoimmune Expérimentale EBV Epstein Barr Virus ERAD Endoplasmic Reticulum Associated Degradation ERAP Endoplasmic Reticulum Amino Peptidase GFAP Glial Fibrillary Acidic Protein GM-CSF Granulocyte Macrophage Colony Stimulating Factor Gzm Granzyme HA Hemaglutinine du virus Influenza HAM/TSP HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis HEV High Endothelial Venules HHV6 Herpes Virus de type 6 HLA Human Leucocyte Antigens HLV Human Leukaemia Virus

Page 11: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

11

HSV Herpes Simplex Virus HTLV-1 Human T-Lymphotropic Virus type 1 IBB Barrière Immuno-Encéphalique IBD Inflammatory Bowel Disease ICA Islet Cell Antibody ICAM Intercellular Adhesion Molecule ICOS-L Inducible Costimulator Ligand IDO Indoleamine 2,3-DiOxygenase IFN Interferon Ig Immunoglobuline IL Interleukine iNKT invariant NKT ITAM Immunoreceptor Tyrosine-based Activation Motif ITIM Immunoreceptor Tyrosine-based Inhibition Motif KGF Keratocyte Growth Factor LAG3 Lymphocyte Activation Gene 3 LAT Linker for Activation of T cells LB Lymphocyte B LBP Lipopolysaccharide Binding Protein LCMV Lymphocytic Choriomeningitis Virus LCR Liquide Céphalo-Rachidien LED Lupus Erythémateux Disséminé LFA1 Lymphocyte Function-Associated molecule LPS LipoPolySaccharide LT Lymphocyte T M2 Macrophage de type 2 MAG Myelin Associated Glycoprotein MALT Mucosa-Associated Lymphoïd Tissue MBP Myelin Basic Protein MdSC Myeloid-derived Suppressor Cell MMP Matrix MetalloProtéinase MOG Myelin Oligodendrocyte Glycoprotein Mtec Cellule Epithéliale Thymique medullaire NFAT Nuclear Factor of Activated T cells NFKB Nuclear Factor kB NK Natural Killer NKT Natural Killer T NMO Neuromyélite Optique de Devic NO Oxyde Nitrique NOD Non-Obese-Diabetic NODS Nucleotide-binding Oligomerization Domain Proteins NOS2 Oxyde Nitrique Synthase 2 OLP Organe Lymphoïde Primaire OLS Organe Lymphoïde Secondaire OVA Ovalbumine PAMPS Pathogen-Associated Molecular Patterns PC Plexus Choroïde PCR Proteine C Réactive PFN Perforine PI3K Phosphoinositide Kinase 3

Page 12: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

12

PKC Proteine Kinase C PKR Protéine Kinase R PLP Proteolipid Protein PRR Pattern-Recognition Receptors Pten Phosphatase ant tensin homolog RE Réticulum Endoplasmique ROG Repressor Of Gata-3 ROR Retinoïd-related Orphan Receptor ROS Reactive Oxygen Species RR Risque Relatif SEP Scérose En Plaques SH2 Src Homology 2 SI Synapse Immunologique SLE Lupus Erythémateux Systémique SNC Système Nerveux Central SOCS1 Suppressor of Cytokine Signaling SP Simple Positif TAP Transporter associated with Antigen Processing TCR T-Cell Receptor TEC Cellule Epithéliale Thymique TGF Tumor Growth Factor TLR Toll Like Recepteur TNF Tumor Necrosis Factor T-reg lymphocyte T régulateur TRAIL Tumor necrosis factor Related Apoptosis Inducing Ligand TSH Thyroid Stimulating Hormon VIH Virus de l'Immunodéficience Humaine VIP Vasoactive Intestinal Peptide VDR Vitamine D Receptor

Page 13: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

13

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Page 14: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

14

LE SYSTEME IMMUNITAIRELE SYSTEME IMMUNITAIRELE SYSTEME IMMUNITAIRELE SYSTEME IMMUNITAIRE

1. Généralités

a. Définition et rôles du système immunitaire

Le système immunitaire est un système de défense remarquablement adaptatif qui nous

protège des pathogènes aussi variés que les virus, les bactéries, les champignons et les

parasites. Il est composé d’une multitude de cellules et de molécules composant un réseau

dynamique capable de reconnaître spécifiquement et d’éliminer un grand nombre de micro-

organismes étrangers.

D’un point de vue fonctionnel, la protection immunitaire peut être divisée en deux

activités apparentées : la reconnaissance et la réponse. La reconnaissance immunitaire est

remarquable par sa capacité à distinguer les composants étrangers de ceux du Soi. En effet, le

système immunitaire est capable de reconnaître des profils moléculaires qui caractérisent des

groupes de pathogènes présentant des caractéristiques connues, et de fournir une réponse

rapide dirigée contre ces pathogènes. Il peut également détecter les subtiles différences

chimiques qui distinguent un pathogène étranger d’un autre. Et surtout, il peut faire la

discrimination entre les molécules étrangères et les cellules ou protéines de l’organisme qui le

possède (discrimination Soi – non Soi). Cependant, il arrive parfois que ce système puisse être

défaillant. Il devient alors délétère pour l’organisme en s’attaquant à certains organes comme

s’il s’agissait de corps étrangers provoquant ainsi des maladies auto-immunes.

Typiquement, la reconnaissance d’un pathogène conduit à une réponse effectrice qui

élimine ou neutralise l’organisme étranger. Dans une telle réponse, les divers composants du

système immunitaire sont capables de convertir l’évènement de reconnaissance initial en

différentes réponses effectrices, chacune étant conçue spécifiquement pour éliminer un type

particulier de pathogène. Une exposition ultérieure au même organisme étranger peut induire

une réponse mémoire, caractérisée par une réaction immunitaire plus rapide et plus intense,

permettant un contrôle précoce des agents infectieux, prévenant ainsi les infections. Le

principe de cette mémoire est à la base de la vaccination qui consiste, en réalité, en une

éducation du système immunitaire, préparant ainsi l’organisme à de futures expositions au

même organisme étranger et lui permettant de répondre plus rapidement et plus efficacement.

Page 15: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

15

Bien que l’on fasse référence au système immunitaire, il est important de mentionner

qu’il existe deux systèmes de l’immunité, l’immunité innée et l’immunité adaptative qui ne

cessent de collaborer pour protéger l’organisme.

L’immunité innée :

L’immunité innée est l’ensemble des mécanismes cellulaires et moléculaires

préexistants à une infection dans un organisme.

Cette première ligne de défense, très efficace, empêche la plupart des infections de se

propager et permet ainsi d’éliminer l’agent infectieux dans les quelques heures qui suivent sa

rencontre avec l’organisme.

De prime abord, le système immunitaire utilise ses barrières physiques. En effet, le

premier obstacle rencontré par les pathogènes sont les barrières anatomiques protectrices de

l’hôte. C’est l’exemple de la peau et de la surface des muqueuses qui constituent des barrières

efficaces contre l’entrée de la plupart des microorganismes. L’acidité de l’estomac et de la

transpiration empêche également le développement des organismes incapables de se

développer dans des conditions acides. Les enzymes, comme le lysozyme, qui sont présentes

dans les larmes peuvent également contribuer à cette défense en altérant la paroi cellulaire de

certaines bactéries.

Au-delà de ces premières barrières, l’immunité innée comporte non seulement des

acteurs cellulaires, comme les phagocytes mis en évidence par Metchnikoff (Williamson

1973), mais aussi des composants anti-microbiens synthétisés par l’hôte, et des molécules

solubles comme les interférons et les facteurs du complément. L’ensemble de ces mécanismes

permet de reconnaître et neutraliser ces organismes étrangers. Cependant, les éléments de

reconnaissance du système immunitaire inné, capables de discriminer le Soi du non Soi, ne

sont pas spécialisés dans la reconnaissance des différences subtiles entre les molécules

étrangères. La plupart de ces molécules de l’immunité innée ont ainsi développé la capacité

de reconnaître des groupes ou ″patterns″ de molécules communément retrouvés sur certains

pathogènes via des récepteurs appelés PRR (Pattern-Recognition Receptors). Ces récepteurs

reconnaissent des molécules aux motifs structuraux conservés présents sur l’enveloppe des

microorganismes mais absents des cellules eucaryotes : les PAMPS (Pathogen-Associated

Molecular Patterns). Nous pouvons, parmi ces récepteurs de l’immunité innée, distinguer trois

groupes : les PRR solubles, les PRR membranaires et les PRR intracellulaires. Parmi les PRR

sécrétés, nous pouvons citer la protéine C réactive (PCR) responsable de l’activation du

complément et de l’opsonisation, la protéine liant le lippoppolysaccharide (LBP) permettant

Page 16: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

16

de réduire la production cellulaire de cytokines et chimiokines pro-inflammatoires ou les

lectines de type C qui reconnaissent les hydrates de carbone contribuant ainsi à la migration

des cellules immunitaires au sein de l’organisme et permettant la phagocytose. Les PRR

membranaires sont très nombreux. Ils comprennent les récepteurs au complément (CD14,

CD3 et récepteurs Fc) qui permettent l’opsonisation et la phagocytose des pathogènes, les

récepteurs au mannose qui sont des récepteurs de phagocytose et les récepteurs scavengers

liant les lipoprotéines oxydées qui véhiculent le cholestérol destinées à être éliminées par

phagocytose et jouant un rôle dans la clairance des corps apoptotiques et dans le métabolisme

lipidique. Parmi tous ces PRR, la famille la plus connue reste à ce jour les TLR (Toll like

recepteur) permettant la synthèse de cytokines pro-inflammatoires, de chimiokines,

d’interféron de type I, l’augmentation de l’expression de molécules de co-stimulation ainsi

que la maturation des cellules présentatrices d’antigènes faisant un lien avec l’immunité

adaptative. Les PRR intracellulaires plus récemment découverts sont composés quant à eux

des récepteurs PKR et NODs (Nucleotide-binding oligomerization domain proteins)

responsables de l’autophagie des pathogènes (McGuinness, Dehal et al. 2003).

L’immunité adaptative.

Cependant, il arrive que l’immunité innée ne soit pas suffisante et que le pathogène

parvienne à échapper à cette première ligne de défense. Ainsi, afin de reconnaître et

d’éliminer cette fois-ci sélectivement les pathogènes, il existe une seconde forme d’immunité,

connue sous le nom d’immunité adaptative, dépendante de l’immunité innée, qui se met en

place quelques jours après l’infection initiale.

Cette réponse constitue une seconde ligne de défense qui permet d’éliminer les

pathogènes qui ont échappé à la réponse innée ou qui persistent malgré cette réponse. Cette

réponse adaptative nécessite la communication entre deux populations cellulaires : les

lymphocytes et les cellules présentatrices d’antigène (CPA). Les lymphocytes sont l’un des

nombreux types de cellules blanches du sang produites dans la moelle osseuse par le

processus de l’hématopoïèse et jouant un rôle important dans cette immunité. Ces

lymphocytes quittent la moelle osseuse, circulent dans le sang et les vaisseaux lymphatiques

et résident dans différents organes lymphoïdes. Parce qu’ils produisent et exposent à la

surface de leur membrane des récepteurs qui fixent l’antigène, les lymphocytes portent les

attributs spécifiquement immunologiques de spécificité, de diversité, de mémoire et de

reconnaissance du Soi et du non Soi. Deux populations de lymphocytes coexistent dans

l’organisme : les lymphocytes B (LB), sécréteurs d’anticorps, conduisant à une immunité

Page 17: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

17

humorale et les lymphocytes T (LT), schématiquement divisés en cellules auxiliaires et en

cellules cytotoxiques, conduisant à une immunité cellulaire. Les cellules présentatrices

d’antigènes, quant à elles, sont en charge de capturer l’antigène, qu’il soit intra ou

extracellulaire et de le présenter aux lymphocytes afin d’initier cette réponse adaptatrice.

Cependant, il arrive que ce système immunitaire faillît à sa fonction de protection

adéquate de l’hôte ou oriente mal ses activités, provoquant ainsi maladie ou même mort. Il

existe à ce jour plusieurs manifestations fréquentes d’un dysfonctionnement immunitaire

comme l’allergie ou l’asthme, ou les maladies auto-immunes ou encore les déficits

immunitaires. Pour l’asthme et l’allergie par exemple, l’organisme atteint présente des

réponses immunitaires inappropriées, souvent contre des antigènes banals, comme certains

pollens de plantes ou des aliments. Chez certains individus, le dysfonctionnement de ce

système immunitaire peut aussi être dû à la perte de son sens de discrimination du Soi et du

non Soi, ce qui permet une attaque immunitaire contre les composants de l’organisme qui

l’héberge: il s’agit de l’auto-immunité, pouvant être à l’origine de maladies chroniques

invalidantes.

b. Description générale du système immunitaire

i. Les organes

Organes lymphoïdes primaires (OLP) [figure 1] :

Les organes lymphoïdes primaires sont composés du thymus, de la moelle osseuse et du

foie (chez le fœtus). Les lymphocytes immatures générés par l’hématopoïèse effectuent leur

maturation dans ces OLP où ils acquièrent une spécificité antigénique particulière. Ce n’est

qu’après cette maturation qu’un lymphocyte devient une cellule immunocompétente. Chez les

mammifères, les cellules T effectuent leur maturation dans le thymus et les cellules B dans la

moelle osseuse.

Organes lymphoïdes secondaires (OLS) [figure 1] :

Les plus organisés de ces organes sont la rate et les ganglions. Alors que les ganglions

lymphatiques sont spécialisés dans la capture antigénique venant des tissus environnants, la

rate est spécialisée dans la filtration du sang et la capture des antigènes circulants. Ces deux

OLS comprennent non seulement des follicules primaires constitués d’un réseau de cellules

dendritiques folliculaires et de petites cellules B au repos, mais également des régions

Page 18: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

18

distinctes supplémentaires d’activité de cellules T et de cellules B, le tout entouré d’une

capsule fibreuse. Un tissu lymphoïde un peu moins organisé, appelé tissu lymphoïde associé

aux muqueuses (MALT) est également rencontré dans différentes régions du corps comme les

plaques de Peyer (dans l’intestin), les amygdales et l’appendice ainsi que les nombreux

follicules de la lamina propria des intestins et des muqueuses qui bordent les voies aériennes

supérieures, les bronches et le tractus génital.

FIGURE 1 : Organisation tissulaire du système immunitaire

Notre organisme est constitué au niveau immunologique d’organes lymphoïdes primaires ou OLP constitués par le thymus et la moelle osseuse et d’organes lymphoïdes secondaires ou OLS tels que les divers ganglions et la rate. Ces organes sont des sites privilégiés de rencontre entre les antigènes et les cellules du système immunitaire.

Ganglions lymphatiques cervicaux

Amygdales

Thymus

Moelle osseuse

Ganglions lymphatiques axilaires

Rate

Ganglions mésentériques Plaques de Peyer

Ganglions lymphatiques

inguinaux

Organes Lymphoïdes Primaires Organes Lymphoïdes Secondaires

Page 19: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

19

ii. Les cellules

FIGURE 2 : Les composants cellulaires du système immunitaire

Toutes les cellules du système immunitaire sont issues de précurseurs hématopoïétiques de la moelle osseuse. Ces précurseurs, suivant le milieu cytokinique dans lequel ils sont, se différencieront soit en progéniteurs myeloïdes à l’origine des érythrocytes, plaquettes, macrophages, éosinophiles, basophiles et cellules dendritiques soit en progéniteurs lymphoïdes à l’origine des cellules NK, des lymphocytes T et B et des cellules dendritiques.

Cellule souchehématopoïétique

Auto-renouve llement

Progéniteurmyeloïde

Progéniteurlymphoïde

Granulocyte-monocyte

Myeloïde éosinophile

Basophile

Mégacaryocyte

Erythroblaste

Myeloïde basophile

Eosinophile

Neutrophile

Plaquettes

Erythrocytes

Macrophage

Cellule dendritique

Progéniteur T

Progéniteur B

LT auxiliaire

LT cytotoxique

LB

Cellule dendritique

QuickTime™ et undécompresseur Graphique

sont requis pour visionner cette image.

C e l l u l e NK

Cellule NK

Page 20: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

20

Les cellules monocytaires-macrophagiques : [figure 2]

Au cours de l’hématopoïèse dans la moelle osseuse, des cellules progénitrices se

différencient en promonocytes puis quittent la moelle et passe dans le sang où ils vont se

différencier en monocytes. Ces derniers vont circuler dans le sang pendant 8H, période durant

laquelle ils grossissent et migrent vers les tissus où ils se différencient en macrophages tissus-

spécifiques. Ainsi suivant le tissu où ils résident et leur fonction, ces macrophages sont

appelés macrophages alvéolaires dans le poumon, histiocytes dans les tissus conjonctifs,

cellules de Kupffer dans le foie, cellules mésangiales dans le rein, cellules microgliales dans

le cerveau ou encore ostéoclastes dans les os. Ces cellules font partie intégrante du système

phagocytaire mononucléé responsable de la digestion et de la présentation antigénique.

Les cellules granulocytaires : [figure 2]

Ces cellules sont classées selon leur morphologie en neutrophiles, éosinophiles et

basophiles. Chaque sous-population possède un rôle spécifique.

Les neutrophiles ont un rôle primordial de phagocytose lorsqu'ils rencontrent une cellule

étrangère ou infectée. La phagocytose se déroule juste après la stimulation du neutrophile par

un antigène porté par la cellule cible (cet antigène étant le plus souvent un fragment de

membrane bactérienne ou un fragment de virus, reconnu comme étranger). Le neutrophile va

alors émettre des pseudopodes (longs prolongements cytoplasmiques) qui vont entourer la

cellule cible, et finir par l'inclure dans le corps cellulaire du neutrophile. Des vacuoles

contenues dans ces neutrophiles fusionnent alors avec la vacuole de phagocytose : leur

contenu (lysozyme et granulations sécrétoires) détruit la cellule cible par un mécanisme

toxique. Les éosinophiles sont des cellules clés de l'inflammation allergique. Elles

représentent de 2 à 5% des leucocytes circulants impliqués dans la défense antiparasitaire. Les

basophiles sont les plus rares des granulocytes (0.5%, et même absent chez certaines

personnes). Leurs inclusions cytoplasmiques contiennent de nombreuses molécules

chimiques, et en particulier l’histamine, la sérotonine, et l’héparine. L'histamine et l'héparine

servent à empêcher la coagulation dans les vaisseaux sanguins, mais aussi à augmenter la

perméabilité des capillaires, ouvrant ainsi la voie à la diapédèse. L'histamine active la réaction

inflammatoire et intervient également dans les réactions allergiques. Ces cellules activées

jouent un rôle majeur dans l'inflammation, capables de relarguer leurs vacuoles au contact

d'allergènes auxquels ils sont sensibles.

Page 21: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

21

Les mastocytes : [figure 2]

Le mastocyte est une cellule granuleuse présente essentiellement dans les tissus

conjonctifs, qui se caractérise par la présence dans son cytoplasme de très nombreuses

granulations contenant des médiateurs chimiques. Une de ces principales caractéristiques est

d’exprimer à sa membrane le récepteur de haute affinité des IgE (FcεRI), dont l’agrégation

par des complexes IgE-allergène induit la dégranulation mastocytaire, évènement à l’origine

des réactions d’hypersensibilité immédiate. Les mastocytes produisent de nombreux

médiateurs physiologiques (l’histamine, l'héparine, les prostaglandines, le PAF, l'ECF-A, des

leucotriènes et des enzymes protéolytiques) qui jouent un rôle important dans des processus

variés : hypersensibilité de type immédiate, inflammation, défense vis-à-vis de certaines

bactéries ou parasites, réponse à une prolifération tumorale, processus de cicatrisation et de

fibrose, angiogénèse.

Les cellules dendritiques : [figure 2]

Identifiées en 1868 lors d’une étude anatomique de la peau par Paul Langherans, les

cellules dendritiques (CD) ont été les premières cellules découvertes du système immunitaire.

Ces cellules présentent des caractéristiques originales qui rendent difficile leur étude. En effet,

ces cellules, en plus du fait qu’elles soient rares dans l’organisme, présentent une très grande

plasticité phénotypique, morphologique et fonctionnelle. Phénotypiquement, on caractérise

une cellule par la présence de marqueurs membranaires. Or pour ces CD, il n’existe pas de

marqueur qui les identifie distinctement. De plus, au cours de leur vie, le profil de leur

marqueur évolue. Cette versatilité dépend de leur état (immature ou mature) et de leur

microenvironnement moléculaire (les cytokines produites par les autres cellules mais aussi

par elles-mêmes). Ce profil phénotypique évolue aussi en fonction de leur localisation dans

l’organisme. Cependant, malgré cette complexité et cette plasticité, on peut définir une CD,

indépendamment de son origine, par sa richesse en molécules de CMH de classe II et par sa

capacité phagocytique associée à celle de présentation de l’antigène, permettant ainsi d’initier

la réponse adaptative.

Ces cellules interviennent à différents niveaux dans le système immunitaire et leurs

fonctions diverses et parfois opposées sont accomplies par différentes sous populations de

cellules qui se distinguent sur des bases phénotypiques, morphologiques, ontogéniques et

fonctionnelles.

Page 22: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

22

Les cellules dendritiques des tissus non lymphoïdes se trouvent dans l’épiderme où elles

prennent le nom de cellules de Langherans. Elles constituent alors une barrière naturelle à

l’entrée des pathogènes. Après une activation par ces derniers, elles migrent vers les organes

lymphoïdes et sont caractérisées par l’expression du marqueur CD1a.

On retrouve également des CD dans le derme au niveau des espaces interstitiels où elles

sont nommées cellules dendritiques interstitielles.

Les cellules dendritiques des tissus lymphoïdes sont des CD activées (à l’état mature)

qui proviennent d’autres tissus.

Enfin, on retrouve ces CD dans le sang où nous pouvons distinguer deux populations :

les CD d’origine myéloïde et les CD d’origine plasmacytoïde.

Les CD myéloïdes, anciennement appelées CD1 car elles orientent la réponse

immunitaire vers la production de cytokines de type 1 comme l’interféron α et γ, ont des

cellules souches CD34+ localisées dans le foie fœtal, la moelle osseuse et le sang

périphérique. Le progéniteur myéloïde génère des précurseurs circulants dans le sang et la

lymphe qui se déplacent ensuite vers les tissus périphériques où, après différenciation, ils

résident sous forme immature. Cette différenciation révèle deux voies possibles : la voie des

précurseurs CD1a+ qui deviennent les cellules de Langherans de la peau et les précurseurs

CD14+ qui deviennent les CD situées dans la plupart des tissus. Ces précurseurs peuvent aussi

générer des monocytes devenant CD ou macrophages. Ainsi, à l’état immature, ces CD

myéloïdes sont localisées dans les tissus périphériques où elles ont la capacité de capturer les

antigènes et d’activer les cellules de l’immunité innée. En cas d’inflammation, ces cellules

deviennent matures et migrent vers les ganglions lymphatiques où elles jouent leur rôle de

cellule présentatrice d’antigène capable de stimuler les lymphocytes T naïfs.

Les CD plasmacytoïdes, quant à elles, orientent la réponse immunitaire vers la

production de cytokines de type 2 comme l’IL-4 et l’IL-5. Ces cellules sont retrouvées dans

les ganglions, la moelle osseuse ainsi que dans le thymus. Elles possèdent une grande

plasticité fonctionnelle en intervenant dans les mécanismes de tolérance aux auto-antigènes,

en contribuant aux défenses innées virales et bactériennes et en induisant une réponse immune

adaptative.

Page 23: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

23

Les cellules lymphoïdes : [figure 2]

Dans un organisme, les lymphocytes représentent 20 à 40% des cellules blanches du

sang et 99% des cellules de la lymphe. Ces lymphocytes peuvent être divisés grossièrement en

trois populations, les cellules natural killer (NK), les lymphocytes B (LB) et les lymphocytes

T (LT), sur la base de leur fonction et des constituants de leur membrane cellulaire.

Les lymphocytes NK sont des cellules de l'immunité innée des mammifères capables de

lyser des cellules étrangères à l'organisme de manière indépendante de l'antigène et sans

activation préalable. Ces cellules NK reconnaissent leurs cellules cibles potentielles de deux

façons différentes : soit grâce à leurs récepteurs activateurs (portant des séquences « ITAM » :

immunoreceptor tyrosine-based activation motif) ou inhibiteurs (portant des séquences

« ITIM » : immunoreceptor tyrosine-based inhibition motif) soit via leur CD16 qui leur

permet de se fixer à des anticorps et, par la suite, lyser les cellules ainsi marquées. Ceci est un

exemple d'un processus connu sous le nom de cytotoxicité cellulaire dépendante des anticorps

(ADCC, Antibody-Dependant Cell-mediated Cytotoxicity). La lyse des cellules cibles quant à

elle se fait principalement par les voies perforine/granzyme, mais également par la voie

Fas/Fas ligand.

Les lymphocytes B ont pour rôle de fabriquer des immunoglobulines appelées

anticorps : ils sont donc responsables de l'immunité humorale. Pour être actifs, d'autres

cellules telles que les macrophages, doivent leur présenter des fragments d'antigène, afin qu'ils

se différencient en plasmocytes. Ces lymphocytes possèdent bien plus de vésicules de Golgi,

qui permettent ainsi de fabriquer des anticorps en masse, afin de neutraliser efficacement les

antigènes.

En ce qui concerne les lymphocytes T, le chapitre suivant leur est entièrement consacré.

2. Les lymphocytes Tααααββββ

Les lymphocytes T (LT) sont générés dans le thymus et expriment à leur surface un

récepteur appelé TCR (pour T-cell receptor) capable de reconnaître des déterminants

antigéniques spécifiques. Il existe deux types de LT différenciés par la structure du TCR

qu’ils expriment, et qui peut être un hétérodimère de chaînes α et β dit LTαβ ou un

hétérodimère de chaînes γ et δ dit LTγδ. Ces derniers sont majoritairement générés au cours

de la vie foetale alors que les LTαβ, auxquels nous allons nous intéresser exclusivement,

constituent plus de 95% des LT produits après la naissance.

Page 24: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

24

a. Le récepteur à l’antigène des lymphocytes T (TCR)

Les cellules T peuvent détecter la présence de pathogène qu’il soit intracellulaire ou

extracellulaire. Le ligand reconnu spécifiquement par un TCR donné est un complexe formé

par une molécule de présentation spécifique de l’hôte (le CMH) et un peptide antigénique à la

surface d’une cellule présentatrice d’antigène (CPA).

i. Le complexe majeur d’histocompatibilité (CMH) et ses interactions

peptidiques

Les gènes du CMH

Le CMH est un ensemble de gènes distribués le long d’un fragment d’ADN sur le

chromosome 6 chez l’homme où il est appelé HLA (Human Leukocyte Antigens) alors que

chez la souris il est nommé H2 et se trouve sur le chromosome 17. Ce CMH s’étend sur au

moins 4 centimorgans d’ADN soit environ 4 millions de paires de base. Chez l’homme, il

contiendrait plus de 200 gènes. Bien que la disposition soit quelque peu différente, dans les

deux cas, les gènes du CMH sont organisés en région codant trois classes de molécules :

classe I, classe II et classe III. Nous nous intéresserons ici plus particulièrement aux deux

premières classes, impliquées dans la présentation antigénique aux cellules T, la classe III

codant principalement pour des protéines sécrétées et ayant des fonctions immunitaires telles

que les facteurs C2 et C4 du complément ou des molécules impliquées dans l’inflammation

comme le TNF et les protéines de choc thermique.

Les protéines du CMH

Des études ont tout d’abord permis de caractériser ces molécules du CMH de classe I

et II par isolement et purification. Il a ainsi été défini que les deux types de glycoprotéines

membranaires se comportent comme des molécules présentatrices d’antigène hautement

spécialisées qui forment des complexes très stables avec les peptides antigéniques.

Des études cristallographiques aux rayons X complémentaires ont quant à elles permis

d’analyser la structure tridimensionnelle de leur domaine extracellulaire. Chaque molécule

possède un sillon permettant l’interaction avec une grande variété de peptides dont ces études

cristallographiques ont permis de mieux comprendre les interactions (Fremont, Matsumura et

al. 1992; Stura, Chen et al. 1992; Stern, Brown et al. 1994).

Page 25: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

25

Les molécules de classe I [figure 3]

Ces molécules de CMH de classe I (CMH-I) sont exprimées à la surface de toutes les

cellules nucléées de l’organisme à l’exception des érythrocytes, des spermatozoïdes et des

neurones. Cependant, leur niveau d’expression diffère selon les types cellulaires considérés.

Les taux les plus élevés sont retrouvés sur les lymphocytes, où ces molécules constituent

environ 1% des protéines de la membrane plasmique. Ces molécules de classe I résultent de

l’association non-covalente d’une chaîne lourde de 45 kDa comportant trois domaines

semblables à ceux des immunoglobulines α1, α2 et α3 contenant chacun environ 90 amino

acides, d’un domaine trans-membranaire de 25 amino acides hydrophobes suivi d’un court

fragment hydrophyle, d’un domaine C-terminal intracytoplasmique de 30 acides aminés et de

la β2-microglobuline (12 kDa), dont le gène n’est pas localisé dans le CMH.

FIGURE 3 : structure d’une molécule de classe I du CMH determinée par

cristallographie aux rayons X (Janeway, immunobiology)

a : Représentation graphique d’une molécule humaine de CMH de classe I, HLA-A2. La surface de la molécule est colorée de manière à ce que chaque domaine puisse être distingué. Les teintes correspondent à celles qui sont utilisées dans les panneaux b et d. b et c : représentation par un diagramme en rubans du CMH de classe I. d : représentation schématique du CMH de classe I et de son ancrage à la membrane.

Page 26: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

26

La purification et la cristallisation de la portion extracellulaire ont mis en évidence

deux paires de domaines interactifs : une paire, éloignée de la membrane, constituée des

domaines α1 et α2 et une paire proximale composée des domaines α3 et de la β2-

microglobuline. Les séquences peptidiques du domaine α3 et de la β2-microglobuline ont des

structures repliées similaires alors que les domaines α1 et α2, en se repliant, ne forment

qu’une seule structure de deux segments d’hélice α allongés sur un feuillet de huit brins β

anti-parallèles. Cette disposition des domaines α1 et α2 crée une grande fente ou sillon,

constituant le site dans lequel les antigènes peptidiques se lient aux molécules du CMH et où

se concentre le polymorphisme qui détermine la reconnaissance de l’antigène par les LT.

Ces molécules de classe I présentent aux LT-CD8+ des peptides de 8 à 10 acides

aminés qui sont ancrés aux deux extrémités par des interactions entre le CMH et les résidus

N- et C- terminaux du peptide (Matsumura, Fremont et al. 1992). Les peptides présentés par

les molécules de classe I du CMH sont en général issus de la dégradation des protéines

endogènes par le protéasome (Baumeister, Walz et al. 1998). L’hypothèse que le cytosol ou le

réticulum endoplasmique (RE) pourraient héberger des protéines capables de protéger ces

peptides et de les acheminer vers le lieu d’assemblage avec les molécules CMH-I a été à

l’origine de plusieurs études. Étant capables de fixer des peptides, les protéines de choc

thermique, abondantes autant dans le cytosol que dans le RE, ont été proposées pour cette

fonction (Srivastava, Udono et al. 1994). Cependant, aucune preuve pour un rôle important de

ces protéines dans l’apprêtement cellulaire des antigènes n’a été rapportée, ce rôle restant

donc hypothétique. Ce qui est certain, c’est que la translocation des peptides antigéniques de

leur lieu de production au site où intervient l’assemblage avec les molécules du CMH-I est

prise en charge par le transporteur TAP (transporter associated with antigen processing) ; ce

dernier est composé de deux sous-unités homologues et appartient à la grande famille des

protéines ABC, qui utilisent l’énergie fournie par l’hydrolyse de l’ATP pour transporter des

solutés à travers les membranes (van Endert, Saveanu et al. 2002). La très faible expression de

molécules CMH-I à la surface de cellules déficientes en TAP témoigne de la nature essentielle

de cette pompe, dont l’expression est induite par l’interféron γ. Les pompes TAP chez les

rongeurs, mais aussi chez l’homme, montrent une spécificité pour la longueur et la séquence

des peptides qui varie entre les espèces et contribue à la sélection des épitopes

immunodominants. Chez toutes les espèces étudiées, TAP semble avoir une préférence pour

des peptides d’une longueur de 8 à 16 résidus, ce qui permet le transport de peptides ayant

Page 27: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

27

une longueur optimale pour les molécules de CMH-I. Une fois transportés dans le RE, les

peptides peuvent subir une ultime étape protéolytique qui permet de produire certains épitopes

à partir de peptides précurseurs portant des extensions aminoterminales (Rock, York et al.

2004). Chez l’homme, deux aminopeptidases, ERAP1 (endoplasmic reticulum

aminopeptidase 1) et ERAP2, sont impliquées dans ce processus, alors que la souris

n’exprime qu’ERAP1. Les deux enzymes sont induites par l’interféron γ et peuvent former

des complexes hétérodimériques. Elles possèdent des spécificités distinctes, qui leur

permettent d’agir de façon complémentaire : ERAP1 se fixe sur les acides aminés

hydrophobes, tandis qu’ERAP2 montre une forte préférence pour les acides aminés basiques

(Saveanu, Carroll et al. 2005). Il est intéressant de noter qu’ERAP1 digère de façon

préférentielle les substrats d’une longueur de 9 à 16 résidus, en parfaite adéquation avec la

longueur reconnue par les pompes TAP (Chang, Momburg et al. 2005). La formation d’un

complexe entre un peptide et une molécule CMH-I impliquera par la suite l’action de quatre

protéines chaperonnes différentes, dont trois appartiennent au système de contrôle de qualité

du RE, qui empêche les protéines dont la conformation n’est pas adéquate de sortir de ce

compartiment (Cresswell, Bangia et al. 1999). Du fait de leur faible stabilité en l’absence de

peptide fixé, les molécules CMH-I restent en permanence associées à ces protéines, jusqu’à ce

qu’elles acquièrent un peptide de haute affinité. Les chaînes lourdes nouvellement

synthétisées sont d’abord associées à la calnexine, une lectine « de ménage » du RE qui aide

au repliement correct de glycoprotéines. L’association des chaînes lourdes avec la β2-

microglobuline est accompagnée par le remplacement de la calnexine par une deuxième

lectine, la calréticuline, ainsi que par l’entrée en jeu de l’ERp57, une oxydoréductase

catalysant la formation des ponts disulfures au sein des chaînes lourdes. Les complexes ainsi

formés se lient enfin directement aux pompes TAP, par l’intermédiaire d’une protéine

chaperonne spécialisée, la tapasine, constituant ainsi les « complexes de chargement » des

molécules CMH-I. La tapasine, une protéine transmembranaire ayant une structure similaire

aux molécules de CMH, n’est pas seulement requise pour rapprocher les molécules de classe I

dépourvues de peptides à la « source » de ces derniers, mais joue aussi un rôle important en

optimisant les peptides présentés par les molécules de classe I. En effet, dans les cellules

déficientes en tapasine, le nombre et la stabilité des molécules CMH-I à la surface sont réduits

de façon importante. Le mécanisme de cette optimisation est encore mal compris, mais la

rétention des molécules de classe I dépourvues de peptide par la tapasine, de concert avec la

calréticuline, semble jouer un rôle important. Cinétiquement stable, ce complexe

peptide/CMH-I migre ainsi à la surface cellulaire via l’appareil de Golgi puis vers la

Page 28: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

28

membrane plasmique pour y être présenté aux LT-CD8+ (Germain and Margulies 1993;

Hansen and Bouvier 2009).

Il existe une alternative à cette voie dite endogène qui permet l’apprêtement et la

présentation d’antigènes exogènes par les molécules de classe I aux LT-CD8+ : c’est la

présentation croisée (Stura, Chen et al. 1992; Williams and Brady 2001; Ackerman and

Cresswell 2004). Elle permet aux LT-CD8+ de répondre notamment aux antigènes viraux qui

n’infectent pas directement les CPA. Cette voie se distingue par la communication entre la

voie endosomique, responsable de l’acquisition des antigènes, et les compartiments impliqués

dans leur apprêtement, le cytosol et le RE. La nature précise de cette communication reste

incertaine, mais plusieurs modèles ont été proposés (Saveanu and van Endert 2005). Tout

d’abord, la voie de la présentation croisée via le transport vacuolaire indépendant des TAP :

dans ce modèle, les antigènes endocytés sont fragmentés par des cystéines protéases

(cathepsine S) dans les endosomes. Les peptides sortants de cette fragmentation sont chargés

sur les molécules de CMH-I recyclées au sein même de l’endosome. Les nouveaux complexes

peptide/CMH-I sont alors exportés à la membrane plasmique où ils peuvent présenter le

peptide aux LT-CD8+. Les autres voies envisagées sont elles dépendantes des TAPs. Nous

pouvons citer le modèle de la translocation rétrograde où les antigènes solubles sont

directement redirigés vers le RE, suivant le retro-transport du réseau trans-golgien et

l’appareil de Golgi. Une fois dans le RE, l’antigène est retro-transloqué dans le cytosol via la

machinerie ERAD (Endoplasmic Reticulum Associated Degradation) puis présenté selon la

voie classique des protéines endogènes sur les CMH de classe I. Une troisième voie

phagosomale dépendante des TAPs est également décrite. Cette voie s’appuie sur la présence

de composants du RE dans les phagosomes. Les antigènes ainsi phagocytés utilisent un canal

Sec61 (translocon) pour sortir du phagosome, être segmentés par le protéasome et réimportés

dans le phagosome pour être chargés sur les molécules de CMH de classe I qu’ils contiennent.

Une fois chargées, les molécules de CMH de classe I transitent vers la membrane plasmique

et peuvent présenter l’antigène aux LT-CD8+. Une nouvelle voie endosomale dépendante des

TAPS a récemment été suggérée. Via un signal TLR4/MyD88, les TAPS seraient recrutées

vers l’endosome précoce. Les antigènes ainsi endocytés sortiraient de l’endosome par un

transporteur encore inconnu et subiraient une protéolyse par le protéasome et une

rétrotranslocation via les TAPs de l’endosome où ils seraient chargés sur les molécules de

CMH de classe I. Ces nouveaux complexes seraient alors exportés vers la membrane

plasmique pour jouer leur rôle auprès des LT-CD8+ (Raghavan, Del Cid et al. 2008).

Page 29: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

29

Les molécules de classe II [figure 4] :

Ces molécules de classe II (CMH-II) ne sont exprimées que par les cellules

monocytaires/macrophagiques, les cellules dendritiques (de Saint-Vis, Vincent et al. 1998),

les LB (Lanzavecchia 1990) et dans certaines espèces comme l’homme et la souris par les LT

activés (Lal, Shaila et al. 2005).

FIGURE 4 : structure d’une molécule de classe II du CMH determinée par

cristallographie aux rayons X (Janeway, immunobiology)

a : Représentation graphique d’une molécule humaine de CMH de classe II, HLA-DR1. La surface de la molécule est colorée de manière à ce que chaque domaine puisse être distingué. Les teintes correspondent à celles qui sont utilisées dans les panneaux b et d. b et c : représentation par un diaphragme en rubans du CMH de classe II. d : représentation schématique du CMH de classe II et de son ancrage à la membrane.

Ce sont des molécules hétérodimériques composées de deux glycoprotéines

transmembranaires : une chaîne α de 30-32kDa associée de façon non covalente à une chaîne

β de 27-29 kDa (Beck and Trowsdale 1999). Le domaine NH2 des chaînes α et β forme un

Page 30: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

30

sillon pouvant fixer des peptides de 12 à 24 acides aminés pour les présenter aux LT-CD4+

(Pieters 2000). Le sillon ainsi formé est ouvert à chaque extrémité permettant l’accès au

peptide à la fois des cotés N- et C- terminaux (Stern, Brown et al. 1994). Ces peptides

proviennent de la dégradation d’antigènes extracellulaires internalisés par endocytose ou de

protéines endogènes ayant accès à ce compartiment cellulaire (Brodsky and Guagliardi 1991;

Germain and Margulies 1993). De nombreuses familles de protéases sont présentes dans les

compartiments endocytiques, dont les cathepsines. On distingue les cathepsines B, H, L

(cystéine protéases) et les cathepsines D et E (aspartyl protéases), qui ont pu être colocalisées

avec les molécules de classe II dans ces vésicules. Chaque protéase est caractérisée par des

sites préférentiels de clivage et l'action simultanée de plusieurs protéases a été mise en

évidence pour certains antigènes.

Les molécules de classe II sont synthétisées dans le réticulum endoplasmique, où

s'associent trois dimères αβ avec un trimère de chaîne invariante. Les nonamères ainsi formés

sont exportés vers les endosomes via l'appareil de Golgi. La chaîne invariante est une protéine

chaperonne qui exerce plusieurs fonctions auprès des molécules de classe II. Tout d'abord,

elle contribue à l'assemblage des chaînes α et β nouvellement synthétisées et assure leur

stabilisation dans le réticulum sous une conformation permettant leur transport vers la voie

endocytique. Elle empêche également la fixation de peptides endogènes, présents dans le

réticulum ou le réseau de Golgi, aux molécules de classe II. De plus, des signaux localisés

dans la région cytoplasmique de la chaîne invariante sont responsables du transport des

molécules de classe II depuis le réticulum endoplasmique vers la voie endocytique.

Au niveau des endosomes, la chaîne invariante est progressivement dégradée par des

protéases auxquelles résistent les molécules de classe II. Quelques fragments peptidiques

restent temporairement associés aux dimères αβ de molécules de classe II. En particulier,

différents peptides de la région 81-104, appelés peptides CLIP (pour "class II associated

invariant chain peptides"), isolés lors de l'élution des peptides naturels associés aux molécules

de classe II, sont associés au dimère αβ et empêchent la fixation de peptides endogènes. Deux

modes d'interaction ont été envisagés pour les peptides CLIP. D'une part, les motifs

d'interaction de CLIP avec les molécules de classe II sont semblables aux motifs des peptides

ligands naturels et cette interaction est modulée par le polymorphisme allélique des molécules

de classe II, ceci suggérant la fixation de CLIP dans le sillon peptidique de la molécule de

classe II. D'autre part, la fixation d'autres peptides pourrait être inhibée par un blocage

Page 31: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

31

allostérique exercé par CLIP. En fait, la structure cristallographique de CLIP associé à la

molécule HLA-DR3 a révélé qu'il se fixe au niveau du sillon peptidique de façon quasiment

identique aux peptides antigéniques. La protéolyse de la séquence correspondant à CLIP

permet de démasquer le site de liaison au peptide et supprime le signal de rétention dans les

endosomes pour le dimère αβ, qui peut alors s'associer à un peptide antigénique. La

dissociation entre la chaîne invariante et les molécules de classe II dépend donc d'une part, de

l'activité protéolytique des endosomes et d'autre part, de l'affinité de la chaîne invariante pour

les différents allèles des molécules de classe II. L'étude de LB déficients dans la présentation

d'antigènes exogènes et mutés dans les gènes HLA-DM, situés dans la région des gènes des

molécules de classe II, a suggéré un rôle primordial des molécules DM pour la liaison de

peptides aux molécules de classe II. L'équivalent de ces molécules DM a également été

identifié chez la souris et est appelé molécules H2-M. Des travaux récents ont montré que les

protéines DM catalysent la dissociation de peptides déjà présents sur les molécules de classe

II, dont CLIP, permettant l'échange de CLIP contre des peptides antigéniques. Ces résultats

sont confirmés par l'étude de souris n'exprimant plus les molécules H2-M par des mutations

au niveau des gènes codant pour ces protéines. Les cellules spléniques de ces animaux

expriment à leur surface des molécules de classe II stables auxquelles sont fixés surtout des

peptides dérivés de la chaîne invariante. Ces cellules ne sont pas, ou peu, capables de

présenter des protéines ou des peptides à des cellules T. De plus, l'activité des molécules

HLA-DM est optimale dans un environnement acide (pH=5) correspondant au pH des

vésicules tardives ou lysosomiales de la cellule, où sont générés les peptides antigéniques.

Les molécules de classe II associées à la chaîne invariante sont ainsi transportées

depuis le réticulum endoplasmique, à travers le réseau golgien vers la voie endocytique.

Cependant, il n'y a pas à l'heure actuelle, de consensus sur la distribution et le trafic des

complexes classe II-chaîne invariante parmi les différents compartiments de la voie

endocytique, que constituent schématiquement les endosomes précoces, les endosomes tardifs

et les lysosomes. La liaison de peptides aux molécules de classe II a t-elle lieu dans un

compartiment unique, ou au contraire dans les différentes vésicules constituant la voie

endocytique? La notion d'un compartiment endocytique spécialisé dans l'accumulation des

molécules de classe II et où aurait lieu leur rencontre avec les peptides antigéniques a été

initialement suggérée par une étude morphologique et immunocytochimique d'une lignée

lymphoblastoïde B humaine. Les molécules de classe II ont été révélées dans un

compartiment prélysosomal en absence de chaîne invariante, mais elles n'ont pas été détectées

dans les endosomes précoces, suggérant un transport direct des molécules de classe II vers

Page 32: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

32

cette vésicule. Par ailleurs, les molécules de classe II ont été localisées dans les lysosomes et

les phagolysosomes de macrophages ayant capté des bactéries Listeria monocytogenes par

phagocytose. Les complexes peptide-classe II ont également été retrouvés au niveau de

prélysosomes dans les macrophages.

Plus récemment, à l'aide de techniques de fractionnement subcellulaire des vésicules

de la voie endocytique, plusieurs études analysant des LB ont mis en évidence un

compartiment endocytique spécialisé, appelé CIIV (vésicule de classe II) où sont retrouvées

les molécules de classe II nouvellement synthétisées, associées de façon stable à des peptides

antigéniques. Les molécules de classe II ayant perdu leur chaîne invariante dans les

endosomes, seuls des peptides de la région CLIP provenant de la chaîne invariante ont été

retrouvés associés aux molécules de classe II dans ces compartiments CIIV. L'association de

peptides antigéniques aux molécules de classe II s'effectuerait dans ce compartiment, différent

des endosomes précoces, tardifs ou lysosomaux, auquel toutefois, les antigènes internalisés

par endocytose auraient accès. Au contraire de ce compartiment spécialisé dans la liaison

peptide-classe II, une étude sur des lymphoblastes B spléniques de souris a révélé la présence

de complexes classe II-chaîne invariante et de complexes classe II-peptide antigénique dans

diverses catégories de vésicules de la voie endocytique. Cette étude suggère que la fixation du

peptide aux molécules de classe II peut s'effectuer tout au long du cheminement des

molécules de classe II depuis le réseau golgien dans la voie endocytique en fonction du niveau

de dégradation des antigènes dans chaque compartiment.

Chaque molécule du CMH ayant chargé efficacement un peptide antigénique, quitte le

compartiment où ce complexe s'est formé puis est transporté vers la membrane plasmique par

un mécanisme d'exocytose non encore exploré, pour être reconnu par les lymphocytes T

spécifiques.

Diversité du CMH :

La fonction des molécules du CMH est, comme nous venons de le voir, de fixer des

fragments peptidiques dérivés de pathogènes et de les présenter à la surface cellulaire afin

qu’ils soient reconnus par les cellules T spécifiques.

Deux propriétés distinctes du CMH font qu’un pathogène échappe difficilement aux

réponses immunes. Tout d’abord le fait que le CMH soit polygénique. En effet, cette propriété

permet à l’individu de posséder un grand nombre de molécules du CMH avec différentes

gammes de spécificité de liaison des peptides. En ce qui concerne les molécules de classe I,

les trois gènes de chaînes α de classe I chez l’homme, nommée HLA-A, -B et –C, et celles

Page 33: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

33

codées par les régions K et D chez la souris ont été les premières découvertes. Des gènes

supplémentaires ou des groupes de gènes au sein des complexes H2 ou HLA, désignés Qa,

Tla et M chez la souris et HLA-E, -F, -G, -H, -J, -X chez l’homme ainsi qu’une famille de

gènes récemment découverte appelée MIC chez l’homme codent aussi pour des molécules de

classe I dites non classiques. Il existe également trois paires de gènes de chaînes α et β, les

régions DP, DQ et DR chez l’homme (Schreuder, Hurley et al. 2001) et pour la souris les

gènes IA α et β et IE α et β qui codent pour les molécules de CMH de classe II. Tout comme

pour les molécules de classe I, il existe des molécules de classe II non classiques dont la plus

étudiée est le HLA-DM qui a un rôle important dans l’apprêtement et la présentation

d’antigènes aux lymphocytes T auxiliaires. La deuxième particularité de ce CMH est le fait

qu’il soit polymorphe c'est-à-dire qu’il y ait de nombreux allèles de chaque gène dans

l’ensemble de la population et qui rend ainsi l’échappement difficile aux pathogènes.

L’analyse des molécules de HLA de classe I a révélé en 2007, l’existence d’environ 767

allèles A, 1178 allèles B et 439 allèles C (IMGT-HLA database, last updated January 2009).

Chez la souris le polymorphisme est lui aussi étonnant avec plus de 55 allèles identifiés

actuellement au niveau du locus K et 60 allèles au niveau du locus D. Les molécules de classe

II sont elles aussi très polymorphiques avec plus de 600 allèles de DR-B décrits. Dans

certains cas, il y existe même des nombres différents de gènes entre individus de la même

espèce.

L’expression de ces allèles est co-dominante, et les protéines correspondantes aux

deux allèles du même locus sont exprimées dans une même cellule, avec la capacité de

présenter des antigènes aux cellules T. Le polymorphisme à chaque locus double ainsi le

nombre de molécules de CMH différentes exprimé chez un individu donné.

Régulation du CMH :

L’obtention récente de la carte génomique complète du CMH a permis d’identifier les

régions codantes et les régions régulatrices. En effet, les gènes de classe I et II du CMH sont

encadrés par des séquences promotrices en 5’ qui fixent des facteurs de transcription

spécifiques et permettent de réguler ces gènes du CMH. Ces éléments régulateurs sont des

groupes conservés comme les boîtes de transcription S, X1, X2 et Y (Ting and Baldwin 1993;

Rohn, Lee et al. 1996; Collawn and Benveniste 1999; Nagarajan, Louis-Plence et al. 1999;

Reith and Mach 2001). Les boîtes X1 et X2 se lient à RFX (trimère constitué de RFX5,

RFXAP et RFXB/RFXANK) et ATF/CREB respectivement et la box Y à NFY. La

transactivation de tous ces complexes multiprotéiques est sous la dépendance du

Page 34: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

34

transactivateur CIITA qui lui-même est sous contrôle des voies de signalisation de l’IFN

(Piskurich, Wang et al. 1998). Ce CIITA est un transactivateur crucial pour les gènes du CMH

de classe II (Reith and Mach 2001) et possède une fonction complémentaire pour la

transactivation des gènes du CMH de classe I (Martin, Chin et al. 1997). En effet, les gènes du

CMH de classe I possèdent des éléments régulateurs spécifiques comme les enhancers A et

ISRE qui se fixent sur les sites NFκB et IRF1 respectivement, contrôlant la production de

cytokines et induisant des niveaux d’expression constitutif de ce CMH de classe I.

L’expression des molécules de CMH est également régulée par des cytokines, en

particulier les interférons et les facteurs nécrosants des tumeurs (TNF). Certaines infections

virales (cytomégalovirus, hépatite B) peuvent également diminuer l’expression du CMH et

ainsi échapper au système immunitaire.

Sensibilité aux maladies :

Certains allèles HLA sont retrouvés plus fréquemment chez les sujets présentant

certaines maladies comme les maladies auto-immunes. L’association entre certains allèles

d’HLA et une maladie donnée peut être quantifiée en déterminant la fréquence des allèles

HLA exprimée chez les patients atteints de cette maladie, et en les comparant avec la

fréquence de ces allèles dans la population générale. C’est ce que l’on appelle le risque relatif

(RR). C’est ainsi que l’origine génétique de différentes maladies auto-immunes, comme la

sclérose en plaques (associée à HLA-DR2 avec un RR=3.5) ou la polyarthrite rhumatoïde

(associée à HLA-DR4 avec un RR allant de 6 à 12) a pu être établie.

ii. Le complexe TCR/CD3

Les LT reconnaissent leurs antigènes spécifiques grâce à des glycoprotéines

transmembranaires de type I de 80-90 kDa faisant partie de la superfamille des

immunoglobulines appelées TCR.

Ce TCR est un hétérodimère formé d’une chaîne α de 43-49 kDa et d’une chaîne β de

38-44 kDa qui sont liées de façon covalente par un pont dissulfure. Ces deux chaînes assurent

à elles seules la fonction de reconnaissance spécifique de l’antigène (Dembic, Haas et al.

1986). Elles ne sont jamais exprimées isolément à la membrane des LT et sont constamment

associées de façon non covalente à un complexe de polypeptides invariants appelé CD3 (pour

cluster of differentiation 3) permettant la transduction du signal [figure5]. Ce complexe est

Page 35: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

35

formé de chaînes accessoires dites invariables : le CD3δ, le CD3γ, deux CD3ε et d’une chaîne

ζ présente sous forme d’un homodimère majoritairement intracytoplasmique.

FIGURE 5 : le complexe TCR-CD3 (Shumacher 2002)

Le TCR (T cell receptor) est le récepteur des cellules T. Il est composé de deux chaînes α et β, comportant chacune deux domaines de la superfamille des immunoglobulines, reliées par un pont dissulfure. Ce récepteur est toujours associé à un complexe de signalisation : le CD3. Ce CD3 est fréquemment composé de quatre molécules CD3ε/CD3γ et CD3ε/CD3δ comportant chacun un domaine de la superfamille des immunoglobuline et un seul ITAM (immunoreceptor tyronise-based activation motif) ainsi qu’un homodimère de chaîneζ comportant 3 ITAM relié par un pont dissulfure servant à la signalisation intracellulaire.

Les trois protéines CD3 sont codées par des gènes adjacents formant une unité de

régulation et sont nécessaires pour l’expression de surface des hétérodimères α:β ainsi que

pour la signalisation par le récepteur. En effet, elles contiennent chacune un domaine

extracellulaire, qui présente le repliement de l’immunoglobuline, suivi d’une région

transmembranaire et d’un domaine cytoplasmique de plus de 40 acides aminés.

La chaîne ζ, codée ailleurs dans le génome, est aussi nécessaire pour une expression et

une signalisation optimale, mais sa structure diffère de celle des autres chaînes. Elle a un

domaine externe très court mais sa portion cytoplasmique comporte 113 acides aminés.

Les régions transmembranaires de tous les composants du complexe CD3 contiennent

un résidu acide aminé chargé négativement (acide aspartique ou glutamine) permettant au

complexe d’entrer en interaction avec un ou deux acides aminés chargés positivement dans la

région transmembranaire de chaque chaîne du TCR. Les régions cytoplasmiques des chaînes

du CD3 contiennent des motifs ITAM (pour immunoreceptor tyrosine-based activation motif),

Récepteur T

Page 36: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

36

permettant l’activation des immunorécepteurs via une tyrosine. Les chaînes δ, γ, ε

contiennent chacune une seule copie d’ITAM, tandis que la chaîne ζ en contient trois.

Chaque chaîne du TCR est composée de deux domaines immunoglobuliniques : un

domaine variable (V) et un domaine constant (C) ainsi qu’une région charnière courte (H)

contenant un résidu cystéine formant un pont dissulfure intercaténaire. Une région

hydrophobe transmembranaire permet l’ancrage des molécules à la membrane et leur

association au complexe CD3 qui assure ainsi la transduction du signal. Le domaine C est

invariant pour chaque chaîne du TCR et quelque soit le clone lymphocytaire T. Le domaine

V varie considérablement d’un clone T à l’autre. Cette variabilité se trouve concentrée en

certaines régions de la molécule dites régions hypervariables. Par études cristallographiques

comparatives avec les immunoglobulines, ces régions hypervariables se projetteraient sur la

face externe de la molécule du TCR au niveau de boucles CDR (pour complementarity

determining region) déterminant ainsi une région de complémentarité et pouvant entrer en

contact avec les complexes CMH/peptide (Davis and Bjorkman 1988; Chien and Davis 1993).

C’est ainsi qu’en connaissant la structure précise de ce complexe en termes de

composition, arrangement stœchiométrique et interaction avec l’antigène que l’on a pu

comprendre comment un LT pouvait proliférer, et répondre à sa fonction mais aussi

appréhender les phénomènes de modulation d’activation lors d’alloréactivité et de réactions

auto-immunes (Rojo, Bello et al. 2008).

Au niveau génétique, les gènes codants pour les chaînes α et β du TCR sont de grande

taille. Par exemple, chez la souris, les gènes du locus α s’étendent sur plus de 900 kb et ceux

du locus β sur plus de 600 kb (Steinmetz and Dembic 1986). Le locus α situé sur le

chromosome 14 se compose de segments Vα (plus de 100 gènes), Jα (49 gènes) et d’un gène

Cα. Le locus β situé sur le chromosome 7 se compose de segments Vβ (60 gènes), Jβ (13

gènes), Dβ (2 gènes) et de deux gènes Cβ.

Lors de la différentiation thymique des LT, la disposition génomique de ces fragments

est régie par le réarrangement des segments V(D)J via des heptamères et nonamères servant

probablement d’ancrage à la machinerie enzymatique responsable de la recombinaison

(Sigaux 1994). Ce réarrangement des gènes du TCR fait intervenir le produit des gènes RAG1

et RAG2. La recombinaison s’accompagne fréquemment de délétions et/ou additions de

nucléotides au niveau des extrémités codantes libres des segments V, D et J. Des actions

d’éxonucléase et de désoxynucléotidyltransférase ainsi que tous les différents mécanismes

Page 37: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

37

générateurs de diversité peuvent se combiner pour générer un nombre très élevé de TCR (1015

chez la souris) (Davis, Boniface et al. 1998).

Il est également intéressant de noter que des études structurales sur les TCR spécifiques

des antigènes du soi démontrent une remarquable similitude au niveau topologique avec les

TCR qui reconnaissent des antigènes étrangers.

Cependant, il a été récemment découvert trois TCR auto-immuns qui présentent eux

des structures et fonctionnalités différentes des autres TCR (Hahn, Nicholson et al. 2005;

Nicholson, Hahn et al. 2005). Deux de ces TCR ont été retrouvés chez des patients atteints de

sclérose en plaques (maladie auto-immune sur laquelle un chapitre entier sera consacré

ultérieurement) et auraient des topologies non conventionnelles. Un troisième TCR issu cette

fois-ci du modèle animal de la sclérose en plaques chez la souris aurait une orientation

conventionnelle mais une structure différente car le peptide du soi ne remplirait que

partiellement le sillon peptidique. L’interaction de ces trois TCR avec le CMH est par

conséquent sub-optimale, interaction que nous allons approfondir dans le chapitre ci-après.

Une étude encore plus récente (Harkiolaki, Holmes et al. 2009) montre comment au niveau

structural et biophysique les molécules de CMH peuvent prédisposer un individu à une

maladie. En effet, dans cet exemple, le peptide se fixe de façon non conventionnelle (plus

faible affinité) au CMH. Ce qui permet au LT ayant ce TCR auto-réactif d’échapper à la

sélection négative durant la maturation thymique mais d’être activé en périphérie (Li, Huang

et al. 2005), phénomène qui pourrait apporter un poids à une des explications de l’initiation de

la réponse immune qu’est le mimétisme moléculaire.

iii. Les co-récepteurs CD4 et CD8

Au cours de la lymphopoïèse, les LTαβ matures se divisent en deux sous-types

fonctionnellement distincts, chacun restreint par une classe de molécules du CMH et

distinguable sur l’expression de leur co-récepteur, CD8 ou CD4. La reconnaissance du

complexe CMH:peptide par le TCR est donc favorisée par ces molécules co-réceptrices que

sont le CD8 et le CD4. Elles interagissent respectivement avec le CMH de classe I ou II

(Swain 1983).

Page 38: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

38

La molécule CD4 [figure 6] :

FIGURE 6 : la molécule CD4 et son interaction avec le CMH de classe II (d’après

Janeway, immunobiology)

La molécule CD4 est composée d’une seule chaîne comprenant quatre domaines semblables à des immunoglobulines (D1 à D4). Le premier de ces domaines se lie à la molécule de classe II au niveau du domaine β2. Le domaine intracytoplasmique participe à la transduction du signal.

La molécule CD4 est une glycoprotéine de 55-60 kDa. La première structure décrite chez

l’homme provient d’une banque d’ADN complémentaire (Gay, Maddon et al. 1987) qui

indique que la protéine est composée de 458 acides aminés. Parmi les 25 premiers se situe un

site de clivage qui résulte en une maturation de la protéine en 433 acides aminés. Un

alignement de séquence de cet ADNc avec des résultats de cristallographie aux rayons X ont

montré que cette molécule CD4 était composée d’une seule chaîne comprenant quatre

domaines semblables à ceux des immunoglobulines (D1 à D4) (Gay, Maddon et al. 1987;

Brady and Barclay 1996). Les domaines D1 et D3 sont des domaines qualifiés de variables

alors que D2 et D4 sont qualifiés de constants (Williams and Barclay 1988). C’est le premier

de ces domaines qui se lie à la molécule de CMH de classe II au niveau du domaine β2. Le

domaine intracytoplasmique participe à la transduction du signal. La présence de la molécule

CD4 augmente considérablement la sensibilité du LT vis-à-vis de l’antigène présenté.

La molécule CD8 [figure 7] :

La molécule CD8 est une glycoprotéine composée de deux chaînes, α et β ou α et α, liées par

un pont dissulfure et contenant chacune un domaine immunoglobulinique. Le CD8 se lie au

D1

D2

D3

D4

CMH de classe II

CPA

LT

Page 39: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

39

domaine α3 des molécules de CMH de classe I. Elle augmente fortement la sensibilité du LT

pour l’antigène.

FIGURE 7 : la molécule CD8 et son interaction avec le CMH de classe I (d’après

Janeway, immunobiology)

La molécule CD8 est composée de deux chaînes, α et β ou α et α, liées par un pont dissulfure et contenant chacune un domaine immunoglobulinique. Cette molécule CD8 se lie au domaine α3 des molécules de CMH de classe I.

b. Signalisation et activation des LTααααββββ

i. Les cellules présentatrices d’antigènes (CPA)

La régulation des réponses immunes dépend d’interactions multiples entre les cellules

présentatrices d’antigènes et les LT. Ces interactions impliquent des molécules de surface

comme le CMH exprimées à la surface des CPA et le TCR à la surface du LT.

De nombreuses cellules peuvent agir en tant que CPA. La caractéristique distincte de

ces cellules est leur capacité à exprimer des molécules de CMH et à délivrer un signal de co-

stimulation. Trois types de cellules sont classées comme CPA : les cellules dendritiques, les

macrophages et les lymphocytes B. Ces cellules diffèrent par leur mécanisme de capture de

l’antigène, par les molécules de CMH qu’elles expriment et par les signaux de co-stimulation

qu’elles envoient.

Les principales cellules impliquées dans l’activation des LT naïfs c'est-à-dire qui n’ont

pas été préalablement activés par un antigène sont les cellules dendritiques (CD). Elles sont à

Cellule cible

CMH de classe I

Page 40: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

40

l’origine de l’initiation des réponses immunes spécifiques et sont dites cellules présentatrices

professionnelles. Au site d’infection, les CD capturent par pinocytose et phagocytose des

antigènes du microorganisme en cause. Elles sont alors activées soit par des cytokines

inflammatoires, telles que l’interleukine-1 (IL-1), le facteur de croissance des granulocytes

(GM-CSF) et le TNF-α soit par la liaison de récepteurs de surface reconnaissant des motifs

moléculaires associés aux pathogènes, tels que les TLR (pour toll like receptor). Elles entrent

alors dans un processus de maturation caractérisé par l’expression de récepteur de migration

vers les organes lymphoïdes primaires. Durant cette migration, elles deviennent alors matures

et subissent des modifications morphologiques, phénotypiques et fonctionnelles (Banchereau

and Steinman 1998). En particulier, ces cellules dendritiques vont exprimer de forts niveaux

de complexes CMH:peptide, ainsi que des molécules accessoires (que nous détaillerons par la

suite) jouant un rôle majeur dans l’activation efficace des LT naïfs. Elles vont également

produire des cytokines qui influenceront la différentiation des LT naïfs et dont la nature est

variable en fonction du stimulus activateur (Re and Strominger 2001). Arrivés dans les zones

riches en LT des organes lymphoïdes secondaires, les LT naïfs entrent en contact avec

plusieurs cellules dendritiques qui leur présentent les antigènes capturés en périphérie, sous la

forme de complexe CMH:peptide. L’interaction entre le TCR d’un LT naïf et son complexe

CMH:peptide spécifique à la surface d’une CD induit l’arrêt de la migration du LT et son

activation.

Outre ces cellules dendritiques, les macrophages peuvent devenir des CPA s’ils sont

activés par phagocytose de microorganismes, leur permettant d’exprimer les molécules de

CMH de classe I et II et les molécules B7 de co-stimulation.

Le LB quant à lui peut aussi être considéré comme une CPA professionnelle car il

exprime constitutivement des molécules de CMH de classe I et II mais une activation

préalable lui sera nécessaire afin d’exprimer les molécules de co-stimulation. Cette activation

peut se faire de manière dépendante ou indépendante des LT. L’efficacité du LB étant

beaucoup plus importante lorsqu’elle est activée de manière dépendante des LT puisque son

signal d’activation va provenir à la fois de la reconnaissance de l’antigène par le BCR et de la

co-stimulation fournie par un LT qui a reconnu le même antigène. Ainsi les LB et les LT qui

auront reconnu le même antigène vont permettre une réponse immune plus spécifique et plus

efficace.

Ces trois types de cellules sont dits CPA professionnelles. Divers autres types de

cellules, capables d’exprimer les molécules de CMH ou un signal de co-stimulation, de façon

induite peuvent aussi faire office de CPA « non professionnelle ». C’est le cas par exemple

Page 41: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

41

des fibroblastes de la peau, des cellules gliales dans le cerveau, des cellules épithéliales du

thymus et de la thyroïde ou encore des cellules endothéliales des vaisseaux.

ii. La migration et l’adhésion des LT avec leur CPA

Af in que les LT migrent et interagissent avec ces CPA, il est nécessaire d’acquérir des

molécules d’adhésion. En effet, ces molécules vont servir à maintenir le contact cellulaire

entre cette CPA et le LT et à stabiliser l’interaction TCR et CMH:peptide (Springer 1990).

Les sélectines:

Parmi ces molécules d’adhésion, les sélectines joueront un rôle particulièrement

important (Celie, Beelen et al. 2009). C’est le cas de la sélectine CD62-L ou L-sélectine,

présente à la surface du LT naïf (Springer 1990; Cai and Sprent 1994; Tough and Sprent

1994) qui va favoriser l’entrée ou « homing » dans les ganglions lymphatiques par interaction

avec des structures vasculaires spécifiques, les HEV (pour high endothelial venules) (Springer

1990). Cette sélectine va également pouvoir guider l’entrée des LT dans les tissus lymphoïdes

des muqueuses comme celles de l’intestin par interaction avec des adressines (CD43,

GlyCAM-1 et MAdCAM-1). Une étude récente montre également le rôle important de ces

molécules dans le passage de la barrière hématoencéphalique par les LT (Engelhardt 2008).

Les chimiokines et intégrines:

Au cours de la phase initiale d’adhésion faible, des chimiokines exprimées par des cellules

non lymphoïdes des zones riches en LT des OLS telles que CCL19 et CCL21, stimulent le

récepteur CCR7 exprimé par les LT naïfs. Ceci induit l’activation d’intégrines exprimées par

les LT telles que LFA-1 (pour lymphocyte function-associated molecule 1). Cette intégrine

joue un rôle majeur dans l’interaction LT-CPA (Davignon, Martz et al. 1981; Davignon,

Martz et al. 1981; Kurzinger, Reynolds et al. 1981). Elle est exprimée par les LT et interagit

avec les molécules ICAM (pour intercellular adhesion molecules) exprimées par les CPA

[figure 8]. Les trois ICAM actuellement connues ont une structure proche, constituée d’un

nombre variable de domaines extracellulaires apparentés aux immunoglobulines. La molécule

ICAM-1 ou CD54 (Rothlein, Dustin et al. 1986) est la plus étudiée et semble-t-il la plus

importante. Une des particularités des interactions LFA-1/ICAM tient au fait que l’affinité de

LFA-1 pour ses ligands est augmentée lors du contact du LT avec sa CPA. En effet,

l’activation du LT via son TCR augmente l’affinité de LFA-1 et ICAM-1 (Dustin and

Page 42: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

42

Springer 1989; Staunton, Dustin et al. 1989), ce qui peut renforcer l’interaction LT-CPA.

Cette interaction LFA-1/ICAM permet ainsi d’initier le processus d’extravasation (Dunon and

Imhof 2000). L’engagement d’autres molécules telles que le CD28 (Shimizu, van Seventer et

al. 1992), le CD44 (Koopman, van Kooyk et al. 1990) et le CD2 (Meuer, Acuto et al. 1984)

exprimées par les LT peuvent favoriser également l’adhésion cellulaire.

FIGURE 8 : Adhésion des lymphocytes T et diapédèse

Lors d’une réaction immunitaire, les lymphocytes vont devoir traverser les barrières physiques que sont les membranes en réponse à des signaux chimiques inflammatoires. La première étape est une phase de roulement du leucocyte sur la paroi vasculaire qui implique des sélectines. Les interactions entre ces sélectines P et leur ligand sont de nature relativement faibles. Elles sont renforcées par le PAF qui nécessite que la cellule endothéliale soit activée pour sa synthèse et son expression au niveau de sa membrane. Un fois exprimé il pourra ainsi interagir avec son récepteur présent sur le leucocyte ce qui aura pour effet d'activer ce dernier. Une fois activé, l'affinité du leucocyte pour les ICAM comme ICAM-1 (intracellular adhesion molecules ),présentes sur les vaisseaux, via ses intégrines telle que LFA-1(lymphocyte function-associated molecule-1) va augmenter et permettre l’adhésion et l'immobilisation nécessaire à l'invasion des tissus adjacents.

Les intégrines peuvent être impliquées également dans des relations avec le

cytosquelette et des éléments extracellulaires. LFA-1 peut, par exemple, être localisée avec la

taline et ICAM-2 avec l’α-actine (Helander, Carpen et al. 1996). De plus, l’engagement de

LFA-1 pourrait transduire des signaux intracellulaires permettant d’amplifier la réponse T :

l’activation de LFA-1 par des anticorps agonistes peut en effet générer des réponses calciques

(Kanner, Grosmaire et al. 1993). Parallèlement, ICAM-1 pourrait être impliquée dans la

Lymphcocyte T

LFA-1

Endothélium

Ligand des sélectines

Récepteur PAF

Vésicule contenant la P-selectine

Activation de

l’endothélium

Adhésion du LT à l’endothélium par

les intégrines : LFA-1/ICAM-1

Adressage du LT à l’endothélium par les sélectines Activation du LT (intégrines

activées par PAF)

Diapédèse

Synthèse de PAF

P- sélectine

Page 43: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

43

phosphorylation de tyronises menant à l’activation d’éléments transductionnels plus en aval et

à la transduction de cytokines par les CPA (Koyama, Tanaka et al. 1996).

iii. La co-stimulation

Comme nous venons de le préciser, le programme complet de différenciation d’un LT

naïf en LT effecteur n’est généralement pas déclenché par la seule liaison du TCR avec le

CMH mais requiert des signaux complémentaires, dits de co-stimulation. La balance entre les

co-signaux activateurs et inhibiteurs va déterminer la nature de la réponse émise par le LT

concerné [figure 9].

FIGURE 9: La synapse immunologique (encyclopedia of life sciences, 2005)

La synapse immunologique est organisée spatialement en trois zones. La zone centrale, le cSMAC contient les TCR, les molécules de co-stimulations telles que CD28 (…). Cette zone va permettre l’initiation de la signalisation intracellulaire en aval du TCR. Le pSMAC contient la protéine d’adhérence LFA-1 et la taline qui permettront l’ancrage au cytosquelette d’actine. Le dSMAC zone la plus externe de la synapse regroupe de grandes molécules telles que les phosphatases CD45 et CD148 qui permettront l’arrêt du signal.

Les molécules B7:

Les deux membres de la famille B7, les molécules B7-1 ou CD80 (Freeman, Freedman et

al. 1989; Koulova, Clark et al. 1991) et les molécules B7-2 ou CD86 (Azuma, Ito et al. 1993;

Freeman, Borriello et al. 1993) ont des récepteurs identiques : le CD28 et le CTLA-4

(Chikuma and Bluestone 2003). Ce sont des protéines monomériques avec deux domaines

extracellulaires apparentés aux immunoglobulines qui sont exprimées principalement par les

Page 44: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

44

CPA professionnelles et par les cellules hématopoïétiques (Mao, Brigham et al. 2004). Ils ont

cependant des cinétiques d’expression et des affinités particulières. En effet, seul le CD86 est

constitutivement exprimé sur les cellules T au repos, le CD80 étant absent (Taylor, Lees et al.

2004). Les cellules dendritiques matures expriment de forts niveaux des deux molécules

(Inaba, Witmer-Pack et al. 1994). D’autres CPA telles que les LB au repos ne les expriment

pas ou peu (Inaba, Witmer-Pack et al. 1994). Le niveau d’expression de ces molécules peut

également être régulé par l’IFNγ, le LPS ou par des interactions cellulaires (Freeman,

Freedman et al. 1989; Freedman, Freeman et al. 1991; Karandikar, Vanderlugt et al. 1998;

Tan, Gordon et al. 1998).

Les molécules CD28:

La molécule CD28 fait partie de la famille des immunoglobulines. Elle contient un

domaine intracellulaire présentant les résidus critiques pour l’efficacité de la signalisation. Par

exemple, le motif YMNM sur la tyrosine 170 de ce domaine permet le recrutement de

protéines contenant des domaines SH2 essentielles à la signalisation d’un LT. Nous pourrons

citer parmi ces protéines, la PI3K, le GrB2 ou encore les Gads. Cette molécule CD28 est un

homodimère de 44 kDa exprimé de façon constitutive sur la surface de certains LT humains

(50% LT-CD8+ n’expriment pas CD28) et sur tous les LT murins (Gross, Callas et al. 1992;

Linsley, Greene et al. 1992; Linsley, Bradshaw et al. 1993; Linsley and Ledbetter 1993). Il

s’agit du récepteur aux molécules B7-1 (CD80) et B7-2 (CD86). Son gène est localisé sur le

chromosome 2p33 chez l’homme (Naluai, Nilsson et al. 2000) et sur le chromosome 1 chez la

souris (Howard, Rochelle et al. 1991). Sans ce signal CD28, le TCR ne répond pas à

l’antigène, provoquant anergie ou mort cellulaire du LT (Linsley and Ledbetter 1993). En

effet, ce co-signal amplifie l’activation des facteurs de transcription NFAT et NFκB. Il permet

ainsi la production de nombreuses cytokines comme l’IL-2, l’IL-4, l’IlL-5, le TNF et l’IFN-γ.

De plus, il a été montré que l’engagement du CD28 jouait un rôle important des stades

précoces de développement et de différenciation des LT (King, Stupi et al. 1995). Ce CD28

est également impliqué dans l’homéostasie et la fonction des LT régulateurs (Earle, Tang et

al. 2005).

Les molécules CTLA-4:

Le CTLA-4 a lui une affinité dix fois supérieure au CD28 et n’est exprimé que par les LT

activés. Il s’agit d’une glycoprotéine transmembranaire faisant partie de la superfamille des Ig

Page 45: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

45

(Brunet, Denizot et al. 1987). Son gène est situé sur le chromosome 2 chez l’homme et sur le

chromosome 1 chez la souris (Dariavach, Mattei et al. 1988; Ling, Sandor et al. 2003). Il a

une fonction inhibitrice dans l’activation des LT (Alegre, Frauwirth et al. 2001; Chambers,

Kuhns et al. 2001; Rudd, Martin et al. 2002). Ce mécanisme assure le contrôle des réponses

immunitaires spécifiques en limitant l’expansion des clones T activés. En effet, l’expression

constitutive de CD28 permet d’induire l’activation des LT reconnaissant leur antigène à la

surface des CPA. Cette activation induit progressivement l’expression de CTLA-4 à la surface

des LT et compte tenu de l’affinité supérieure de CTLA-4 comparée à CD28 pour les

molécules B7, les interactions B7/CTLA-4 deviennent alors favorisées délivrant des signaux

inhibiteurs aux LT (Crabtree 1989).

Les molécules CD40 :

Une protéine transmembranaire a également un rôle très important : le CD40. Elle est

présente à la surface des LB, des monocytes et des CD et favorise, après engagement par le

CD40L exprimé notamment par les LT activés, l’expression des molécules de CMH de classe

II ainsi que celle des molécules B7, ICAM-1 et LFA-3 à la surface des CPA. La liaison de

CD40 à son ligand CD40-L aboutit à la sécrétion par les CPA de multiples cytokines

activatrices des réactions immunitaires telles que l’IL-1, l’IL-6, l’IL-10, l’IL-12 et le TNF-α.

Les molécules CD134 :

Plus récemment, il a été montré qu’en plus de toutes ces molécules, le CD134 (récepteur

de OX40), membre de la famille des récepteurs TNF, pouvait affecter la réponse T en

favorisant l’expansion clonale des LT, leur différenciation en effecteurs ainsi que leur survie

(Redmond, Gough et al. 2009).

iv. La synapse immunologique

Ces signaux de co-stimulation seront donnés lors d’une interaction stable et prolongée

entre les LT et les CPA, nécessaire à l’activation des LT naïfs. Bien que la spécificité de

reconnaissance antigénique soit déterminée par l’interaction du TCR avec son ligand

(complexe CMH:peptide), le devenir de l’interaction entre un LT et une CPA dépend de

l’intégration des signaux provenant du TCR et de molécules accessoires engagées à l’interface

cellulaire. L’interaction entre un LT et une CPA aboutit à la formation d’une aire spécialisée

à l’interface cellulaire appelée synapse immunologique (SI) (Grakoui, Bromley et al. 1999;

Page 46: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

46

Dustin 2009), dans laquelle de multiples molécules de surface sont engagées simultanément,

induisant l’activation de voies de signalisation multiples et interconnectées [figure 9] Ainsi,

sous l’influence de mobilisateur du cytosquelette, sont recrutés à cette synapse à la surface des

CPA, les complexes CMH:peptide, les molécules de co-simulation et d’adhésion ainsi qu’à la

surface des LT les molécules de TCR et le complexe de signalisation associé, le CD3. C’est

ainsi que l’on peut dire que les deux acteurs principaux que sont le CMH et le TCR ne sont

pas les seuls à rentrer en ligne de compte pour une signalisation et activation optimale du LT.

v. Activation

Ce n’est qu’après la mise en place de cette synapse immunologique entre les CPA

matures et les LT naïfs, avec toutes les composantes citées ci-dessus que le LT va pouvoir

s’activer, entrer dans le cycle cellulaire, proliférer et se différencier en cellules effectrices

et/ou mémoires. Comme nous l’avons vu précédemment, les chaînes α et β du TCR ne

peuvent pas transduire à elles seules le signal. Elles dépendent en cela du complexe CD3 dont

les chaînes εδ et εγ apporteront chacune un motif ITAM alors que les chaînes ζζ en

apporteront trois. Schématiquement, la transduction du signal au sein du LT va mettre en jeu

des éléments proximaux de signalisation (recrutement et activation de protéines tyrosines

kinases et de protéines adaptatrices) puis des éléments plus distaux permettront la mise en

place des différentes voies de signalisation existantes en aval du TCR. Ces voies de

signalisation auront pour finalité d’activer plusieurs facteurs de transcription qui décideront de

la réponse de la cellule T : prolifération, différenciation, production de cytokines ou encore

mise en place du potentiel cytotoxique. Ce sont donc ces évènements qui conditionneront la

mise en place et la spécificité des fonctions effectrices des LT.

Les évènements proximaux:

Ces évènements proximaux de signalisation correspondent à l’activation et au recrutement

rapide de protéines tyrosines kinases comme Lck et Fyn (Src kinases) qui vont phosphoryler

les tyrosines des motifs ITAM du complexe CD3. Ces tyrosines phosphorylées vont pouvoir

ainsi recruter la protéine tyrosine kinase Zap70 via ses deux domaines SH2. Cette protéine

ZAP70 va alors phosphoryler son substrat : la protéine adaptatrice LAT (linker for activation

of T cells), molécule centrale dans la mise en place et la connexion des différentes voies de

transduction du signal (Lin and Weiss 2001).

Page 47: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

47

Les évènements distaux : les voies de signalisation

Les voies de signalisation activées seront majoritairement les voies Ras/Raf/MAP Kinases

et Rac/JNK qui amèneront à la synthèse de facteur de transcription tel que AP-1, la voie de la

protéine PKC qui permettra la translocation nucléaire du facteur de transcription NFκB et la

voie des phosphoinositides et du métabolisme calcique avec activation de la calcineurine et la

translocation nucléaire de NF-AT (Pawson and Scott 1997) [figure 10]. L’activation de tous

ces facteurs de transcription vont permettre l’initiation de l’expression sélective de gènes

codant pour des cytokines, des récepteurs, etc. [tableau 1].

FIGURE 10 : Voie de transduction du signal et d’activation d’une cellule T suite à

l’engagement de son TCR (encyclopedia of life sciences, 2005).

Quatre principales voies sont observables, chacune identifiée par une couleur différente : la voie calcique impliquant le Ca2+ et la calcineurine en violet, la voie de la PKCθ en orange, la voie Ras/Erk en vert et la voie Vav1/Jun en bleu. Toutes ces voies de signalisation convergent vers le noyau de la cellule T où des facteurs de transcription vont pouvoir induire l’expression de certains gènes tels que l’interleukines 2.

Page 48: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

48

PRODUIT DU GENE FONCTION LOCALISATION IMMEDIATE

c-Fos Prooncogène nucléaire c-Jun Oncogène cellulaire, Facteur de

transcription nucléaire

NF-AT Facteur de transcription nucléaire c-Myc Oncogène cellulaire nucléaire NF-κκκκB Facteur de transcription nucléaire

PRECOCE IFN- γγγγ Cytokine de type TH1 affectant la

l’activation, la croissance et la différenciation des LT, LB, macrophages et NK.

sécrétée

IL-2 Cytokine reponsable de la croissance et diffférenciation des LT, LB et NK

sécrétée

Récepteur de l’insuline

Récepteur hormonal Membrane cellulaire

IL-3 Facteur de croissance pour les cellules hématopoïétiques et les lymphocytes

sécrétée

TGF-ββββ Cytokine inhibitrice de la croissance cellulaire

sécrétée

Récepteur de l’IL-2 (p55)

Récepteur de cytokine Membrane cellulaire

TNF-ββββ Cytokine responsable de la production de radicaux oxygénés. Elle augmente l’adhésion et la phagocytose

sécrétée

Cycline Protéine du cycle cellulaire cytoplasmique IL-4 Cytokine favorisant la croissance et le

développement des LT sécrétée

IL-5 Cytokine impliquée dans la formation et la différenciation des éosinophiles

sécrétée

IL-6 Cytokine responsable de la régulation des fonctions B et T. phase aiguë de la réponse immune

sécrétée

c-Myb Protooncogène nucléaire GM-CSF Cytokine sécrétée

TARDIVE HLA-DR Molécule de CMH II Membrane

cellulaire VLA-4 Molécule d’adhésion Membrane

cellulaire VLA-1, -2, -3, -5 Molécules d’adhésion Membrane

cellulaire

TABLEAU 1 : liste non exaustive des produits des gènes activés au cours de la

signalisation au sein des lymphocytes T (adapté (Crabtree 1989)

Page 49: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

49

c. Les lymphocytes T-CD4 et T-CD8

i. Ontogénie

FIGURE 11: le développement thymique (Anderson and Jenkinson 2001) On distingue des stades successifs de différenciation du thymocyte principalement sur l’expression des co-récepteurs CD4 et CD8. Les cellules les plus immatures sont les thymocytes CD4-CD8-, appelés doubles négatifs (DN). L’expression de CD44 et de CD25 caractérisera quatre étapes dans cette différenciation précoce, DN1 à DN4. Les thymocytes vont ensuite subir la sélection β, et acquérir l’expression de CD8, puis de CD4, pour devenir des cellules double positives (DP). Ces DP perdent ensuite l’une de ces deux molécules, signe de mise en place d’un programme de différenciation vers le stade mature simple positif (SP), ceci de façon concommitente à la sélection positive et négative. Ces SP, cellules différenciée du thymus migreront enfin en périphérie.

Comme nous l’avons précisé dans le chapitre des généralités, les LT commencent leur

maturation dans le thymus. Issues des précurseurs de la moelle osseuse, certaines cellules vont

donc migrer dans le thymus pour acquérir des caractéristiques fonctionnelles et phénotypiques

qui caractériseront cette population de LT. Le thymus est ainsi composé de cellules

leucocytaires appelées à ce stade thymocytes, et de très nombreuses cellules stromales comme

Signalisation via le TCR inappropriée

Cellule Epihtéliale corticale

Reconnaissance du CMHII Reconnaissance du CMHI

Mort par négligence

Progéniteur lymphoidde

Selection positive

Selection négative

Selection négative

Progéniteur hématopoïétique

Jonction cortico-médullaire

Cellulaes épithéliales méduallaires ou

cellules dendritiques

Mort

Orientation CD8 Orientation CD4

Migration en périphérie

Mort Cellulaes épithéliales méduallaires ou

cellules dendritiques

COR T EX

MEDUL LA

Page 50: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

50

les cellules épithéliales thymiques (TEC) qui apportent de nombreux signaux nécessaires au

déroulement fonctionnel du développement de ces thymocytes (Kingston, Jenkinson et al.

1985; Williams, Kingston et al. 1986). On distingue ainsi différents stades successifs de

différenciation du thymocyte, distinction qui se fera principalement sur l’expression des

molécules CD4, CD8, CD25 et CD44 [figure 11].

Les cellules les plus immatures arrivant directement de la moelle osseuse sont

caractérisées par la non-expression des co-récepteurs CD4 et CD8 : ce sont les cellules

doubles négatives (DN) CD4-CD8- (Scollay, Bartlett et al. 1984). La survie et le

développement de ces thymocytes DN sont principalement induits par la synthèse de

cytokines comme l’IL-7 produite par les TEC corticales (Murray, Suda et al. 1989; Moore,

von Freeden-Jeffry et al. 1996).

Pour cette population de DN, l’expression des deux molécules de surface CD44 et

CD25 caractérisera quatre étapes de différenciation précoce : DN1 (CD44+CD25-), DN2

(CD44+CD25+), DN3 (CD44-CD25+) et DN4 (CD44-CD25-). Durant le stade DN3, les

thymocytes vont réarranger leur TCR (réarrangement somatique des gènes codant pour le

TCR-β) (Habu, Kimura et al. 1987). Si un réarrangement productif du locus TCR-β a lieu,

alors son produit s’associe à une chaîne invariante pTCRα pour former un pré-TCR. Le signal

que celui-ci délivre, associé à des signaux cytokiniques, promeut la survie, la prolifération et

la progression dans ce processus de différenciation vers le stade DN4. Cette étape, nommée

sélection β, permet donc la survie des lymphocytes porteurs d’une chaîne β fonctionnelle

[figure 12].

FIGURE 12: le développement thymique (Sebzda, Mariathasan et al. 1999) Les différentes étapes de la sélection thymique sont caractérisées par l’expression séquentielle de différents marqueurs: CD44, CD25, CD4 et CD8. (DN double négatif ; DP double positif ; SP simple positif).

Thymocytes DN CD4+ CD8+

Thymocytes DP CD4+ CD8+

Réarrangement du gène TCR αααα Réarrangement

du g ène TCR¸ ββββ Progéniteur

commun

Sélection ββββ Sélection positive Sélection négative

Thymocytes SP

DN1 DN2 DN3 DN4

Page 51: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

51

L’assemblage du pré-TCR avec le complexe CD3 va ensuite permettre l’engagement

du lignage TCRαβ dans le stade double positive (DP) CD4+CD8+ où se déroulera le

réarrangement de la chaîne α du TCR et où le thymocyte va subir une sélection positive. En

effet, les récepteurs des thymocytes DP sont générés comme nous l’avons vu précédemment

de façon aléatoire, ce qui permet de faire face à l’immense variété des antigènes. Mais cela

engendre aussi de très nombreux TCR incapables d’interagir avec le complexe CMH:peptide.

Un écrémage est donc à ce stade nécessaire pour sélectionner les LT « utiles ». Au stade DP,

les cellules sont privées du signal anti-apoptotique apporté par les cytokines à cause de la

répression par SOCS1 (suppressor of cytokine signaling 1) et de l’expression du récepteur à

l’IL-7 (Yu, Park et al. 2006). Elles sont donc fortement sensibles à la mort cellulaire. Seul un

signal de survie, transmis par l’engagement du TCR, peut permettre de passer ce cap (Scott,

Bluthmann et al. 1989). De ce fait, l’immense majorité des thymocytes, dont l’affinité pour le

complexe CMH:peptide du soi est insuffisante meurt par négligence (Williams and Brady

2001). Par contre, les cellules DP qui reçoivent un signal via le TCR de forte intensité peuvent

survivre et se différencier en thymocytes matures : c’est la sélection positive (Ashton-

Rickardt 1993; Ashton-Rickardt, Van Kaer et al. 1993). Le rôle du thymus dans ce

phénomène là a pu être mis en évidence dans des chimères thymectomisées et greffées avec

un thymus allogénique, dont les LT sont spécifiques du CMH porté par l’épithélium

transplanté (Zinkernagel, Callahan et al. 1978). Un faisceau d’indices a amené à identifier le

cortex comme compartiment spécialisé dans la sélection positive des LT (Ceredig,

MacDonald et al. 1983; Cosgrove, Chan et al. 1992; Laufer, DeKoning et al. 1996). Ainsi le

degré d’affinité/avidité entre le TCR et le complexe CMH:peptide présenté par les cTEC

(pour cellules corticales de l’épithélium thymique) dirige le devenir du thymocyte [figure 13]

FIGURE 13 : mécanisme de tolérance thymique (Sebzda, Mariathasan et al. 1999)

Sélectionpositive

Sélectionnégative

Sélection ββββ

Vaisseaux sanguins

TEC corticale

Macrophage

TEC médullaire

DC médullaire

Capsule

Cellules épithélialesSous-capsulaires

ˇ

Lymphocytes B

Thymocytes

Sélectionpositive

Sélectionnégative

Sélection ββββ

Vaisseaux sanguins

TEC corticale

Macrophage

TEC médullaire

DC médullaire

Capsule

Cellules épithélialesSous-capsulaires

ˇ

Lymphocytes B

Thymocytes

Les différents types cellulaires et les interactions séquentielles cellule-cellule durant la migration des thymocytes au cours du développement thymique sont représentés ici. La sélection β et la sélection positive ont lieu dans le cortex thymique suite à l’interaction des thymocytes avec les cellules épithéliales thymiques (TEC) corticales. La sélection négative se déroule dans la médulla. Les TEC et les DC médullaires jouent un rôle essentiel dans l’induction de tolérance centrale.

Page 52: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

52

ii. Les lignages CD4/CD8

Durant cette sélection positive, les différentes cinétiques des interactions TCR-ligand va

déterminer le lignage simple positif (SP) CD4+CD8- ou CD4-CD8+ (Singer and Bosselut

2004). Ainsi, la perte de l’une de ces deux molécules CD4 ou CD8, signe de mise en place

d’un programme de différenciation vers le stade mature simple positif (SP), se fait

concomitamment à la sélection positive.

La spécificité du TCR étant générée de façon aléatoire, le processus permettant de faire

correspondre cette réactivité à l’expression du co-récepteur approprié, a fait l’objet de

nombreux travaux. Deux thèses principales ont été ainsi avancées [figure 14] : celle d’une

sélection positive décidant du destin du thymocyte, et une seconde où le lymphocyte DP est

prédéterminé aléatoirement à un lignage et sélectionné par la suite (Guidos, Danska et al.

1990). Plus récemment, une nouvelle hypothèse selon laquelle la force du signal en aval des

co-récepteurs serait importante pour le choix du lignage a été émise (Corbella, Moskophidis et

al. 1994) [figure 15] .

Dans une étude élégante ayant pour but de mesurer le degré de réactivité croisée du

TCR, Garcia et ses collaborateurs ont développé une série de décapeptides dans laquelle des

substitutions par les 20 acides aminés ont été réalisées à chacune des 10 positions (Maynard,

Petersson et al. 2005). Cette base de données combinée a été passée au crible en utilisant un

TCR reconnaissant un peptide de la protéine basique de la myéline (MBP) dans le contexte de

CMH de classe II chez la souris. La structure tridimensionnelle du complexe a ensuite été

réalisée alors que les résidus de contact du TCR avaient déjà été identifiés. Ainsi, les peptides

de cette librairie combinée représentant toutes les substitutions à toutes les positions du

peptide ne réagissaient pas avec le TCR lorsque les acides aminés étaient substitués dans les

résidus impliqués dans l’ancrage aux molécules du CMH. Cette sélectivité a été initialement

révélée par le séquençage des peptides clivés des molécules de CMH de classe I : c’est le

phénomène de restriction du CMH aux différents peptides.

Page 53: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

53

FIGURE 14: le choix du lignage CD4/CD8 : les modèles instructifs et sélectifs

(Kalinski and Moser 2005)

a : Le modèle instructif propose que des signaux intracellulaires, biochimiquement distincts, sont générés par le TCR lorsqu’il est associé à CD4 ou à CD8. Ces signaux seraient suffisants à engager le thymocyte vers l’un des deux lignages, et l’appariement TCR/co-récepteur serait toujours pertinent puisque dans le cas inverse, le thymocyte ne progresse pas dans sa différenciation. b : D’autre part, le modèle sélectif suggère que le choix de lignage se fait préalablement à la sélection positive et indépendamment de la spécificité du TCR. Les thymocytes dont le TCR et le co-récepteur ne sont pas bien coordonnés seraient éliminés lors d’une étape de sélection où le bon assortiment des deux molécules procurerait un signal de survie.

Interaction TCR-CD8 / CMH I

Interaction TCR-CD4 / CMH II

Cellule épithéliale corticale

Signal unique pour le lignage CD8

Signal unique pour le lignage CD4

Choix stochastique du lignage CD4 ou CD8

Choix CD8 correct Choix CD4

incorrect

Interaction TCR-CD8 / CMH I

Interaction TCR / CMH I sans implication du CD8

Survie Mort

Il se passe les mêmes évènements pour le DP dont le TCR est spécifique pour des complexes CMH II :peptide

Page 54: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

54

FIGURE 15 : le choix du lignage CD4/CD8 : le modèle force du signal (Kalinski and

Moser 2005)

Ce modèle propose que l’engagement vers les lignages CD4 et CD8 se fait selon l’intensité ou la durée de la signalisation du TCR, un signal fort ou soutenu orientant vers un devenir CD4. Dans ce modèle il est envisagé que dans de rares cas, une signalisation inappropriée conduirait au mésappariement de la spécificité du TCR et du co-récepteur. Les cellules mourraient alors lors d’une étape de sélection ultérieure, semblable à celle décrite dans le modèle stochastique.

Interaction TCR-CD8 / CMH I Interaction TCR-CD4 / CMH II

Signal long/ intensité modérée Signal court/ intensité faible Signal long/ intensité modérée Signal court/ intensité faible

Engagement CD4 Engagement CD8 Engagement CD4 Engagement CD8

Signal inadéquat Signal inadéquat Signal

persistant

Mort Mort

Page 55: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

55

Le devenir d’un lymphocyte DP en LT-CD4 ou CD8 peut aussi s’expliquer par

l’expression de certains facteurs de transcription connus pour contrôler l’émergence du

lignage CD4 ou CD8. En effet, seront requis pour un engagement dans la voie CD4 les

facteurs Thpok et GATA-3 alors que l’engagement dans la voie CD8 nécessitera l’expression

des facteurs Runx1 et Runk3 (Wang and Bosselut 2009) [figure 16] . Très récemment, un

nouveau facteur a été découvert comme critique dans la sélection positive des cellules T :

Themis. En effet, il a été montré que les thymocytes déficients en Themis (thymus-expressed

molecule involved in selection) n’avaient pas de défaut dans la signalisation proximale du

TCR mais que l’engagement et la maturation dans la lignée SP CD4+ étaient compromis (Fu,

Vallee et al. 2009; Johnson, Aravind et al. 2009; Lesourne, Uehara et al. 2009).

FIGURE 16 : influence des signaux environnementaux et des facteurs de

transcription sur le choix du lignage CD4/CD8 (Singer, Adoro et al. 2008)

Page 56: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

56

iii. Description

LT-CD4 :

Les LT-CD4+ naïfs se différencient en LT effecteurs auxiliaires ou « helpers ». Ils sont

stimulés par les cellules exprimant les molécules de CMH de classe II. De nombreuses études

expérimentales ont mis en évidence que les LT-CD4+ pouvaient se différencier en plusieurs

types d’effecteurs [figure 17] . Cependant la plupart des LT-CD4+ naïfs activés se

différencieront en LT helper de type I (Th1) et de type 2 (Th2) (Mosmann, Cherwinski et al.

2005).

Les populations de LT helpers Th1 et Th2 sont caractérisées par les profils de cytokines

qu’ils produisent en réponse à une stimulation antigénique : les Th1 sécrètent des cytokines

proinflammatoires comme l’IL-2, l’IFNγ, la lymphotoxine et le TNFα. Les Th2 produisent

eux des cytokines comme l’IL-4, l’IL-5, l’IL-10 et l’IL-13. Il faut bien noter que cette

division est un modèle théorique. Un LT effecteur généré in vivo au cours d’une infection ne

rentre qu’exceptionnellement dans l’une ou l’autre de ces catégories strictes, mais produit des

cytokines plutôt de type Th1 ou plutôt de type Th2. Les LT auxiliaires sont également

caractérisés par l’expression différentielle de récepteurs de chimiokines, les Th1 exprimant

par exemple le CXCR3 et CCR5 et les Th2 exprimant par exemple les CCR4 et CCR3

(Heydtmann and Adams 2002).

Les facteurs gouvernant la différenciation des LT-CD4+ Th1 ou Th2 ne sont pas

complètement identifiés. La dose d’antigène, la forme sous laquelle l’antigène est administré,

l’affinité du TCR pour son ligand CMH:peptide, la densité des complexes CMH:peptide et le

niveau d’expression des molécules de co-stimulation à la surface des CPA sont des

paramètres influençant cette différenciation des LT-CD4+ en Th1 ou Th2 (Constant and

Bottomly 1997). La nature des cytokines sécrétées par les cellules de l’immunité innée au

cours de la réponse initiale à l’infection pourrait également jouer un rôle déterminant, comme

les cytokines sécrétées plus tardivement par les CD. En effet, la production d’IL-12 par les

CD activées est impliquée dans la génération des Th1. Les CD qui, cultivées en présence

d’IL-10, ont une capacité réduite à sécréter de l’IL-12, induisent préférentiellement le

développement Th2 (De Smedt, Van Mechelen et al. 1997; Moser and Murphy 2000). L’IL-4

produite par les polynucléaires basophiles, les mastocytes ou les lymphocytes NK-T apparaît

Page 57: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

57

jouer un rôle majeur dans la différenciation des LT de type Th2 (Constant and Bottomly

1997).

De plus la nature de l’agent infectieux pourrait avoir un impact sur cette différenciation

des LT-CD4+. En effet, les cellules dendritiques expriment à leur surface plusieurs TLR

différents, et la nature du TLR stimulé et du signal intracellulaire transmis varient en fonction

des agents infectieux impliqués. Il a ainsi été montré que si, sur ces CD, le TLR4 est stimulé

alors la cellule produit des cytokines influençant la différenciation Th1 (production d’IL-12 et

d’IP-10) alors que si c’est le TLR2 qui est stimulé, les CD produisent de l’IL-8, p19/Il-23

amenant à une différenciation Th2 (Re and Strominger 2001). La nature de la CPA pourrait

aussi avoir un effet sur cette différenciation. En effet, il a été montré que des macrophages

péritonéaux et des cellules dendritiques de type CD8α- induiraient préférentiellement le

développement de LT de type Th2 (De Becker, Moulin et al. 1998).

Au niveau transcriptionnel, la différenciation des LT-CD4+ est associée à l’expression

de facteurs de transcription particuliers, T-bet et GATA-3, qui contribuent à l’induction de la

production des cytokines IFN-γ et IL-4 respectivement. Cependant cette dichotomie de la

réponse immune a été récemment remise en cause. En effet, l’on sait désormais que l’on peut

induire la différenciation des LT en cellules dites régulatrices inhibant ces deux types de

réponses, sous l’effet de la cytokine TGF-β : ce sont les cellules T régulatrices ou T-reg

(Fehervari and Sakaguchi 2004). Nous décrirons ces cellules dans le chapitre suivant.

Encore plus récemment, une quatrième population de lymphocytes T, nommés Th17, a

été caractérisée (Tato, Laurence et al. 2006). Elle est induite par la combinaison de TGF-β et

d’IL-6 et amplifiée en présence d’IL-21 et d’IL-23. Deux facteurs de transcription sont

impliqués dans la différenciation de ce lignage : ROR-C (retinoïd-related orphan receptor C)

ou son homologue ROR-γt chez la souris et ROR-α. Les Th-17 expriment spécifiquement le

CCR6. Après activation, ces cellules produisent majoritairement de l’IL-17 (connue pour être

une cytokine hautement inflammatoire sur les cellules stromales de nombreux tissus) mais

aussi du TNF-α, de l’IL-6, de l’IL-21, de l’IL-22 et du GM-CSF. Alors que la production

d’IL-22 par les cellules T était considérée être caractéristique des Th-17, deux études ont

identifié un nouveau lignage produisant de l’IL-22 mais pas ou très peu d’IL-17 : les Th-22

(Duhen, Geiger et al. 2009; Trifari, Kaplan et al. 2009). L’engagement vers ce lignage est

dépendant d’un facteur de transcription AHR (aryl hydrocarbon recepteur). Ces cellules

expriment le CCR6 mais aussi le CCR4 et le CCR10. Une fois activés, ces cellules produisent

donc de l’IL-22 mais également de l’IL-13 et du TNF-α.

Page 58: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

58

L’existence d’une sixième population, celle des LT-Th25 a également été proposée.

Moins bien caractérisée que les précédentes, elle serait apparenté aux Th2. Ces cellules

produisent principalement de l’IL-25, cytokine montrée récemment comme impliquée dans la

prévention de l’infiltration des cellules inflammatoires au sein du système nerveux central

(Sonobe, Takeuchi et al. 2009).

FIGURE 17 : les voies de différenciation des lymphocytes T CD4+ (Tato, Laurence

et al. 2006; Chitnis 2007)

Suivant les facteurs de transcription exprimés ainsi que le milieu cytokinique dans lequel la cellule se situe, le lymphocyte T naïf non différencié (TH0) peut se différencier en cellule immunosuppressive (T-reg), en cellules impliquées dans l’immunité mucosale telles que TH25 ou TH3, en cellules permettant la défensede l’organisme TH17 et TH22 face à des pathogènes intracellulaires (TH1) ou extracellulaires (TH2). Ces différentes sous populations sécrètent ainsi différentes cytokines responsables de leur rôle dans l’immunité.

Page 59: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

59

LT-CD8 :

La différenciation des LT naïfs en LT effecteurs est associée à plusieurs modifications

profondes du métabolisme des LT : ils acquièrent la capacité de synthétiser des molécules

impliquées dans leurs fonctions, ils expriment un nouvel ensemble de molécules d’adhésion

cellulaire et de récepteurs aux chimiokines et acquièrent la capacité de migrer dans le

parenchyme des organes et vers le site d’inflammation. Plusieurs changements phénotypiques

sont caractéristiques des LT activés. Ils incluent l’expression de CD25, l’expression

transitoire de CD69 permettant un influx calcique extracellulaire responsable de l’expression

de certaines cytokines et de leurs récepteurs (Testi, Phillips et al. 1989). L’augmentation du

niveau d’expression de CD44 induit également la production de cytokines. La diminution

d’expression de CD62L prévient la recirculation des LT dans les ganglions lymphatiques. La

réexpression de S1P1 et la perte de l’expression du récepteur de chimiokines CCR7

permettent la sortie du ganglion lymphatique. L’acquisition de l’expression de différents

récepteurs de chimiokines selon le type de LT effecteurs généré sera impliquée dans la

régulation de la migration des LT effecteurs (Heydtmann and Adams 2002).

iv. Rôles

• Les LT-CD4+

Les LT-CD4+ de type Th1 :

Les LT-CD4+ de type Th1 sont impliqués dans les réponses immunes à médiation

cellulaire, au cours desquelles les macrophages sont les cellules effectrices principales. Ils

contribuent également aux réponses immunes à médiation humorale au cours desquelles les

anticorps sont les molécules effectrices spécifiques d’antigène.

Les Th1 migrent vers le site d’inflammation, recrutent et activent les macrophages

infectés par les germes intracellulaires ou ayant récemment phagocyté un agent infectieux, et

qui présentent aux Th1 des complexes CMH:peptide spécifiques. L’activation des

macrophages repose sur un signal délivré lors de l’interaction entre la molécule CD40 sur le

macrophage et CD40L sur le LT-CD4+ activé et sur la synthèse et la sécrétion rapide, ciblée

vers le macrophage, de cytokines telles que l’IFN-γ, l’IL-2, le TNF-α, la lymphotoxine, ou

encore le TNF-β.

Page 60: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

60

Les Th1 peuvent aussi contribuer à stimuler les réponses immunes induites par les LT-

CD8+, notamment par la sécrétion de l’IL-2 (Lehar and Bevan 2004) et d’IFNγ (Ferrone,

Perales et al. 2006). Cette aide aux fonctions effectrices des LT-CD8+ dépend en fait de

plusieurs mécanismes récemment démontrés par l’équipe de Zhao (Zhao, Balato et al. 2009).

Le rôle de l’interaction CD40/CD40L est primordial pour activer via les LT-CD4+ les cellules

dendritiques qui à leur tour permettront l’activation et la différenciation en cellules mémoires

des LT-CD8+ (Bourgeois, Rocha et al. 2002) comme en cellules effectrices (Lee, Hartson et

al. 2003). Les cellules dendritiques peuvent ainsi activer ces LT-CD8+ via différentes

interactions telles que l’interaction B7/CD28 (Prilliman, Lemmens et al. 2002) ou encore

CD70/CD27 (Bullock and Yagita 2005), 4-1BBL/4-1BB (Diehl, van Mierlo et al. 2002) et via

la synthèse de cytokines comme l’IL-12 et l’IL-15 (Oh, Perera et al. 2008).

Les LT-CD4+ de type Th2 :

Les LT-CD4+ de type Th2 stimulent des réponses immunes à médiation humorale

dirigées contre les antigènes protéiques thymo-dépendants, au cours desquelles les

lymphocytes B sont les cellules effectrices principales.

L’activation du LB repose sur la reconnaissance par leur récepteur à l’antigène de

surface d’un ligand conformationnel spécifique, qui est alors internalisé, dégradé et présenté

sous forme de complexe CMH:peptide aux LT auxiliaires. L’interaction entre un LB et un

lymphocyte Th2 spécifique d’un même antigène induit l’activation et l’expansion clonale du

LB, et la différenciation des cellules filles en plasmocytes sécréteurs d’anticorps spécifiques.

Les signaux activateurs fournis par les LT reposent entre autres sur l’interaction entre la

molécule CD40 exprimée par les LB et CD40L, et sur la sécrétion d’IL-4.

Ces Th2 pourront aussi développer une réponse cellulaire contre des pathogènes

extracellulaires en produisant des cytokines comme l’IL-4, l’IL-5, l’IL-10 et l’IL-13 qui

joueront également un rôle dans les réactions allergiques et dans l’inhibition de la réponse

pro-inflammatoire.

Les LT-CD4+ de type Th17 :

Cette population de Th17 possède des rôles paradoxaux : ils peuvent être soit

bénéfiques dans le cas de réponses protectrices pour l’hôte soit délétères et engendrer des

situations pathogéniques (Crome, Wang et al.).

En effet, le rôle des Th17 dans la défense de l’hôte contre des pathogènes a été bien

caractérisé dans des modèles murins où l’IL-17 était requise pour une immunité protectrice

Page 61: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

61

contre les bactéries telles que Escherichia coli et salmonella. Par contre ce rôle anti-bactérien

chez l’homme reste largement inexploré.

Plusieurs études ont montré également que les Th17 jouaient un rôle important dans la

clairance des infections opportunistes par Cryptococcus neofarmans, Pneumocystis carinii et

candida albicans.

Des virus comme le HSV (herpes simplex virus) ou le HLV-1 (human leukaemia virus

type 1) peuvent aussi induire des réponses Il-17 dépendantes.

Par contre, ces Th17 peuvent être largement délétères et participer à la physiopathologie

de maladies telles que le psoriasis, l’arthrite rhumatoïde, la sclérose en plaques ou l’IBD

(inflammatory Bowel Disease). En effet, pour la sclérose en plaques par exemple, il est

clairement établi aujourd’hui une association entre la maladie et la production d’IL-17, même

si le rôle précis de cette IL-17 sur la démyélinisation reste limitée. De plus, des études ont

montré que les Th17 jouaient un rôle critique dans l’induction et la progression de l’EAE,

modèle murin de la sclérose en plaques. Chez l’homme, il a été prouvé que les cellules

endothéliales de la barrière hématoencéphalique des patients exprimaient des récepteurs à

l’IL-17 et l’IL-22, ce qui engendrait une faible expression des protéines des jonctions serrées,

augmentant ainsi la transmigration des LT-CD4+ (Kebir, Kreymborg et al. 2007).

Les LT-CD4+ suppresseurs:

Dans certaines conditions de stimulation, notamment dans le MALT (mucosa-associated

lymphoid tissue), les LT-CD4+ naïfs peuvent se différencier en LT dits suppresseurs ou

régulateurs, capables d’inhiber les réponses immunes. Leur fonction repose sur la production

de grandes quantités de cytokines immunosuppressives, telles que le TGF-β pour les LT-Th3

ou de l’IL-10 pour les Tr1. Ces deux sous populations joueraient un rôle important dans le

maintien de la tolérance vis-à-vis d’antigènes alimentaires et de la flore commensale.

Les LT-CD4+ de type Th25 interviendraient dans l’immunité induite au niveau des

muqueuses, en particulier au niveau du tractus gastro-intestinal, et dans la régulation de

l’inflammation chronique (Owyang, Zaph et al. 2006).

Le cas des LT régulateurs CD25+ sera abordé dans le chapitre sur la tolérance.

Page 62: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

62

• Les LT CD8+

Les LT-CD8+ effecteurs sont dits cytotoxiques (Tc). Ils induisent l’apoptose des cellules

infectées par les virus ou d’autres agents infectieux intracellulaires.

Ils sont également impliqués dans l’élimination des cellules tumorales. En effet, un

travail récent réalisé par Boissonas et al. utilisant des approches de microscopie bi-photonique

intra-vitale a permis de visualiser in vivo l’infiltration de tumeurs solides par des CTL (pour

cellules T lytiques) spécifiques d’antigènes tumoraux ainsi que l’élimination des cellules

cancéreuses par ces mêmes CTL (Boissonnas, Fetler et al. 2007).

Ils sont activés par reconnaissance de complexe de CMH de classe I:peptide spécifique

à la surface d’une cellule, en l’absence de co-stimulation. L’apoptose des cellules cibles peut

se faire par deux mécanismes. Le mécanisme principal est celui de la voie

perforine/granzyme, l’autre étant la voie Fas/FasL ; l’activation des LT-CD8+ induisant ainsi

la transcription des gènes codant pour la perforine, les granzymes et le FasL.

La voie perforine/granzyme implique le relargage polarisé vers la cellule exprimant les

complexes CMH:peptide spécifiques du contenu de granules lytiques : la perforine, la

serglycine et les granzymes. En effet, la reconnaissance de la cellule portant l’antigène

spécifique induit la polarisation rapide de la machinerie lytique du CTL vers cette cellule

cible (Yannelli, Sullivan et al. 1986). Cette polarisation rapide et efficace peut se faire en

absence d’une réorganisation moléculaire typique d’une synapse immunologique mature à la

zone de contact CTL/cellule cible : on parle de synapse lytique car seule l’activité

cytotoxique est présente (Faroudi, Utzny et al. 2003; Wiedemann, Depoil et al. 2006). La

polarisation de la machinerie lytique conduit à la sécrétion de granules cytotoxiques, des

lysosomes de sécrétion spécialisés qui contiennent la perforine (PFN) et la granulysine - deux

protéines capables de former des pores dans la membrane plasmique et d’altérer la paroi des

bactéries - ainsi qu’une famille de protéases à sérine appelées granzymes. Parmi les cinq

granzymes décrites chez l’homme et les dix identifiées chez la souris, les granzymes A

(GzmA) et B (GzmB) sont les plus abondantes. Une fois les cellules cibles reconnues, les

CTL ou les cellules NK sécrètent le contenu de leurs granules dans la synapse

immunologique. PFN permet l’entrée des Gzm dans la cellule cible, déclenchant ainsi des

cascades biochimiques multiples qui, bien que distinctes, conduisent toutes à la mort

cellulaire (Chowdhury and Lieberman 2008). Au cours des dernières décennies, de

Page 63: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

63

nombreuses recherches ont permis de mieux comprendre les mécanismes apoptotiques initiés

par GzmB. Comme les caspases, GzmB clive ses substrats au niveau de résidus d’acide

aspartique, et initie ainsi la perforation de la membrane externe de la mitochondrie, libérant

des protéines pro-apoptotiques (cytochrome c, HtrA2/Omi, endo G, Smac/Diablo et AIF,

apoptosis-inducing factor) depuis l’espace inter-membranaire de la mitochondrie vers le

cytoplasme. Suivant les cas, cette voie est dépendante ou indépendante des caspases

(Chowdhury and Lieberman 2008).

L’essentiel des travaux portant sur la voie de la mort cellulaire induite par une autre

granzyme, GzmA, a été effectué par l’équipe du Pr. Judy Lieberman. Au sein de cette équipe,

il a été montré que la mort cellulaire induite par GzmA présentait toutes les caractéristiques

morphologiques de l’apoptose, c’est-à-dire la condensation de la chromatine, la fragmentation

de l’ADN, l’externalisation des phosphatidyl-sérines à la surface cellulaire, la perte du

potentiel de membrane mitochondrial et la production de ROS (reactive oxygen species)

(Barouki 2006). Cependant, cette voie est complètement indépendante des caspases et des

protéines anti-apoptotiques de la famille Bcl2. Dans cette nouvelle voie apoptotique, la

fragmentation de l’ADN se fait par cassures simple brin. Par ailleurs, il a été établi que le

complexe SET est une cible-clé de GzmA (Beresford, Zhang et al. 2001). Ce complexe, qui

est associé au réticulum endoplasmique, comprend les nucléases activées par GzmA, NM23-

H1 et TREX 1, la protéine phosphatase PP2A et son inhibiteur pp23, et trois substrats directs

de GzmA, les protéines Set, Ape1 et HMGB2 impliquées respectivement dans l’assemblage

des nucléosomes, la réparation des altérations de l’ADN induites par le stress oxydatif et le

remodelage de la chromatine. Lors de l’apoptose induite par GzmA, la translocation rapide du

complexe SET vers le noyau conduit à la dégradation de la protéine Set par GzmA, libérant

ainsi l’endonucléase NM23-H1 qui, de concert avec l’exonucléase TREX 1, induit la

fragmentation de l’ADN. En même temps, GzmA clive et inactive Ku70, HMGB2, Ape 1,

empêchant ainsi la réparation de l’ADN (Fan, Beresford et al. 2002).

L’autre voie cytotoxique utilisée par les LT-CD8+ est la voie Fas/FasL, indépendante

du flux calcique (Ostergaard, Kane et al. 1987). L’engagement du récepteur Fas (récepteur de

mort appartenant à la superfamille des récepteurs au TNF) à la surface d’une cellule cible par

la molécule FasL exprimée à la surface du LT-CD8+ effecteur et de certains LT-CD4+ de type

Th1 initie l’apoptose de la cellule cible par activation de la caspase 8 induisant la cascade

d’activation des caspases (Scaffidi, Fulda et al. 1998).

Page 64: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

64

3. La tolérance des lymphocytes Tααααββββ aux antigènes de l’organisme

Afin de générer des réponses immunes spécifiques efficaces quel que soit l’agent

infectieux, l’ensemble des TCR exprimés par les LT, appelé le répertoire T, doit pouvoir

reconnaître un nombre quasi infini de séquences peptidiques. Cependant, il est indispensable

que ces LT soient limités dans leur capacité à s’activer contre les antigènes exprimés par les

cellules normales de l’organisme et ne puissent pas induire des réponses auto-immunes

destructrices. Cet état de tolérance immunitaire vis-à-vis des antigènes du soi est obtenu et

maintenu par plusieurs mécanismes, qui sont mis en jeu pendant le développement des LT

dans le thymus (tolérance centrale), mais aussi lorsque les LT circulent dans les organes

lymphoïdes secondaires, ainsi qu’au cours des réactions immunes (tolérance périphérique).

a. Tolérance intrathymique ou centrale

i. Sélection négative

Comme nous l’avons vu dans le chapitre concernant l’ontogénie des LT, les thymocytes

CD4+CD8- et CD4-CD8+ fraîchement différenciés constituent grâce à une sélection positive

une population de LT fonctionnels au répertoire varié. Néanmoins, le contrecoup de ce

processus est l’enrichissement du compartiment LT en cellules ayant une forte affinité pour

les antigènes du soi : potentiellement auto-réactives, qui représenteraient une menace pour

l’organisme si elles s’activaient en périphérie. L’ensemble des mécanismes concourant à

préserver l’organisme d’un excès de réponse immune et de l’attaque de ses composants

constitue la tolérance.

La tolérance centrale, premier rempart contre les dommages que peuvent causer les LT

consiste en une neutralisation des thymocytes auto-spécifiques. En 1984, il a été mis en

évidence l’existence d’une tolérance restreinte par le CMH. En effet, si les LT sont capables

de s’activer au contact d’un antigène du non-soi présenté par le CMH du soi ou d’un antigène

du soi complexé à un CMH allogénique, l’interaction avec un complexe peptide du soi/CMH

du soi reste non immunogène (Matzinger, Zamoyska et al. 1984; Rammensee and Bevan

1984). L’équipe de Huseby a montré également qu’une sélection thymique reposant sur le

seul couple CMH:peptide, limitant sévèrement la sélection négative, conduirait à une

génération d’une population T enrichie en cellules capables de reconnaître plusieurs

Page 65: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

65

combinaisons CMH:peptide (Huseby, White et al. 2005). Ainsi en éliminant les LT à la

réactivité dégénérée, la sélection négative contribuerait à façonner un répertoire plus

spécifique.

Ainsi, au terme du développement intrathymique, le répertoire des LT matures est

sélectionné et l’avidité des thymocytes SP pour les complexes CMH:peptide du soi doit être

comprise dans une étroite fenêtre. En effet, si elle est en dessous, il n’y aura pas de sélection

positive, les LT ne recevant alors aucun signal de survie meurent, et si elle est trop élevée, les

LT auto-réactifs seront éliminés en recevant des signaux apoptotiques. Les mécanismes précis

de cette sélection négative par mort cellulaire induite (AICD) font l’objet de nombreux

travaux et restent l’objet de controverse. Cependant, il semble qu’elles impliquent des

récepteurs de la superfamille des récepteurs du TNF, en particulier TRAIL (tumor necrosis

factor related apoptosis inducing ligand). La trimérisation de ces récepteurs thymocytaires par

leurs ligands peut induire en effet un signal de mort en recrutant une molécule adaptatrice,

FADD, permettant l’activation de caspases 8. Néanmoins, ce mécanisme d’activation des

caspases par TRAIL ne semble pas le mécanisme principal de la sélection thymique. La

phosphorylation et l’inactivation du facteur de survie Bcl-2 par les Jun kinases semblent

plutôt être en cause (Pinkoski and Green 2002). D’autres voies indépendantes de TRAIL

semblent aussi impliquées, comme celles induisant l’activation de Bim, protéine de la famille

de Bcl-2, capable à son tour d’activer d’autres protéines de la même famille, comme Bax et

Bak. Ces deux protéines perméabilisent la membrane externe des mitochondries et entrainent

la libération de molécules pro-apoptotiques comme le cytochrome c.

Cependant l’existence de maladies auto-immunes prouve que certains des LT auto-

réactifs réussissent à sortir du thymus. Les causes d’échappement des thymocytes auto-

réactifs à la sélection négative peuvent être de plusieurs natures, qui ont été particulièrement

explorées dans le cadre du diabète et de la sclérose en plaques (SEP) (Anderton and Wraith

2002).

Nous pouvons tout d’abord mentionner le faible niveau d’expression thymique de

l’auto-antigène. Il est maintenant admis que la majorité des antigènes y compris des antigènes

spécifiques d’organes sont exprimés dans le thymus chez l’homme, par exemple le GAD et

l’insuline impliqués dans le diabète, l’antigène S de la rétine dans l’uvéite, les composants de

la myéline PLP (Proteolipid protein) et MBP (Myelin basic protein) dans la SEP. Les

mécanismes diminuant l’expression de ces antigènes prédisposent au développement de

l’auto-immunité en altérant la sélection négative et en favorisant le passage de lymphocytes T

Page 66: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

66

auto-réactifs en périphérie. On observe ainsi des corrélations entre le niveau d’expression des

auto-antigènes dans le thymus et la susceptibilité aux pathologies auto-immunes, chez

l’homme et les rongeurs (Klein and Kyewski 2000). Par exemple, chez l’homme, la

susceptibilité au diabète de type 1 est associée à un polymorphisme au niveau de la région 5’

du gène de l’insuline, qui influence le niveau d’expression des peptides dérivés de l’insuline

par les CPA dans le thymus. L’allèle « protecteur » est associé à un haut niveau d’expression

thymique de l’insuline et l’allèle de « susceptibilité » à un faible niveau (Klein and Kyewski

2000). Dans ce dernier cas, les lymphocytes T autoréactifs ne sont pas soumis à une sélection

négative efficace. Les souris Non-Obese-Diabetic (NOD) qui n’expriment pas la pro-insuline

2 dans le pancréas ni dans le thymus développent rapidement un diabète (Thebault-Baumont,

Dubois-Laforgue et al. 2003). De même, l’expression thymique des antigènes potentiellement

impliqués dans la pathogenèse de la SEP chez l’homme est variable. En effet, la PLP chez

l’homme existe sous deux isoformes générés par épissage alternatif du gène : l’isoforme «

complèt » et un isoforme délété au niveau des acides aminés 116-150 appelée DM20 (Bruno,

Sabater et al. 2002). Ces deux isoformes sont exprimés dans le cerveau mais le niveau

d’expression thymique de l’isoforme « complèt » est variable d’un individu à l’autre. Chez

certains individus, c’est l’isoforme DM20 qui est exclusivement exprimée dans le thymus.

Chez ces derniers, l’épitope immunodominant pourrait être sous-exprimé et il y aurait

échappement à la sélection négative des lymphocytes T spécifiques de cet épitope. C’est le

cas de la souris SJL/J où l’épitope immunodominant (résidus 139-151) n’est pas exprimé dans

le thymus et où l’on retrouve des lymphocytes T spécifiques de cet épitope en périphérie. De

la même façon, la MBP présente plusieurs isoformes, dont certaines ont une expression

restreinte au système nerveux central, contrairement à l’isoforme golli-MBP qui est

principalement exprimée hors du système nerveux central dans le thymus. Seul l’antigène

MOG (Myelin Oligodendrocyte Glycoprotein) est un antigène « séquestré » c’est-à-dire

exprimé exclusivement dans le système nerveux central (Bruno, Sabater et al. 2002). Il n’y a

donc pas de sélection négative vis-à-vis des lymphocytes T spécifiques de cet autoantigène

dans le thymus, et cet antigène pourrait jouer un rôle majeur dans le développement de la

SEP.

La deuxième possibilité pour un défaut de sélection thymique est un défaut de

présentation du peptide. Soit en raison de la faible affinité du TCR pour les complexes CMH–

peptide soit en raison d’un défaut dans « l’apprêtement » de l’antigène. En ce qui concerne la

faible affinité du TCR pour les complexes CMH-peptides, nous l’avons vu précedemment, le

système du CMH est très polymorphe et un peptide se liera avec une plus ou moins grande

Page 67: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

67

efficacité à différentes molécules du CMH. Quand des molécules du CMH lient faiblement un

peptide, le complexe CMH–peptide est instable et très faiblement exprimé à la membrane

cellulaire, ce qui ne permet pas la délétion des lymphocytes T autoréactifs spécifiques de ce

peptide. Ainsi, dans le cadre du modèle murin de la SEP, l’EAE (encéphalomyélite auto-

immune expérimentale), l’épitope immunodominant de la MBP correspond à la partie amino-

terminale de la MBP et se fixe très faiblement aux molécules CMH de classe II Au (Anderton

and Wraith 2002). Chez les souris Au, les lymphocytes T spécifiques de la MBP échappent à

la sélection négative et passent en périphérie. Quant à l’apprêtement de l’antigène, nous

savons que l’efficacité de la présentation de l’antigène par les cellules présentatrices

thymiques est un facteur limitant la reconnaissance des complexes « CMH–peptide » par le

TCR et donc la sélection négative. En particulier, les protéases qui coupent les protéines en

peptides jouent un rôle important. Chez l’homme, la région incluant les acides aminés 80 à

100 de la MBP est immunodominante et l’épitope MBP85-99 est reconnu par les sujets CMH

DR2. L’asparagine endopeptidase (AEP) clive la MBP après l’asparagine 94, détruisant donc

l’épitope MBP85-99. L’AEP, exprimée à haut niveau par les cellules dendritiques thymiques,

diminue de ce fait la présentation de l’épitope MBP85-99 par ces cellules. La faible densité de

l’antigène consécutive à sa destruction pendant son apprêtement ne permettrait pas aux

lymphocytes T spécifiques de la MBP85-99 d’être sélectionnés négativement (Anderton and

Wraith 2002). L’AEP est moins exprimée dans les CPA en périphérie que dans le thymus,

l’épitope MBP85-99 y est donc présenté. Les lymphocytes T autoréactifs non délétés dans le

thymus peuvent reconnaître cet antigène en périphérie, en raison de la différence d’activité de

l’AEP entre les CPA thymiques et périphériques.

La troisième raison de l’apparition de maladie auto-immune est l’architecture du stroma

thymique. En effet, elle intervient également dans l’efficacité de la sélection négative. Chez la

souris NOD, cette architecture est perturbée et des cellules épithéliales médullaires sont

présentes dans le cortex. Cette localisation anormale perturbe le mécanisme de sélection

négative (Rosmalen, van Ewijk et al. 2002).

Enfin nous pouvons parler du défaut d’apoptose pour expliquer ce défaut de sélection

négative. En effet, cette sélection négative est fondée sur l’apoptose des lymphocytes T auto-

réactifs, et on comprend qu’un défaut de facteurs apoptotiques est associé à une anomalie de

cette sélection. Une étude récente a montré que des souris déficientes en TRAIL ont une

susceptibilité accrue aux pathologies auto-immunes. Le mécanisme causal de la survenue de

ces pathologies reste à éclaircir (Lamhamedi-Cherradi, Zheng et al. 2003). Il existe des

Page 68: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

68

polymorphismes du gène TRAIL chez l’homme et on ne connaît pas encore leurs

conséquences sur la survenue de pathologies auto-immunes (Gray, Sorensen et al. 2001).

ii. Les Auto-antigènes

On a longtemps considéré que les auto-antigènes ubiquitaires, ceux qui sont exprimés

par les cellules du stroma thymique, et les auto-antigènes circulants, étaient les seuls à être

présentés dans le thymus et à contribuer à l’induction de la tolérance centrale. L’absence de

réactivité des LT vis-à-vis des auto-antigènes spécifiques des tissus, « séquestrés » dans les

organes, était supposée être obtenue par les mécanismes périphériques d’induction de

tolérance et l’absence de pénétration des LT naïfs dans le parenchyme des organes.

Cependant, plusieurs travaux ont mis en évidence l’expression d’auto-antigènes

spécifiques des tissus dans le thymus [figure 18] , notamment d’antigènes impliqués dans les

maladies auto-immunes spécifiques d’organe, telles que la tyroglobuline, l’antigène S de la

rétine, l’insuline et les décarboxylases de l’acide glutamique 65 et 67 chez le rat, la souris et

l’homme (Jolicoeur, Hanahan et al. 1994; Heath, Moore et al. 1998; Sospedra, Ferrer-

Francesch et al. 1998). Des auto-antigènes du système nerveux central (SNC) sont également

exprimés dans le thymus, tels que la MBP, la protéine protéo-lipidique (PLP) (Fritz and Zhao

1996; Pribyl, Campagnoni et al. 1996), la glycoprotéine oligodendrogliale (MOG) et la S100β

(Kojima, Reindl et al. 1997), qui sont des cibles potentielles de la réponse auto-immune

impliquée dans le développement des lésions de la sclérose en plaques (SEP) (Kojima, Reindl

et al. 1997; Anderson, Waldner et al. 2000; Delarasse, Daubas et al. 2003).

FIGURE 18 : Nature des antigènes restreints aux tissus périphériques exprimés par

les cellules épithéliales thymiques médullaires (Kyewski and Derbinski 2004).

Page 69: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

69

En 2001, Derbinski et al. ont mis en évidence que les cellules épithéliales thymiques

medullaires (mTEC) et dans une moindre mesure les cellules épithéliales thymiques corticales

(cTEC) exprimaient de nombreux auto-antigènes spécifiques de tissus. Cette expression

« illégitime » d’auto-antigènes spécifiques de tissus par un petit nombre de mTEC est en

partie régulée par l’activateur de transcription AIRE et semble jouer un rôle majeur dans

l’induction de la tolérance du soi (Coutinho, Caramalho et al. 2005; Derbinski, Gabler et al.

2005). En effet, chez l’homme, des mutations dans le gène AIRE causent un syndrome

caractérisé par la présence d’anticorps auto-immuns spécifiques de nombreux auto-antigènes :

APECED (autoimmune polyendocrinopathy candidiasis ectodermal dstrophy). Les souris

ayant des mutations de ce même gène AIRE ont des symptômes identiques aux patients

atteints d’APECED (production d’anticorps et infiltration de lymphocytes dans plusieurs

organes). De plus, plusieurs études ont montré que AIRE était un facteur crucial pour

l’expression de TSAs dans le thymus et que la mutation de ce gène permettait aux LT auto-

réactifs d’échapper à toute sélection, ce qui impliquait par conséquent le développement

d’auto-immunité (Ramsey, Winqvist et al. 2002; Jiang, Anderson et al. 2005; Kuroda, Mitani

et al. 2005; Niki, Oshikawa et al. 2006). Très récemment, des études ont montré que dans des

souris déficientes pour AIRE, les LT, en particulier les Th1, étaient des médiateurs cruciaux

dans les dommages tissulaires, conséquences de l’auto-immunité, alors que les LB n’avaient

qu’une fonction limitée (Gavanescu, Benoist et al. 2008). Il a également été montré que chez

des patients atteints d’APECED, la candidose était attribuée à la présence d’anticorps

neutralisants tels que l’IL-17A, l’IL-17F et l’IL-22, impliquant les Th17 dans cette pathologie

(Puel, Doffinger et al.). Les évidences expérimentales de la fonction de AIRE dans la

sélection négative ont été obtenues grâce à des souris transgéniques pour le TCR spécifique

d’un néo-auto-antigène (Kont, Laan et al. 2008) suggérant que les LT qui échappent à la

sélection négative étaient capables d’induire une auto-immunité.

iii. Les lymphocytes T régulateurs générés dans le thymus

Différentes populations de lymphocytes différenciés dans le thymus et ayant des

propriétés régulatrices des réponses immunes en périphérie ont été décrites : les lymphocytes

NK-T, les LT-CD8+-CD28- et les Treg de type CD4+CD25+.

Page 70: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

70

Les lymphocytes NK-T :

Ces cellules expriment les marqueurs de surface des NK comme le CD161 et expriment

un TCR-αβ, comprenant une chaîne α invariante, restreint par la molécule CD1d. Ces

lymphocytes pourraient avoir des fonctions régulatrices et contribueraient au contrôle des

réponses auto-immunes. Mais ce rôle protecteur contre l’auto-immunité n’est pas

prédéterminé et des études récentes montrent que ces cellules, une fois activées, pourraient

intervenir également dans le phénomène d’inflammation en produisant des cytokines pro-

inflammatoires, alors qu’au niveau basal elles produiraient des cytokines anti-inflammatoires

nécessaires à l’arrêt de l’inflammation. Cependant le mécanisme de la régulation et le ou les

ligands naturels de ces NK-T ne sont pas encore connus. Les facteurs modulant la mise en

œuvre de leurs fonctions régulatrices in vivo restent à caractériser afin d’envisager une

utilisation thérapeutique de cette sous-population (Mars, Novak et al. 2004).

Les lymphocytes T- CD8+-CD28- :

Les fonctions régulatrices des LT-CD8+-CD28- ont été récemment mises en évidence

dans le modèle murin de la sclérose en plaques induit par une immunisation avec le peptide

MOG. Le mécanisme de l’immunosuppression induite par cette sous-population n’est pas

connu, et pourrait reposer sur une diminution du niveau d’expression des molécules de co-

stimulation B7, voire des molécules de CMH, par les CPA, et/ou sur la production d’IL-10

par les LT-CD8+-CD28- (Najafian, Chitnis et al. 2003; Filaci, Fravega et al. 2004).

Les lymphocytes T- CD4+-CD25+ :

Les LT régulateurs de type CD4+CD25+ (T-reg) jouent un rôle majeur dans le maintien

de la tolérance au soi, et ont récemment fait l’objet de nombreuses études. Les T-reg

représentent 2 à 10% des LT-CD4+ présents en périphérie, chez l’homme, la souris et le rat

(Najafian, Chitnis et al. 2003). Ces T-reg sont capables d’inhiber la prolifération des LT-

CD4+ et LT-CD8+, de même spécificité antigénique ou non, d’une manière dépendante de

l’engagement de leur TCR (Takahashi, Kuniyasu et al. 1998; Thornton and Shevach 2000;

Baecher-Allan, Brown et al. 2001; Piccirillo and Shevach 2001). Sur le plan phénotypique, les

T-reg sont caractérisés par leur expression membranaire constitutive de CD25, CTLA4 et de

GITR, et par l’expression constitutive du facteur de transcription FoxP3 (Fontenot, Gavin et

al. 2003; Hori, Nomura et al. 2003).

Les T-reg semblent constituer une sous-population distincte de lymphocytes T et

acquièrent leur phénotype et leur fonction régulatrice dans le thymus (Itoh, Takahashi et al.

Page 71: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

71

1999). La thymectomie de la souris avant le troisième jour de vie est associée au

développement d’une maladie auto-immune multi-organique sévère, avec un tableau lésionnel

variable en fonction de la souche de souris. Le transfert de T-reg syngéniques prévient le

développement de ce syndrome (Suri-Payer, Amar et al. 1998). Les cTEC ont été largement

impliquées dans la sélection de cette sous-population (Bensinger, Bandeira et al. 2001;

Jordan, Boesteanu et al. 2001; Apostolou, Sarukhan et al. 2002). Les T-reg expriment un

répertoire de TCR aussi varié que les LT conventionnels, mais seraient enrichis en LT auto-

réactifs (Itoh, Takahashi et al. 1999; Romagnoli, Hudrisier et al. 2002; Hsieh, Liang et al.

2004). De plus, la sélection de ces T-reg serait induite par interaction de forte avidité avec des

CPA thymiques présentant un peptide du soi (Jordan, Boesteanu et al. 2001; Hsieh, Liang et

al. 2004). Le rôle de ces cellules sera discuté dans un chapitre ultérieur.

b. Tolérance périphérique

Divers mécanismes sont mis en jeu en périphérie pour limiter les risques d’activation

des clones auto-réactifs exportés du thymus et leur différenciation en LT effecteurs capables

d’induire des réponses auto-immunes destructrices. On peut les séparer en deux catégories :

ceux que l’on qualifie de passifs et qui résultent des caractéristiques physiologiques des tissus

sains et les mécanismes actifs qui sont assurés par des populations immunitaires régulatrices.

i. La tolérance passive

Le concept d’immunoprivilège est né il y a plus de 100 ans, lorsqu’un ophtalmologiste

observa la prise d’une greffe de peau murine placée dans la chambre antérieure de l’œil d’un

chien (Niederkorn 2006). On sait aujourd’hui que plusieurs tissus possèdent un statut

immunologique particulier, qui les préserve des conséquences délétères d’une inflammation

locale. Il s’agit du cerveau, de la chambre antérieure de l’œil, de la cornée, des testicules et de

l’utérus en gestation. Cette évolution permet de protéger des tissus cruciaux pour la survie de

l’organisme, au faible pouvoir de régénération ou qui sont le siège temporaire d’une « greffe »

allogénique. Les autres organes et tissus ne sont pas pour autant dépourvus de défense et les

mécanismes de régulation qui s’y déroulent font qu’un tissu sain peut être considéré comme

un site temporairement immunoprivilégié. Il existe différents mécanisme de tolérance passive

que nous détaillerons [figure 19] .

Page 72: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

72

• L’ignorance

L’ ignorance est un mécanisme qui permet une absence de rencontre entre les CPA et les

LT, ceci dû à une compartimentalisation. Les LT naïfs ne peuvent ainsi entrer que dans les

OLP. Ainsi les LT potentiellement auto-réactifs ignorent leur antigènes puiqu’il ne peut pas y

avoir de présentation antigénique par les CPA matures qui se trouvent elles dans les tissus.

Les LT sont ainsi physiquement isolés des CPA ou séquestrés. La constatation de l’absence de

drainage lymphatique dans le cerveau, la chambre antérieure de l’œil et l’endomètre a été

corrélée au statut immunoprivilégié de ces sites (Niederkorn 2006). Cependant, ces derniers

ne sont pas réellement isolés du système immunitaire, en particulier l’utérus, leur accès est

seulement moins favorisé que la normale. La barrière hémato-encéphalique constitue en outre

un filtre supplémentaire limitant l’accessibilité au SNC.

Par ailleurs les molécules de CMH de classe I classiques sont absentes ou faiblement

exprimées sur les cellules nerveuses, oculaires ou trophoblastiques (Lampson and Fisher

1984; Abi-Hanna, Wakefield et al. 1988). Cette déficience exclut toute attaque cytotoxique

par les LT-CD8+ (Joly, Mucke et al. 1991). Toutefois elle les rend potentiellement vulnérables

à la lyse par les cellules NK, lymphocytes majoritairement représentés dans l’utérus gravide.

L’expression de molécules de MCH de classe Ib, comme HLA-E et HLA-G, à la surface des

cellules de la cornée, de la rétine et du trophoblaste extravilleux prévient l’activation des

lymphocytes NK par l’interaction avec le récepteur inhibiteur CD94/NKG2 (Kovats, Main et

al. 1990; Niederkorn, Chiang et al. 1999).

Cependant, l’ignorance est un état réversible. L’organisme encourt ainsi toujours un

risque d’auto-immunité si l’auto-antigène sort du tissu dans lequel il est ignoré.

• Indifférence des lymphocytes T auto-réactifs

Il est établi que certains LT sont capables in vitro de répondre à une stimulation par

l’antigène mais semble ignorer celui-ci in vivo sans qu’aucune maladie ne se développe. C’est

l’exemple du modèle de souris transgéniques GP-LCMV développé par Ohashi et al. où la

glycoprotéine du LCMV (Lymphocytic Choriomeningitis Virus) est exprimée sous le contrôle

du promoteur de l’insuline de rat dans les cellules β du pancréas (Ohashi, Oehen et al. 1991).

Les LT-CD8+ auto-réactifs des souris double transgéniques TCR x GP-LCMV présentent in

vitro une activité cytotoxique vis-à-vis de cellules infectées par le virus, mais, in vivo, les

souris ne développent pas de diabète spontanément.

Page 73: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

73

Cette indifférence peut s’expliquer par le fait qu’en l’absence d’inflammation, les LT

naïfs n’ont pas accès aux tissus non lymphoïdes. En effet, lorsque les LT sortent du thymus,

ils circulent dans le sang vers la lymphe en passant par les organes lymphoïdes secondaires,

où ils sont susceptibles de rencontrer l’antigène pour lequel ils sont spécifiques. Ce n’est

qu’après activation que les LT peuvent migrer dans les tissus non lymphoïdes grâce à

l’expression de molécules comme LFA-1 et VLA-4 à leur surface.

• Inactivation fonctionnelle des lymphocytes T

auto-réactifs ou anergie

L'anergie est un phénomène physiologique, particulièrement important pour désactiver

les LT et les cellules NK qui réagiraient contre des antigènes du soi et seraient ainsi délétères

pour l’organisme hôte. C’est un mécanisme réversible par l’IL-6, qui va permettre d’activer

ces LT. Un point important du rôle de l’anergie sera traité dans le chapitre concernant les LT

régulateurs dont une des propriétés majeures est le fait d’être anergique.

Ce mécanisme de tolérance peut être obtenu grâce à une modulation de l’expression des

molécules de surface des LT, ce LT devenant ainsi incapable de répondre face à l’antigène,

sauf si ce dernier est présent en concentration supra-optimale. Pour démontrer ceci, l’équipe

de Schönrich a fait exprimer chez une souris la molécule de classe I-Kb sous contrôle du

promoteur de la GFAP dans les astrocytes. Ces souris ont ensuite été croisées avec des souris

transgéniques exprimant un TCR spécifique de la molécule Kb. Ces souris double

transgéniques ne développent pas de pathologie du SNC. L’utilisation d’un anticorps anti-

clonotypique reconnaissant le TCR transgénique anti-Kb a permis d’identifier et de suivre les

LT transgéniques. Chez la souris double transgénique, les auteurs ont observé un nombre

normal de cellules LT-CD8+CD4- dans le thymus mais une diminution dans la rate et les

ganglions lymphatiques. Ceci n’est pas dû à une élimination des LT mais à une diminution de

l’expression des molécules CD8 et du TCR transgénique par ces cellules. Lorsque les

splénocytes issus de ces souris sont isolés et restimulés in vitro avec l’antigène, l’expression

de ces deux molécules est restaurée. Ainsi, chez ces souris une tolérance par diminution de

l’expression des molécules servant à activer les LT a été induite.

Les cellules dendritiques immatures présentes dans les organes lymphoïdes secondaires

et les tissus périphériques induisent l’anergie des LT qu’elles rencontrent par l’absence des

molécules de co-stimulation CD80 et CD86 à leur surface (Keir and Sharpe 2005). L’anergie,

ou incapacité fonctionnelle des LT naïfs à être activés par un antigène et à proliférer lors

Page 74: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

74

d’une restimulation, est un processus qui se fait en deux étapes : un processus d’activation

incomplète, généralement lié à l’engagement du TCR sans signaux de co-stimulation, mais

aussi dans certains modèles à l’altération du premier signal par liaison du récepteur avec un

ligand peptidique modifié, de faible affinité pour le récepteur, ou par modification de la

présentation peptidique par l’IL-10. Sur le plan moléculaire, l’anergie nécessite l’engagement

du TCR et la translocation nucléaire du facteur de transcription NFAT car il a été clairement

démontré que les LT déficients en NFAT étaient résistants à l’anergie (Luo, Burgeon et al.

1996). En effet, l’interaction avec CD28 induit l’hétérodimère AP-1, qui se complexe avec le

facteur de transcription NFAT, activé par la signalisation calcique soutenue qui suit

l’engagement du TCR. Un programme transcriptionnel alternatif est accompli par NFAT en

absence d’AP-1, conduisant à l’incapacité du LT d’engager une réponse proliférative, de

produire de l’IL-2 ou de se différencier, ainsi qu’à la synthèse d’IL-10 (Macian, Garcia-Cozar

et al. 2002).

De plus, la plupart des études sur l’induction d’anergie in vivo utilisent des LT ayant

un TCR transgénique. L’administration d’un antigène peptidique soluble pour ce TCR

transgénique peut induire un état de non-réponse (Kearney, Pape et al. 1994). Il a été montré

également que des souris déficientes pour les molécules identifiées comme importantes pour

l’induction d’anergie in vitro, telles que Cbl-b(Bachmaier, Krawczyk et al. 2000), Egr-3

(Safford, Collins et al. 2005) ainsi que les souris exprimant la molécule GRAIL (Seroogy,

Soares et al. 2004) sont résistantes à l’induction d’anergie in vivo (Heissmeyer and Rao 2004).

Les cellules dendritiques immatures expriment par ailleurs PD-L1, une molécule de co-

stimulation inhibitrice dont le récepteur est exprimé par les LT activés. PD-L1 est également

présent sur des cellules non lymphoïdes, comme les cellules β du pancréas, les cellules gliales

ou placentaires. Ce mécanisme inhiberait la prolifération et la sécrétion de cytokines amenant

à l’anergie du LT. Un autre mécanisme de rétro-contrôle négatif serait impliqué dans cette

anergie : l’induction de CTLA-4 qui permet comme nous l’avons mentionné précédemment

de passer d’une signalisation activatrice à inhibitrice en limitant l’expansion et l’activité des

clones T engagés dans la réponse.

• Délétion des lymphocytes T auto-réactifs

L’ absence de lymphocytes T auto-réactifs matures peut résulter d’une sélection négative

intra-thymique comme montré ci-dessus, mais aussi d’une délétion induite en périphérie,

Page 75: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

75

seule forme de tolérance périphérique irrévocable. Les facteurs impliqués dans cette tolérance

ne sont pas clairement connus. Cependant plusieurs mécanismes ont aujourd’hui été suggérés.

Tout d’abord, la persistance antigénique est montrée comme une variable déterminante

dans le choix entre délétion ou survie. Pour étudier ce phénomène, des études de transfert

adoptif de LT issus de souris CL4 transgéniques (cf matériel et méthode) dans des souris Ins-

HA, exprimant constitutivement l’antigène HA dans les îlots β pancréatiques, montrent que 4

jours après l’engagement initial, les cellules transférées seules prolifèrent beaucoup moins que

les cellules ayant été transférées avec un signal activateur supplémentaire. Cependant, il

demeure un certain nombre de LT survivants (Redmond, Hernandez et al. 2003), montrant

que l’engagement initial induit par le stimulus de l’auto-antigène ne suffit pas à lui seul à

provoquer une délétion totale des LT concernés. La même équipe a montré, toujours par

divers transferts adoptifs, qu’une stimulation antigénique soutenue dans un environnement

tolérogène pouvait mener à une tolérance par délétion. De plus, il a été montré que de

multiples stimulations antigéniques à haute dose provoquaient une anergie alors que de

multiples stimlulations antigéniques à faible dose provoquaient une délétion complète des LT

(Redmond and Sherman 2005) due à une incapacité à maintenir l’expression des gènes anti-

apoptotiques suite à la signalisation par le TCR. De plus, il a été montré que des stimulations

réitérées par l’antigène conduisaient à l’expression du ligand du récepteur de mort Fas (FasL)

par les LT. Ces cellules expriment déjà constitutivement Fas, ce qui entraîne l’activation de la

voie pro-apoptotique en aval et donc la mort du LT (Brunner, Mogil et al. 1995; Dhein,

Walczak et al. 1995). La voie plus efficace pour éviter qu’un clone T ne provoque une

réaction auto-immune est de déléter sa spécificité par AICD (activation induced cell death).

Ce mécanisme implique la voie Fas/FasL (Sobel, Kakkanaiah et al. 1993; Suda, Takahashi et

al. 1993). Des études récentes montrent également un rôle important de Pten (phosphatase ant

tensin homolog) (Suzuki, Yamaguchi et al. 2001) et du TGF-β dans cette voie. Comme nous

l’avons vu précédemment, la présentation croisée désigne le fait que des antigènes restreints

par les molécules CMH de classe I soient présentés par des cellules n’exprimant pas elles-

mêmes ces antigènes. Il a été montré que des CPA possèdent cette capacité à capturer des

antigènes dans les tissus et migrer ensuite dans les ganglions lymphatiques drainant l’organe

exprimant l’antigène pour le présenter aux lymphocytes T (Kurts, Heath et al. 1996). C’est

ainsi que des auto-antigènes trouvés dans les îlots pancréatiques peuvent être drainés dans les

ganglions où ils seront capables d’activer des LT auto-réactifs qui seront ensuite délétés :

c’est la tolérance croisée. Des études ont en effet montré que de faibles taux de LT-CD8+

auto-réactifs spécifiques de l’ovalbumine étaient incapables de provoquer un diabète après un

Page 76: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

76

transfert adoptif de ces cellules dans une souris exprimant l’ovalbumine dans les îlots

pancréatiques. En faisant une co-injection de LT-CD4+ spécifiques de OVA, plus de la moitié

des souris développaient un diabète, suggérant que l’aide apportée par ces LT-CD4+ favorisait

l’auto-immunité, ceci en empêchant la délétion des LT-CD8+. Ces données montrent donc que

ce contrôle des LT-CD8+ auto-réactifs par les LT-CD4+ est un mécanisme critique pour la

maintenance de l’induction de tolérance de ces LT-CD8+ par présentation croisée (Kurts,

Carbone et al. 1997). Cette cross-présentation d’épitopes de classe I pourrait donc être un

mécanisme de tolérance périphérique. De plus, il apparaît être plus important chez l’adulte

que chez le nouveau-né (Morgan, Kreuwel et al. 1999; Morgan, Kurts et al. 1999). En effet,

en immunisant des souris InsHA avec le virus A/PR/8 à différents âges, des études ont montré

qu’en période périnatale les LT ne sont pas tolérogènes et que par conséquent l’infection

virale provoque un diabète auto-immun. Par contre, chez l’adulte, beaucoup de LT

tolérogènes sont retrouvés, protégeant l’animal de la maladie. Ce phénomène peut être

expliqué par le fait qu’en période périnatale, l’absence de tolérance est corrélée avec

l’absence d’activation des LT-CD8+ spécifiques de l’antigène alors que chez l’adulte, cette

activation ainsi que la prolifération des LT-CD8+ spécifiques de HA ont lieu (Morgan, Kurts

et al. 1999).

L’induction d’une maladie auto-immune n’est donc pas la conséquence obligatoire

d’une situation d’auto-réactivité, même lorsque les LT auto-réactifs activés peuvent pénétrer

les tissus où l’auto-antigène est exprimé. L’activation lymphocytaire et l’accessibilité au tissu

non lymphoïde sont deux étapes nécessaires pour déclencher la réponse auto-immune.

D’autres paramètres peuvent également intervenir pour permettre de limiter l’extension d’une

réaction auto-immune comme le blocage de l’expansion des LT auto-réactifs in situ par

l’engagement de la molécule CD30 à la surface des LT (Kurts, Carbone et al. 1999). En effet,

il a été montré que les LT-CD8+ spécifiques des îlots pancréatiques déficients en CD30

étaient 6000 fois plus auto-aggressifs que les LT sauvages. De plus le transfert de LT

déficients en CD30 provoque une destruction complète de l’îlot pancréatique et par

conséquent un diabète très rapide. Ainsi, la signalisation par le CD30 limite le potentiel

prolifératif des LT-CD8+ et protège contre l’auto-immunité.

• Déviation de la réponse immune

La déviation immune est le processus selon lequel un tissu influence la réponse pour se

préserver des lésions inflammatoires, ce qui aboutit à privilégier la fonction humorale et

Page 77: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

77

inhiber l’inflammation et la cytotoxicité. L’exemple le plus étudié est celui de la chambre

antérieure de l’œil, où l’introduction d’un antigène soluble induit une tolérance systémique à

celui-ci (Niederkorn, Chiang et al. 1999). De nombreuses cellules occulaires sont post-

mitotiques. Les dommages causés par une réaction inflammatoire s’avèreraient donc

irréversibles. Il s’agit d’un mécanisme complexe débutant par la capture de l’antigène par les

cellules présentatrices d’antigènes tolérogènes qui migrent par la circulation veineuse

jusqu’au thymus où elles induisent des lymphocytes NKT (Niederkorn, Chiang et al. 1999).

Ceux-ci vont rejoindre la rate, où à leur tour ils vont favoriser la génération de LT-CD8+

suppresseurs en collaboration avec les cellules présentatrices d’antigènes tolérogènes issues

de l’œil, aboutissant ainsi à l’inhibition des réactions inflammatoires, tout en autorisant une

réponse humorale IgG1.

Un phénomène semblable a lieu dans la sphère intestinale où le TGF-β maintient la

tolérance vis-à-vis de la flore commensale et des antigènes alimentaires, et favorise de

surcroît la commutation de classe vers les IgA, qui sont une des bases de l’immunité mucosale

(Mowat 2003).

FIGURE 19 : les différents mécanismes d’induction de tolérance périphérique

(Walker, Ausubel et al. 2002).

A. Les cellules T auto-réactives peuvent rester dans un état d’ignorance. C’est le cas lorsque l’Ag est séquestré dans un tissu ou s’il ne peut pas être présenté par les DC ou encore, si l’Ag est exprimé à des niveaux trop faibles. B. La rencontre avec l’auto-Ag peut induire l'anergie de la cellule T. L’induction d’anergie implique l'interaction entre les molécules CTLA-4 ou PD-1 exprimées par les cellules T et leurs ligands (B7.1/ B7.2, PDL1/2) exprimés par les APC. C. Les cellules T peuvent être activées suite à leurs rencontres avec l’Ag du soi mais pourraient développer un phénotype non pathogène en terme de cytokines et de récepteurs aux chimiokines qu’elles expriment. Dans ce scénario, les cellules T autoréactives sont activées mais n'induisent pas des dommages auto-immuns. D. Les cellules T auto-spécifiques peuvent être éliminées suite à leur rencontre avec l’APC. L’induction d’apoptose implique la surexpression des molécules Fas et FasL par la cellule cible.

A. Ignorance B. Anergie C. Déviation Phénotypique ˇ

D. Apoptose ou AICD

cytokine

B7.1/ 2

Page 78: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

78

ii. Tolérance active

• Les cellules myéloïdes tolérogènes

Les cellules myéloïdes suppressives (Myeloid-derived suppressor cells ou MdSC) sont

des cellules immunitaires, d'origine myéloïde, comme les monocytes, mais dont les propriétés

sont immunosuppressives. Chez la souris, leur définition phénotypique est Gr1 (Ly-6G/C)+ et

CD11b+. Chez les humains, la définition phénotypique n'est pas encore standardisée.

Cependant, les MdSC humaines sont souvent définies comme monocytaires (CD33+) et

immatures (HLA-DR-) ou encore comme CD14- et CD11b+ [figure 20] .

Ces cellules vont modifier le métabolisme de l’arginine, acide aminé essentiel qui induit

par sa dégradation l’arrêt de la prolifération, voire l’apoptose des LT. A l’origine de ce

changement sont impliquées l’arginase-1 induite par les cytokines de type II produisant l’urée

et l’oxyde nitrique synthase 2 (NOS2) induite par les cytokines de type I produisant l’oxyde

nitrique. L’activité de l’arginase-1 semble conduire à une inhibition transcriptionnelle de

CD3ζ alors que l’oxyde nitrique semble interférer avec la signalisation en aval de l’IL-2. Ces

cellules myéloïdes suppressives participeraient donc à un rétrocontrôle des réponses T

initiées par les cytokines de type I et II. De plus, il a été montré que ces cellules myéloïdes

suppressives pouvaient produire du TGF-β en conséquence de l’action de l’IL-13 sécrétée par

les NKT (Terabe, Matsui et al. 2003).

Des études chez la souris et chez l’homme ont montré que ces cellules infiltraient les

tumeurs et contrôlaient ainsi les réponses anti-cancéreuses. L'accumulation de ces cellules est

l'un des principaux mécanismes d'échappement tumoral (Bunt, Sinha et al. 2006). Ezernitchi

et al (Ezernitchi, Vaknin et al. 2006) ont rapporté également que ces cellules myéloïdes

suppressives pouvaient inhiber l'expression de la chaine ζ du TCR. En effet, la diminution

d’expression de cette chaine sur les LT dans la rate, le sang périphérique et la moelle osseuse,

est corrélée avec des niveaux élevés de cellules myéloïdes suppressives. Les auteurs suggèrent

ainsi une limite sur le succès des stratégies d'immunothérapie basée sur la vaccination et le

transfert des LT. De plus, Serafini et al (Serafini, Carbley et al. 2004) ont montré que de fortes

doses de GM-CSF produit par les vaccins inhiberaient la réponse immunitaire par le

recrutement de cellules myéloïdes suppressives.

Page 79: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

79

• Les macrophages de type 2

Les macrophages de type 2 (ou M2) ont la particularité d’avoir été activés dans un

contexte Th2 (Gordon 2003). Ces cellules produisent des cytokines anti-inflammatoires telles

que l’IL-10 et le TGF-β, de la prostaglandine E2 et l’antagoniste du récepteur à l’IL-1β.

Des études ont montré que ces cellules étaient capables de supprimer l’EAE (Tierney,

Kharkrang et al. 2009). Les macrophages M2 sont également impliqués dans l’angiogénèse et

ont des capacités de réparation et de remodelage du tissu endommagé. La découverte récente

de la présence des macrophages M2 dans les lésions athérosclérotiques humaines, démontre

pour la première fois l’existence d’une population hétérogène de macrophages au sein des

plaques d’athérosclérose.

• Les cellules dendritiques tolérogènes

Le rôle central joué par les CD dans le maintien de la tolérance ne se limite pas à

l’anergie provoquée en l’absence de signaux de co-stimulation. Elles sont également capables

de produire du TGF-β, qui pourrait concourir à la tolérisation des LT et au maintien de leur

propre statut immature (Li, Wan et al. 2006), et de l’IL-10. Les CD immatures étant

incapables d’être à l’origine d’une réponse immunitaire productive, la création d’un

microenvironnement qui les maintient à ce stade est une stratégie suppressive.

Outre la sécrétion de ces cytokines immunosuppressives, ces CD peuvent induire des T-

reg. En effet, Akbari a montré que l’expression de la molécule de co-stimulation ICOS-L

(inducible costimulator ligand) à la surface des CD permettait la conversion de LT vers le

phénotype suppresseur (Akbari, Freeman et al. 2002). Ces T-reg inhibent alors, par la

sécrétion de cytokines anti-inflammatoires, l’acquisition des fonctions présentatrices par les

CD.

Page 80: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

80

Figure 20: les cellules myéloïdes tolérogènes dans la tolérance active (Zitvogel,

Tesniere et al. 2006)

a : les cellules myéloïdes suppressives constituent une population hétérogène utilisant le métabolisme de l’arginine pour appauvrir le milieu et générer des molécules inhibitrices de la prolifération, voire de la survie, des LT. b : la sécrétion d’IL-13 par les cellules NKT induit la synthèse de TGF par les cellules myéloïdes suppressives. c : le catabolisme d’un autre acide aminé essentiel, le tryptophane, est manipulé par les cellules dendritiques tolérogènes. L’enzyme IDO est induite par l’interaction avec CTLA4 porté par les T-reg. d : les cellules dendritiques suite à la stimulation de TLR9, promeuvent la génération de lymphocytes Tr1 CD8+ et de T-reg. e : le contact avec les CD immatures conduit les LT à devenir anergiques. De plus, en présence de l’IL-10, une différenciation en cellules Tr1 est favorisée. .f : les macrophages de type M2 relarguent des cytokines anti-inflammatoires et de la prostanglandine E2 qui inhibent la prolifération, la différenciation et les fonctions effectrices des LT conventionnels.

MATURATION DES CD DANS LES GANGLIONS DRAINANTS

RECRUTEMENTIL-6, M-CSF, VEGF

ET IL-1β

LT

MSC

NOS2 et ARG1

MATURATION DES CD DANS LES GANGLIONS DRAINANTS

RECRUTEMENTIL-6, M-CSF, VEGF

ET IL-1β

LT

MSC

NOS2 et ARG1

MSCIL-13R

IL-13

NK T

CPA

STAT6

TFG-β

CD1dTCR invariant

APOPTOSE

PRESENTATION DE L’ANTIGENE

MSCIL-13R

IL-13

NK T

CPA

STAT6

TFG-β

CD1dTCR invariant

APOPTOSE

PRESENTATION DE L’ANTIGENE

CTLA4

T-Reg

CD80 ou CD86 IFN-γ

Tryptophane

INHIBITION DE LA PROLIFERATION

DES LT-CD8, APOPTOSE DES LT-

CD4

CTLA4

T-Reg

CD80 ou CD86 IFN-γ

Tryptophane

INHIBITION DE LA PROLIFERATION

DES LT-CD8, APOPTOSE DES LT-

CD4

LT-CD8 naïf

Th2

LT-reg producteur d’IL-10

IL-3R

IL-3

CMH de classe I

CMH de classe II

TCR

LT-CD4naïf

CD40-L

CD40

IL-10

Inhibition de la lyse des CTL et de la maturation des CD

pCD

LT-CD8 naïf

Th2

LT-reg producteur d’IL-10

IL-3R

IL-3

CMH de classe I

CMH de classe II

TCR

LT-CD4naïf

CD40-L

CD40

IL-10

Inhibition de la lyse des CTL et de la maturation des CD

pCD

LT-CD8

LT-regLT-CD4

CD immature

IL-10 ANERGIE

LT-CD8

LT-regLT-CD4

CD immature

IL-10 ANERGIE

Macrophage

IL-10

TGF-β

PGE2INHIBITION DE LA LYSE

DES CTL ET DE LA PROLIFERATION DES LT

Macrophage

IL-10

TGF-β

PGE2INHIBITION DE LA LYSE

DES CTL ET DE LA PROLIFERATION DES LT

a b

c d

e f

Page 81: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

81

• Les lymphocytes NKT

Une sous-population de LT naturels a été définie sur l’expression de récepteurs

habituellement exprimés par les cellules NK : les NKT. Elles se subdivisent en trois

groupes dont le plus représenté est le groupe des iNKT (invariant NKT). Ces cellules ont un

répertoire très limité, la majorité exprimant chez la souris le Vα14/Jα18 et chez l’homme le

Vα24/Jα18. Ce TCR est spécifique de glycoprotéines présentées par les molécules de CMH

de classe I non classique, le CD1d. Les deux autres sous-groupes, très minoritaires, sont les

NKT de type II (qui sont restreints par la molécule CD1d mais un répertoire de TCR divers) et

les NKT de type III (qui ne sont pas restreints au CD1d).

Ces cellules ont pour particularité de produire très rapidement après activation des

cytokines de type I comme le TNF ou l’IFN-γ et des cytokines de type II telles que l’IL-4 ou

l’IL-13. Ces iNKT ont donc la faculté d’orienter la réponse immune, bien que les facteurs qui

déterminent cette polarisation ne soient pas encore bien compris. L’on sait tout de même que

l’environnement cytokinique pourrait être un paramètre important (Brigl, Bry et al. 2003)

ainsi que la nature du glycolipide ou le contexte de présentation. Ainsi des facteurs

immunologiques comme les cytokines mais aussi non immunologiques comme l’oestradiol

dictent ou régulent les fonctions des iNKT. Les mécanismes d’action des iNKT dans les

maladies auto-immunes restent en partie obscurs. Selon certaines études, dans les maladies

dites de type Th1, l’action protectrice des iNKT s’accompagnerait d’une orientation de la

population auto-réactive vers un profil Th2. Un biais de la production des cytokines Th1 et

Th2 par ces cellules pourrait expliquer partiellement leur rôle protecteur (Chiba, Oki et al.

2004; Yamamura, Miyamoto et al. 2004). Dans d’autres études, aucune immuno-déviation de

la réponse auto-réactive n’est mise en évidence et l’effet protecteur mettant en jeu les iNKT

dépend de l’IL-10 (Miellot, Zhu et al. 2005) et non des cytokines comme l’IL-4 (Mars,

Laloux et al. 2002). Ces iNKT pourraient également participer à la génération de LT-CD8+

suppresseurs via leur sécrétion d’IL-10 (Sonoda, Faunce et al. 2001; Nakamura, Sonoda et al.

2003) ainsi qu’à l’homéostasie et la génération des T-reg. Leur sécrétion d’IL-4 et d’IL-10

permettrait également de favoriser l’apparition de cellules dendritiques tolérogènes (Roelofs-

Haarhuis, Wu et al. 2004).

Page 82: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

82

• Les lymphocytes γδ

Les LT γδ se distinguent par l’expression d’un TCR au répertoire limité qui reconnaît

l’antigène indépendamment de la présentation par les molécules de CMH. Ces LT ont un

potentiel cytotoxique et sécrètent des cytokines (IFN-γ), et participeraient de ce fait à

l’immunité anti-infectieuse, à la réponse anti-tumorale et à la cicatrisation. Une activité

suppressive a également été proposée, notamment dans l’homéostasie des épithelia, en

sachant que leur rôle régulateur serait spécifique de leur tissu. La capacité des LTγδ

d'intervenir dans la coopération lymphocytaire T/B est un premier argument montrant qu'ils

ont des propriétés régulatrices. Ces fonctions peuvent aussi s'exercer vis-à-vis de cellules

épithéliales n'appartenant pas au système immunitaire. Les LTγδ sont particulièrement

abondants au sein des épithéliums. L'étude de souris rendues génétiquement déficientes pour

le TCR-γδ a montré que ces cellules influencent la prolifération et la différenciation des

cellules épithéliales intestinales. Au niveau de la peau, les LTγδ produisent un facteur de

croissance pour les kératinocytes (KGF, keratocyte growth factor) (Boismenu and Havran

1994).Les LTγδ jouent donc un rôle dans le maintien de l'intégrité des épithéliums qui sont

une première barrière de défense.

Les LTγδ assurent aussi des fonctions régulatrices vis-à-vis des cellules de l'immunité

non spécifique que sont les macrophages et les cellules NK. Chez des souris génétiquement

déficientes pour le TCR-γδ, on observe une altération de la production de TNF-α par les

macrophages stimulés par le LPS. Ces mêmes souris, infectées par une dose sub-létale de

Listeria monocytogenes, présentent une altération de l'immunité véhiculée par les cellules NK

et une diminution de la production d'IFN-γ (Ladel, Blum et al. 1996).

Les LTγδ semblent aussi exercer des fonctions immunomodulatrices vis-à-vis des

cellules de l'immunité spécifique, notamment des LTαβ. Chez la souris, l'induction d'une

déplétion in vivo en LTγδ à l'aide d'un anticorps monoclonal anti-TCR γδ s'accompagne

d'une importante activation des LTαβ caractérisée in vitro par une intense activité

proliférative, la production d'IL-2 et une très grande activité cytotoxique des LTαβ-CD8+

(Kaufmann, Blum et al. 1993). Chez la souris sauvage, l'infection par L. monocytogenes

entraîne l'activation des LTαβ responsables de la formation de lésions granulomateuses qui

ont pour but de circonscrire l'infection. Ces formations histologiques sont absentes chez les

souris TCR-γδ et sont remplacées par des lésions abcédées suggérant, en l'absence de LTγδ,

Page 83: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

83

un défaut de contrôle de l'activation des LTαβ (Mombaerts, Arnoldi et al. 1993).

Enfin, les LTγδ pourraient, au cours des manifestations allergiques, assurer un

rétrocontrôle négatif de l'action amplificatrice des LTαβ-Th2+ sur la production d'IgE. Le rôle

régulateur des LTγδ fait intervenir la sécrétion d'IFNγ dont l'action suppressive sur la

différenciation des LTαβ-CD4 Th2 est très largement documentée (McMenamin, McKersey

et al. 1995). Les LTγδ semblent donc jouer un rôle central dans le maintien de l'homéostasie

du système immunitaire.

• Les lymphocytes B régulateurs

L’ existence de cette population a été proposée pour la première fois par le groupe de

Janeway dans le modèle de l’Encéphalomyélite Auto-immune Expérimentale (EAE) (Wolf,

Dittel et al. 1996). Si les souris de fond génétique C57Bl/6 déficientes en lymphocytes B ne

présentaient ni retard dans le déclenchement de la maladie, ni une sévérité accrue du pic de la

maladie, elles se distinguaient par une rémission faible, voire inexistante. Quelques années

après, une sous-population de LB producteurs d’IL-10, indispensable à cette rémission, a pu

être identifiée (Fillatreau, Sweenie et al. 2002). Cette population est une population induite

car elle n’existe pas in vivo en absence d’inflammation (Mizoguchi, Mizoguchi et al. 2002).

D’autres études ont suggéré un rôle de ces B-reg dans la tolérance orale via une

stimulation des TLR et une production de TGF-β (Gonnella, Waldner et al. 2001; Parekh,

Prasad et al. 2003).

Il a également été proposé que ces B-reg pouvaient jouer un rôle dans l’inhibition des

allergies (Tsitoura, Yeung et al. 2002).

• Les lymphocytes T-CD8+ suppresseurs

Dès 1978, l’équipe de Cantor rapportait l’existence de cellules induites par contact avec

les LT-CD4+, par le biais de la molécule de CMH de classe I non classique Qa-1 (Stanton,

Calkins et al. 1978). Plusieurs années après, l’équipe de Mak relança l’intérêt pour ces

cellules en décrivant une tendance des souris invalidées pour le gène de CD8 à développer

une pathologie chronique dans le modèle de l’EAE (Koh, Fung-Leung et al. 1992). Il a de

plus été montré que les LT-CD8+ déficients en CD28 avait une activité suppressive in vitro et

que leur transfert protégeait de l’induction de l’EAE (Najafian, Chitnis et al. 2003). Des

Page 84: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

84

résultats similaires ont été obtenus dans le modèle de la colite avec des cellules CD8+CD28-

naturelles (Menager-Marcq, Pomie et al. 2006). Les mécanismes de ces cellules sont

multiples. In vivo, leur fonction dépend de leur aptitude à sécréter des cytokines anti-

inflammatoires, IL-10 et TGF-β.

Il est remarquable que chez la souris, la moitié des LT intra-épithéliaux soit des LT-

CD8αα+. Ces cellules ont un développement particulier qui se termine hors du thymus. Leur

fonction régulatrice a été rapportée dans le contrôle des infections et de l’inflammation de

l’intestin par reconnaissance, via le TCR ou les récepteurs NK co-exprimés à leur surface, de

molécules du soi modifiées ou inductibles par le stress ou l’inflammation.

Une autre sous-population, les CD8+CD122+, qui possèdent des propriétés suppressives

en culture, et dont l’absence in vivo entraîne un désordre hyperprolifératif a également été

décrite.

Récemment, une nouvelle population a été découverte chez le rat, caractérisée par la

faible expression de CD45RC et qui a une fonction suppressive passant par le contact

(Xystrakis, Dejean et al. 2004). Ces cellules ont démontré leurs capacités régulatrices dans le

cadre de l’alloréactivité.

• Les lymphocytes Tr1

Ces cellules sont définies par leur capacité à sécréter de grandes quantités d’IL-10, leurs

propriétés immunosuppressives et leur génération dépendante de l’IL-10. Ces LT-CD4+-Tr1

se distinguent des Th1 et Th2 par leur profil cytokinique, à savoir la production d’IL-10 et de

TGF-β mais pas d’IL-4. La discrimination vis-à-vis des T-reg se base sur l’absence

d’expression constitutive de FoxP3 (Levings, Gregori et al. 2005) et la présence de ROG

(repressor of GATA-3) (Roncarolo, Gregori et al. 2006). La capacité suppressive de ces Tr1

joue un rôle in vivo dans le contrôle de l’inflammation et de l’auto-immunité. En effet, un rôle

préventif de ces Tr1 a été montré dans plusieurs modèles de pathologies inflammatoires

comme la sclérose en plaques, l’athérosclérose, l’IBD et les réactions d’hypersensibilité

retardée cutanée. En effet de nombreuses études ont montré l‘importance de l’IL-10 dans la

régulation de l’EAE (Rott, Fleischer et al. 1994; Bettelli, Das et al. 1998; Burkhart, Liu et al.

Page 85: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

85

1999; Cua, Groux et al. 1999; Anderson, Reddy et al. 2004; Zhang, Koldzic et al. 2004) : la

neutralisation de l’IL-10 endogène augmente la sévérité et l’incidence des crises, et la maladie

est plus sévère chez des animaux déficients pour l’IL-10 comparés aux animaux sauvages.

Ainsi, des auteurs ont suggéré un rôle des Tr1 puisque comme nous l’avons vu précédemment

cette population lymphocytaire est productrice d’IL-10. Or ces Tr1 produisant de l’IL-10

peuvent être induits par la vitamine D3 (Cantorna, Hayes et al. 1996). Une étude récente

(Spach, Nashold et al. 2006) a prouvé ce rôle de l’Il-10 dans le contrôle de l’EAE. En effet,

les auteurs ont démontré qu’une forte inhibition du développement par la vitamine D3 d’une

EAE induite par le peptide MOG35-55 était dépendante de l’expression fonctionnelle de l’IL-10

et l’IL-10R. Ceci est également supporté par des études chez des patients atteints d’asthme

sévère où le potentiel inhibiteur des Tr1 induit par la vitamine D3 permet d’inhiber la

production de cytokines de type 2 spécifiques de l’allergène (Xystrakis, Kusumakar et al.

2006).

• Les T-reg

Si la plupart des cellules régulatrices LT-CD4+-FoxP3 sont générées dans le thymus, la

différenciation en périphérie de LT conventionnels en cellules régulatrices a pu être

démontrée (Apostolou, Sarukhan et al. 2002). Il est clairement établi que les T-reg ont besoin,

pour survivre en périphérie, d’être activés par la rencontre avec leur antigène spécifique, et

que cette stimulation est également indispensable à l’exercice de leurs propriétés

suppressives. La question de spécificité d’action se pose toutefois car in vitro, les T-reg, une

fois activés, inhibent sans restriction (Thornton and Shevach 2000). Cependant il s’avère que,

in vivo, les T-reg spécifiques d’un tissu sont plus efficaces qu’une population polyclonale

(Jones, Dahm-Vicker et al. 2002; Joffre, Gorsse et al. 2004; Tang, Boden et al. 2004; Tarbell,

Yamazaki et al. 2004).

Ces T-reg ont la capacité d’inhiber la prolifération des LT (Thornton and Shevach 1998;

Piccirillo and Shevach 2001) mais leur action touche l’ensemble des populations

lymphocytaires à savoir les LT, les NK (Ghiringhelli, Menard et al. 2005), les NKT (Azuma,

Takahashi et al. 2003) et les LB (Nakamura, Kitani et al. 2001) ainsi que les cellules du

lignage myéloïde, en particulier les cellules dendritiques dont elles inhibent la maturation et

les fonctions présentatrices (Cederbom, Hall et al. 2000; Misra, Bayry et al. 2004).

Le potentiel suppresseur de ces cellules peut être regroupé en quatre mécanismes :

Page 86: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

86

- la suppression par production de cytokines inhibitrices : IL-10 (Bergmann,

Strauss et al. 2007 ; Erhardt, Biburger et al. 2007)., TGF-β (Glinka and

Prud'homme 2008), IL-35 (Collison, Workman et al. 2007).

- la suppression par cytolyse : expression de la granzyme A et B (Zhao,

Thornton et al. 2006)

- la suppression par modulation de la maturation et de la fonction des CD :

implication du CTLA-4 (Takahashi, Kuniyasu et al. 1998; Read, Greenwald et

al. 2006), synthèse de l’IDO (Fallarino, Grohmann et al. 2003; Mellor and

Munn 2004).

- la suppression par perturbation du métabolisme : expression des ectoenzymes

CD39 et CD73 (Kobie, Shah et al. 2006; Borsellino, Kleinewietfeld et al.

2007; Deaglio, Dwyer et al. 2007), liaison au A2AR (Zarek, Huang et al.

2008).

Les T-reg contrôlent ainsi les réponses immunes in vivo, rôle initialement mis en

évidence dans des modèles d’auto-immunité. Un rôle des T-reg dans le contrôle des réponses

immunes anti-tumorales et des réponses spécifiques d’allo-antigènes et d’antigènes exogènes

a largement été mis en évidence in vivo dans de nombreux modèles animaux (Fehervari and

Sakaguchi 2004).

Des travaux récents ont également suggéré que les Treg contribueraient au contrôle des

réponses immunes spécifiques dans des modèles animaux d’infection par des micro-

organismes tels que Leishmania major, Pneumocystis carinii et candida albicans qui sont

faiblement pathogènes dans les conditions physiologiques chez l’individu immunocompétent

(Belkaid, Piccirillo et al. 2002; Hori, Carvalho et al. 2002; Netea, Sutmuller et al. 2004). Dans

ces trois modèles, l’élimination des T-reg a été en effet corrélée à une augmentation de

l’efficacité du système immunitaire à détruire l’agent infectieux. Les T-reg seraient de plus

impliqués dans le maintien d’un faible nombre de micro-organismes vivants, ce qui leur

permettrait de jouer un rôle dans l’induction/survie de lymphocytes mémoires spécifiques et

ainsi dans la résistance à une réinfection. Des expériences complémentaires ont permis de

montrer que ces T-reg étaient aussi capables de contrôler des réponses immunes

« hyperinflammatoires », délétères pour les tissus, voire pour l’organisme .

Page 87: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

87

Les maladies autoLes maladies autoLes maladies autoLes maladies auto----immunes et immunes et immunes et immunes et modèles animauxmodèles animauxmodèles animauxmodèles animaux

1. Les maladies auto-immunes

a. Généralités

Au début du XXème siècle, Paul Ehrlich a réalisé que le système immunitaire pouvait

présenter des dysfonctionnements et qu’au lieu de réagir contre les antigènes étrangers il

pouvait concentrer son attaque sur des auto-antigènes. Il s’en est ainsi déduit que l’auto-

immunité résultait donc d’une réponse immunitaire délétère contre les antigènes propres d’un

individu. Chez l’humain, l’auto-immunité apparaît généralement de façon spontanée, ce qui

signifie que nous ne savons pas quels évènements amorcent la réponse immunitaire

pathogène. Certaines affections peuvent être déclenchées par des agents infectieux comme le

rhumatisme articulaire aigu, d’autres impliquent la survenue d’un dérèglement interne du

système immunitaire, sans intervention d’agents infectieux, comme les sarcoïdoses ou les

atopies. Ces maladies auto-immunes peuvent être classées selon le type de réaction qui peut

être spécifique d’un organe ou systémique [tableau 2].

b. Maladies systémiques

Les maladies auto-immunes systémiques résultent d’une réponse dirigée contre des

antigènes disséminés dans tout l’organisme. Ces maladies reflètent un déficit général de la

régulation de l’immunité qui conduit à des cellules T et à des cellules B hyperactives. Les

dommages tissulaires disséminés sont ainsi provoqués par des réponses immunitaires à

médiation cellulaire causées par des auto-anticorps. La majorité d’entre elles sont cependant

causées par le dépôt de complexes immuns dans les vaisseaux sanguins. C’est l’exemple du

lupus érythémateux systémique (SLE) qui résulte de la production excessive de complexes

antigènes-anticorps et de leur dépôt dans la paroi des vaisseaux sanguins de nombreux autres

organes. La pathologie du lupus ainsi que de nombreuses maladies auto-immunes

Page 88: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

88

systémiques, est dictée par le ou les sites dans lesquels les complexes immuns se déposent et

non par la source de l’antigène.

Maladie Autoantigène Réponse immunitaire

Maladies auto-immmunes spécifiques d’organes

Maladie d’Addison Cellules de la surrénale Auto-anticorps Anémie hémolytique auto-immune

Protéines de la membrane des globules rouges du sang

Auto-anticorps

Syndrome de Goodpasture Membrane basale du rein et du poumon

Auto-anticorps

Maladie de Graves-Basedow Récepteur de la TSH Auto-anticorps (stimulateurs)

Thyroïdite d’Hashimoto Protéines et cellules de la thyroïde

Cellules Th1, Auto-anticorps

Purpura thrombocytopénique idiopathique

Protéines membranaires des plaquettes

Auto-anticorps

Diabète insulinodépendant Cellules β du pancréas Cellules Th1, Auto-

anticorps Myasthénie Récepteurs de l’acétylcholine Auto-anticorps (bloquant) Infarctus du myocarde Cœur Auto-anticorps Anémie pernicieuse Cellules pariétales gastriques Auto-anticorps Glomérulonéphrite post-streptococcale

Reins Complexes antigène-

anticorps Stérilité spontanée Spermatozoïdes Auto-anticorps

Sclérose en plaque Cerveau et moelle épinière Cellules Th1, Cellules T

cytotoxiques, Auto-anticorps

Maladies auto-immmunes systémiques

Spondylarthrite ankylosante Vertèbres Complexes immuns

Polyarthrite rhumatoïde Tissu conjonctif, IgG Auto-anticorps , complexes

immuns

Sclérodermie Noyau, cœur, poumons, ractus gastro-intestinal, reins

Auto-anticorps

Syndrome de Sjögren Glandes salivaires, foie, reins, thyroïde

Auto-anticorps

Lupus érythémateux disséminé

ADN, protéines nucléaires, membranes des globules rouges du sang et des plaquettes

Auto-anticorps , complexes immuns

TABLEAU 2 : Les différentes classes de maladies auto-immunes

Page 89: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

89

c. Maladies spécifiques d’organes

Les maladies auto-immunes spécifiques d’organes sont la conséquence d’une réponse

dirigée contre un antigène dont la localisation est restreinte à un organe en particulier. Les

cellules de l’organe cible peuvent être lésées directement par des mécanismes humoraux

(anticorps auto-réactifs) ou à médiation cellulaire (LT auto-réactifs).

Rôle des anticorps :

Ces anticorps (Ac) peuvent agir de différentes façons selon qu’ils sont dirigés contre des

auto-antigènes (Ag) cellulaires ou contre des auto-Ag extracellulaires.

Pour les Ac dirigés contre les auto-Ag cellulaires, nous retiendrons trois modes d’action :

les Ac anti-cellules sanguines, les Ac anti-cellules tissulaires et les Ac anti-récepteurs.

En effet, des Ac de type IgG ou IgM contre des Ag membranaires des cellules sanguines

peuvent entraîner la destruction rapide de ces cellules. C’est le cas lors des anémies

hémolytiques auto-immunes. Les mécanismes d’action des Ac impliquent alors soit

l’activation du complément à la surface des globules rouges avec formation d’un complexe

d’attaque membranaire et lyse intravasculaire, soit, plus fréquemment, la phagocytose par les

macrophages spléniques et hépatiques via les récepteurs aux fragments Fc des

immunoglobulines ou au complément.

Or les cellules nucléées sont, en général, résistantes à la lyse par le complément en raison

de l’expression de nombreuses protéines de régulation. Néanmoins, l’activation locale du

complément peut entraîner une puissante réponse inflammatoire locale (recrutement

cellulaire, action de cytokines), source de lésions tissulaires. Ce type de lésions intervient

probablement dans différentes maladies auto-immunes et notamment dans la thyroïdite de

Hashimoto qui s’accompagne de la production d’Ac anti-péroxydase et anti-thyroglobuline.

Certains auto-Ac reconnaissent également des récepteurs membranaires et peuvent alors

exercer un effet agoniste ou antagoniste. Dans la maladie de Basedow, des auto-Ac anti-

récepteur de la TSH (thyroid stimulating hormon) exprimés par les cellules thyroïdiennes

entraînent une production accrue d’hormones thyroïdiennes en raison de la stimulation

chronique de ce récepteur à la TSH et de l’inefficacité du rétro-contrôle négatif normalement

effectué par la diminution de la synthèse de TSH. Par contre, dans la myasthénie, des auto-Ac

dirigés contre le récepteur de l’acétylcholine qui joue un rôle majeur dans la transmission

neuromusculaire, entraînent une internalisation de ce récepteur et sa dégradation. Les

symptômes sont ainsi caractérisés par une faiblesse musculaire progressive.

Page 90: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

90

En ce qui concerne les Ac dirigés contre des auto- Ag extracellulaires, nous citerons deux

exemples.

Tout d’abord, il peut être produit des auto-Ac contre des protéines de la matrice

extracellulaire. C’est le cas dans le syndrome de Goodpasture qui est dû à des Ac dirigés

contre la chaîne α3 du collagène de type IV présent dans la membrane basale des glomérules

rénaux et des capillaires pulmonaires. La liaison de ces Ac au collagène active les phagocytes

via les récepteurs Fc entraînant des lésions tissulaires sévères amplifiées par l’activation

locale du complément.

Le deuxième exemple repose sur la formation de complexes immuns circulants survenant

quand des Ac sont produits contre un Ag soluble. La pathogénicité des complexes immuns

dépend de leur taille, les gros étant plus facilement éliminés que les petits qui sont donc plus

pathogéniques. Normalement, les complexes immuns sont éliminés par les globules rouges

qui les transportent à leur surface via le récepteur CD35 vers la rate, et par les macrophages

qui expriment à la fois des récepteurs au fragment Fc et des récepteurs au complément. Un

défaut d’élimination ou une production accrue de complexes immuns peuvent entraîner leur

accumulation dans l’organisme responsable de lésions tissulaires dues à leur dépôt dans

certains vaisseaux et au niveau des glomérules, des articulations et de la peau. Les lésions

tissulaires sont dues à l’activation du complément qui entraîne le recrutement de cellules

inflammatoires et leur activation. Ces phénomènes se produisent lors du lupus érythémateux

disséminé, une maladie auto-immune systémique caractérisée par la production d’auto-Ac

dirigés contre des particules nucléoprotéiques (Ac anti-ADN, Ac anti-ARN). Le lupus

s’accompagne d’une production continue de complexes immuns qui se déposent dans les

parois des petits vaisseaux notamment glomérulaires, dans les articulations et dans divers

organes. Ces dépôts entraînent l’activation chronique du complément et des macrophages,

source de lésions tissulaires qui libère de plus grandes quantités d’auto-Ag, formant ainsi un

cercle vicieux.

Rôle des LT auto-réactifs :

Certains LT échappant à la sélection thymique peuvent réagir contre les antigènes du

soi et provoquer des maladies auto-immunes spécifiques de l’organe où cet antigène est

majoritairement exprimé. En effet, lors de maladies auto-immunes, des LT auto-réactifs

peuvent induire des lésions cellulaires directes par liaison à des antigènes cellulaires

membranaires, provoquant ainsi la lyse de la cellule et/ou une réaction inflammatoire dans

l’organe affecté. Progressivement la structure cellulaire endommagée est remplacée par du

Page 91: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

91

tissu conjonctif et la fonction de l’organe diminue. Parmi ces maladies auto-immunes

spécifiques d’organes induites par des LT auto-réactifs nous pouvons citer le diabète

insulinodépendant et la sclérose en plaques.

Le diabète insulinodépendant résulte d’une infiltration des îlots de Langerhans par les

lymphocytes, d’une destruction des cellules β insulino-sécrétrices, et d’une détection d’auto-

Ac circulants reconnaissant des antigènes insulaires sur des pancréas sains résultant en un

défaut de sécrétion d’insuline. De plus, l’association de la maladie à des allèles HLA

particuliers a permis d’établir la nature auto-immune du diabète de type 1. L’activation de la

réaction auto-immune précède de plusieurs années le syndrome hyperglycémique et son

cortège de signes cliniques.

Le processus conduisant à la destruction des îlots de Langerhans implique donc un

processus auto-immun. Néanmoins le ou les antigènes qui initient le diabète de type 1 ne sont

pas connus, une infection virale, un facteur nutritionnel, un superantigène étant les hypothèses

émises. Chez l’homme, dans la pathogenèse du diabète de type 1, l’infiltration des îlots se fait

par des cellules mononucléées. En effet, pendant longtemps l’on a cru que le diabète de type 1

était une maladie auto-immune impliquant exclusivement les LT-CD4+. Mais il est clairement

reconnu aujourd’hui que les LT-CD8+ jouent un rôle fondamental dans la physiopathologie de

la maladie (Tsai, Shameli et al. 2008). En effet, chez des souris NOD (modèle murin spontané

du diabète de type 1), ces LT-CD8+ ont une place centrale dans la destruction des cellules β et

contribuent également au maintien de l’inflammation au sein des îlots. Le mécanisme proposé

est donc basé sur le fait que les LT-CD4+ agissent en stimulant les lymphocytes B et les LT-

CD8+ cytotoxiques. Ces derniers vont alors pouvoir détruire l’îlot selon deux voies. La

première est une voie indirecte, où le LT interagit avec un peptide des îlots de Langerhans,

présenté par une CPA. Cette interaction conduit principalement à la libération de cytokines

telles que l’IFN-γ, le TNF-α et l’IL-1 et de radicaux libres, mais aussi à la production de

lymphokines par les LT-CD4+ et à l’activation des CPA et d’autres cellules inflammatoires

alors recrutées. La seconde voie est une voie directe où les LT-CD8+ interagissent directement

avec une cible de surface de la cellule β pour initier un processus cytotoxique.

Cependant des anticorps dirigés contre les îlots de Langherans sont aussi détectés chez

des patients atteints de diabète suggérant que ces derniers pourraient également jouer un rôle

dans la pathologie. Il s’agit des anticorps anti-îlots (islet cell antibody : ICA), des anticorps

anti-GAD (glutamate acide décarboxylase), des auto-anticorps anti-insuline et des anticorps

anti-IA2 qui sont dirigés contre une phosphatase membranaire des cellules ß. Ces Ac facilitent

Page 92: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

92

ainsi la lyse via le complément et accentuent la cytotoxicité à médiation cellulaire par un

mécanisme qui leur est propre, l’ADCC (pour cytotoxicité à médiation cellulaire dépendante

des anticorps).

Pour mon étude, je me suis intéressée de plus près à une autre maladie, la sclérose en

plaques (SEP) qui se caractérise par une réaction inflammatoire développée contre la myéline

du SNC. Pour des causes encore inconnues, des lymphocytes naïfs spécifiques de la myéline

s’activent, passent la barrière hémato-encéphalique, deviennent agressifs contre cette gaine de

myéline et provoquent une réaction inflammatoire au sein du SNC avec production de

cytokines et sécrétion d’Ac aboutissant à la destruction de cette gaine. En effet, il a clairement

été montré que le liquide céphalorachidien des patients présentant une SEP active contient des

LT activés qui infiltrent le tissu cérébral et provoquent des lésions inflammatoires

caractéristiques qui détruisent cette myéline. Etant donné la fonction protectrice de la fibre

nerveuse par la myéline, il s’en découle qu’une rupture de cette gaine de myéline conduit à de

nombreux dysfonctionnements neurologiques.

Facteurs de prédispositions :

Certains facteurs de prédispositions aux maladies auto-immunes ont été décrits. Chez

l’homme, la meilleure preuve de l’existence des gènes de prédisposition à l’auto-immunité est

fournie par les études familiales, tout particulièrement sur les jumeaux. Plusieurs d’entre elles

ont été entreprises pour des maladies comme le diabète de type I, la polyarthrite rhumatoïde,

la sclérose en plaques et le lupus. Les résultats de ces études ont montré que des facteurs

héréditaires ainsi que des facteurs environnementaux jouaient un rôle important dans

l’apparition et le développement de la maladie auto-immune humaine (Ebers, Yee et al. 2000;

Willer, Dyment et al. 2003; Dyment, Ebers et al. 2004; Compston and Coles 2008).Une

constatation supplémentaire a confirmé ces résultats : le fait que des lignées pures de souris

aient une prédisposition presque identique à développer certaines maladies auto-immunes

spontanées ou provoquées, tandis que d’autres lignées ne l’ont pas.

Ces résultats ont donc conduit à la recherche de gènes de prédisposition. Cette

prédisposition à une maladie auto-immune a été très régulièrement associée au génotype du

CMH. Pour la plupart des maladies, la prédisposition est fortement liée au CMH de classe II.

Cette association du génotype du CMH à une maladie auto-immune n’est pas surprenante, car

les réponses auto-immunes impliquent des LT, et leur capacité à répondre à un antigène

Page 93: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

93

particulier dépendant du génotype du CMH. Par conséquent, les associations peuvent

s’expliquer par un modèle simple dans lequel la prédisposition à une maladie auto-immune est

déterminée par les variations dans la capacité des différents variants alléliques des molécules

de CMH de présenter des peptides auto-antigéniques aux LT auto-réactifs. Une autre

hypothèse peut expliquer l’association entre le génotype du CMH et la prédisposition à des

maladies auto-immunes : le rôle des allèles du CMH dans l’établissement du répertoire du

TCR. En effet, comme nous l’avons vu dans le premier chapitre, les peptides du soi associés à

certaines molécules du CMH peuvent conduire à la sélection positive de thymocytes

spécifiques de certains auto-antigènes, ces peptides auto-antigéniques s’exprimant à un niveau

trop faible ou se liant de façon trop faible aux molécules du CMH du soi.

Ces hypothèses sont ainsi en accord avec nos connaissances sur l’implication des LT

dans certaines maladies. Si nous prenons l’exemple du diabète de type 1, l’association à des

allèles du CMH tant de classe I que de classe II, sont compatibles avec les résultats montrant

que des LT-CD4+ et LT-CD8+ sont les médiateurs de la réponse immune. En effet, ce diabète

possède une susceptibilité plurigénique avec au moins 10 gènes en cause. Néanmoins, le

principal se situe sur le chromosome 6 au niveau des gènes du système HLA de classe II, avec

un risque relatif de 3 à 5, lorsqu'il existe un allèle HLA DR3 ou DR4. Le risque relatif atteint

20 à 40 lorsque les deux allèles DR3 et DR4 sont associés. Ainsi, le risque pour des frères et

soeurs d'un enfant diabétique peut être précisé en fonction de l'identité HLA avec l'enfant

atteint. Le risque est de 15 % lorsque les frères ou soeurs présentent les deux haplotypes HLA

en commun avec l'enfant diabétique. Il n'est que de 7 % lorsqu'ils n'ont qu'un seul haplotype

en commun et il est inférieur à 1 % lorsque les deux haplotypes sont différents. Il en est de

même pour la SEP, où il a largement été prouvé une association entre suceptibilité à la

maladie et CMH (cf chapitre 3/b/iv)

Mais outre ces facteurs génétiques, des composantes environnementales et épigénétiques

(dont les facteurs sont encore inconnus) peuvent expliquer ces prédispositions aux maladies

auto-immunes. Nous pouvons citer par exemple pour la sclérose en plaques, l’influence de la

situation géographique, de la vitamine D et de l’ensoleillement dans la prévalence de la

maladie et pour le diabète de type 1, le rôle des virus.

Dans les paragraphes suivants, nous nous intéresserons exclusivement à la SEP et aux

modèles animaux qui s’y réfèrent.

Page 94: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

94

2. Les modèles animaux de SEP

La SEP étant une affection complexe aux causes probablement multiples, l’utilisation

de maladies animales modélisant la pathologie humaine est indispensable pour déterminer les

facteurs responsables de son développement ou influençant son évolution, comprendre ses

processus, et tenter de mettre au point des stratégies thérapeutiques spécifiques et efficaces.

Bien qu’aucune maladie animale ne corresponde exactement à la SEP humaine, deux grandes

catégories de modèles animaux miment ses manifestations et permettent d’illustrer les

mécanismes conduisant à cette maladie (Hemmer, Archelos et al. 2002; Hemmer, Cepok et al.

2002).

a. Les modèles viraux

Plusieurs virus sont capables d’induire une démyélinisation dans le SNC, chez

l’homme (rougeole, VIH, HTLV-1) ou chez les animaux : les virus de la maladie de Carré (le

chien), le virus de l’hépatite murine (la souris), le Visna (le mouton), le virus de la forêt de

Semliki (isolé chez le moustique, son hôte privilégié n’étant pas connu) et le virus de Theiler

(la souris) qui reste l’un des meilleurs modèles viraux de la SEP (Ercolini and Miller 2006).

En effet, le virus de Theiler induit, chez la souris, une maladie neurologique qui évolue en

deux phases. Une encéphalomyélite aiguë, observée durant les deux premières semaines, est

suivie, au stade chronique, par une infection persistante de la substance blanche. Cette

démyélinisation tardive est étudiée comme modèle de la sclérose en plaques, du fait de sa

chronicité et du type de lésions histologiques. Les souches de souris diffèrent par leur

sensibilité à la maladie démyélinisante. II a été montré que le locus de la région H-2D du

CMH joue un rôle dans le contrôle de la sensibilité à l'infection persistante, ce qui permet

d'aborder le rôle des lymphocytes cytolytiques. Des gènes situés en-dehors de la région H-2

ont également été impliqués, en particulier dans la région télomérique du chromosome 10,

près du locus IFN-γ. Le rôle de l'IFN-γ a été démontré et précisé dans ce modèle mettant en

jeu les cellules productrices de cette cytokine telles que les cellules NK, LT-CD8+ et LT-

CD4+ de type Th1 dans la physiopathologie de l’infection.

Plusieurs mécanismes peuvent expliquer la démyélinisation déclenchée suite à

l’infection virale.

Page 95: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

95

Tout d’abord, nous pouvons citer le mimétisme moléculaire. Ce concept repose sur la

similarité possible entre un pathogène et un antigène du soi. Cette similarité peut concerner la

séquence en acides aminés ou la structure conformationnelle des protéines. Ce mimétisme

moléculaire est donc caractérisé par une réaction immune à un antigène environnemental qui

cross-réagit avec un antigène de l’hôte provoquant ainsi une maladie auto-immune (Oldstone

1998; Albert and Inman 1999). Cette hypothèse est encouragée par le fait qu’un TCR peut

interagir avec différents complexes CMH et répondre à différents peptides (Wucherpfennig

and Strominger 1995; Lang, Jacobsen et al. 2002; Marrack, Rubtsova et al. 2008). Ce

mécanisme est indirectement impliqué dans la SEP. En effet, une haute charge virale durant

une primo-infection au EBV (Epstein Barr virus) est associée avec une augmentation du

risque de développement d’une SEP. De plus, des peptides viraux et bactériens qui miment la

PLP ou la MBP ont été identifiés et utilisés dans des modèles animaux pour adresser

directement que la maladie auto-immune pouvait être induite par ce mimétisme moléculaire

(Carrizosa, Nicholson et al. 1998). Ainsi, ces données démontrent que le mimétisme

moléculaire est une explication plausible qui pourrait expliquer le lien entre infection et auto-

immunité, même si cette évidence dans les pathologies humaines n’a pas encore été établie.

Une explication possible est l’effet « bystander ». Dans ce mécanisme là, les antigènes

pris pour cible sont ceux du virus mais ce sont les produits de l’inflammation qui causent des

dommages collatéraux aboutissant indirectement à la dégradation de la myéline.

Enfin, l’inflammation créée par la présence du virus attirerait des lymphocytes non

liés à la réponse anti-virale mais spécifiques d’antigènes de la myéline : c’est ce qui est

communément appelé l’extension d’épitopes.

b. Le modèle auto-immun : l’encéphalomyélite auto-immue expérimentale

i. Historique

L’ EAE a été découverte au début du XXème siècle, comme une complication

« allergique » observée chez les individus ayant reçu le vaccin antirabique de Pasteur. Environ

0,1% des receveurs ont développé une encéphalomyélite aiguë disséminée (ADE) qui se

caractérisait par une paralysie monophasique, des infiltrations périvasculaires de cellules

mononucléées et des foyers de démyélinisation dans le SNC (Stuart 1928). Il a été postulé que

le tissu nerveux dans lequel le vaccin était préparé constituait la cause de la maladie

(Remlinger 1905). Plus tard, il a été montré que des préparations de moelle épinière provenant

Page 96: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

96

de lapins ou d’êtres humains pouvaient induire l’ADE lorsqu’elles étaient transférées à

d’autres lapins. Il avait donc été spéculé que le tissu du SNC et non pas le vaccin antirabique

était responsable de la paralysie observée. En 1947, l’introduction des adjuvants (qui

permettent une libération prolongée de l’antigène dans l’organisme, une augmentation des

réponses immunes en élevant le niveau de maturation des CPA) a permis aux scientifiques

d’induire pour la première fois et de manière reproductible l’encéphalomyélite autoimmune

expérimentale (d’abord appelé allergique) dans des modèles animaux (Kabat 1947). Depuis,

l’EAE a été induite avec succès dans un grand nombre d’espèces animales comprenant la

souris, le rat, le cochon d’Inde, le lapin, le poulet, la chèvre et le singe (paterson 1976) et

représente donc le modèle auto-immun préférentiel de la SEP (Steinman 1999).

L’EAE peut être aujourd’hui induite de différentes façons. Tout d’abord, par

immunisation avec des extraits de SNC ou des Ag purifiés administrés sous forme d’émulsion

avec un adjuvant : c’est l’EAE active, ou par transferts de LT auto-réactifs activés in vitro ou

issus d’un animal malade à des individus naïfs : c’est l’EAE passive (Schroeter, Stoll et al.

2003).

ii. Les antigènes

En 1947, Kabat suggère que les antigènes du soi présents dans la substance blanche du

SNC sont responsables de l’EAE puisque l’injection de tissu provenant du SNC fœtal

dépourvu de myéline ne permet pas d’induire cette EAE (Kabat 1947).

Quelques années plus tard, plusieurs antigènes de la substance blanche du SNC capables

d’induire l’EAE ont été identifiés.

La proteolipid protein ou PLP et la myelin basic protein ou MBP représentant

respectivement 50% et 25% des protéines constituant la myéline sont les plus abondantes.

MBP et PLP ont été les premiers antigènes encéphalitogènes à être identifiés (Folch and Lees

1951; Einstein, Robertson et al. 1962). Plus récemment, un autre antigène, la myelin

oligodendrocyte glycoprotein ou MOG a été identifiée comme encéphalithogènes (Mendel,

Kerlero de Rosbo et al. 1995). Ce dernier représente 0,01% à 0,05% des protéines

membranaires constituant la gaine de myéline.

Tous ces antigènes diffèrent non seulement par leur représentation mais également par

leur localisation dans la gaine de myéline [figure 21]. La myéline du SNC est synthétisée et

maintenue par les oligodendrocytes qui enroulent les axones fonctionnels avec une expansion

spiralée de leur membrane plasmique. Durant le processus de myélinisation, les surfaces

Page 97: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

97

cytoplasmiques et extracellulaires de la membrane se condensent pour exclure le cytoplasme

et le liquide extracellulaire de la gaine de myéline. Cette structure est maintenue par des

interactions intramoléculaires entre les lipides de la membrane. La MBP est localisée à

l’apposition des surfaces cytoplasmiques de la membrane alors que la PLP, intégralement

membranaire, est située dans la myéline internodale compacte. Seul MOG, qui est situé dans

la surface la plus extérieure de l’oligodendrocyte et de la gaine de myéline, est en contact

direct avec l’espace extracellulaire (Linington 1998). Cependant, lorsque le processus de

démyélinisation est initié, les jonctions complexes maintenant l’intégrité de la gaine de

myéline sont déstabilisées et d’autres antigènes comme la PLP sont susceptibles d’être

exposés.

FIGURE 21: composition de la gaine de myéline (Hemmer, Archelos et al. 2002) La gaine de myéline synthétisée par les oligodendrocytes est composée de différents

antigènes capables d’induire l’EAE. Ceux-ci semblent également être les auto-antigènes cibles de la réponse auto-immune dans la sclérose en plaques.

iii. Les différentes formes d’EAE

La description qui va suivre se focalisera principalement sur les modèles de rats et de

souris qui ont été très largement étudiés. L’EAE induit chez la souris peut présenter

différentes formes cliniques qui dépendent de l’antigène et de la souche de souris utilisée.

Page 98: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

98

L’EAE peut cependant se développer sous trois formes cliniques distinctes : l’EAE aiguë,

l’EAE chronique et l’EAE avec des phases de poussées et de rémissions.

L’EAE aiguë est notamment induite chez des souris portant le locus CMH-H-2u

immunisées par le peptide MPB1-11. Ces animaux développent une paralysie puis retrouvent

l’usage complet ou partiel de leurs membres inférieurs (Zamvil, Mitchell et al. 1986).

L’immunisation des souris C57Bl/6 (H-2b) avec le peptide MOG35-55 induit une maladie

chronique durant laquelle la condition des animaux s’aggrave progressivement après les

premiers signes cliniques de paralysie. Dans ce modèle, la condition des souris s’améliore

rarement (Mendel, Kerlero de Rosbo et al. 1995) : c’est l’EAE chronique.

L’EAE avec les phases de poussées et de rémissions est observée chez les souris SJL

(H-2s) immunisées avec le peptide PLP139-151. Ces souris subissent une attaque initiale qui est

ensuite suivie d’une rémission durant laquelle certains animaux redeviennent

asymptomatiques, puis d’une ou plusieurs nouvelles rechutes (Tuohy, Lu et al. 1989).

Cependant, quel que soit l’antigène utilisé, les manifestations cliniques restent similaires

et sont classiquement classées sur une échelle clinique de zéro à cinq. Le grade 0 représente

celui où la souris est asymptomatique. Lorsque la queue de la souris se paralyse et devient

faible le stade 1 est alors atteint. Une faiblesse des membres postérieurs ou une paralysie

partielle est désignée par le grade 2 alors qu’une paralysie complète des membres postérieurs

représente le grade 3. La paralysie des membres antérieurs conduira au stade 4 qui se

poursuivra par le grade 5 qu’est l’état moribond de la souris, stade où elle sera euthanasiée.

3. EAE et sclérose en plaques (SEP)

a. Le SNC

i. Les cellules du SNC

Le SNC est composé de deux types de cellules : les neurones et des cellules gliales

toutes connectées entre elles [figure 22].

Page 99: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

99

FIGURE 22 : Représentation schématique des cellules constituants le SNC.

Les neurones :

Les neurones, cellules hautement spécialisées, établissent entre eux des milliards de

connexions qui contribuent au traitement des informations. Ils sont composés d'un corps

cellulaire et de prolongements : l'axone, unique, et les dendrites, prolongements fins et

ramifiés (on parle d'arbre dendritique). Le neurone est une cellule polarisée : les dendrites

reçoivent les signaux du neurone précédent qui seront ensuite transmis au neurone suivant par

l'axone. Certains axones sont recouverts d'une gaine de myéline, formée par des cellules

gliales ou oligodendrocytes dans le SNC.

Les cellules gliales :

Elles assurent le soutien et la nutrition des neurones, et jouent un rôle dans

l'établissement de nouvelles connexions. Elles sont, en quantité, dix fois plus importantes que

les cellules nerveuses, occupant l'espace laissé vacant par les neurones. Elles créent autour

d'eux un micro-environnement qui les isole de tout contact avec les autres tissus. Elles jouent

un rôle primordial en isolant physiquement les neurones, en formant la barrière hémato-

encéphalique. Elles assurent également des fonctions métaboliques, de soutien squelettique et

de protection vis à vis des corps étrangers en cas de lésions.

Corps neuronaux

Vaisseaux sanguins

Axone

Oligodendrocytes

Astrocytes

Cellules épendymaires

Cellules microgliales

L'axone est protégé par une gaine de myéline qui est produite par des Oligodendrocytes. Cette gaine de myéline est un isolant électrique qui facilite l'influx nerveux le long de l'axone, il sert de liaison entre les capillaires sanguins et le neurone. L'astrocyte permet d'apporter au neurone tout ce dont il a besoin (nutriments). Les cellules épendymaires séparent les tissus nerveux du Liquide Céphalo-Rachidien. Les cellules microgliales assurent la défense du Système Nerveux Central contre les attaques virales et bactériennes.

Page 100: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

100

On distingue 4 types de cellules gliales suivant leur morphologie, fonction ou origine qui sont

classées en deux catégories : les cellules microgliales contenant la microglie d’origine

mésodermique et les cellules macrogliales contenant les astrocytes, les cellules épendymaires

et les oligodendrocytes d’origine neurectodermique.

- Les cellules microgliales :

La microglie est un type de cellule gliale qui correspond au système phagocytaire

mononucléé résident du SNC. Les cellules de la microglie ont été décrites et caractérisées

pour la première fois dans les années 1920 par del Río Hortega. Elles ont une origine

hématopoïétique. Elles représentent de 5 à 25% de toutes les cellules SNC. Elles ont été

largement décrites comme impliquées dans de nombreuses maladies telles que la maladie

d’Alzheimer, la SEP (Carson 2002; Eikelenboom, Killestein et al. 2002; Streit 2002; Danton

and Dietrich 2003). Ces petites cellules, généralement de forme étoilée, sont très mobiles et

lors d’une lésion du SNC elles s’activent très rapidement et prolifèrent. Cette activation

participe ainsi à la pathogénèse de désordres neurologiques par sécrétion de nombreuses

molécules inflammatoires comme les cytokines pro-inflammatoires ou des oxydes nitriques

(NO). Lorsque des cellules du SNC meurent, cette microglie peut se transformer en

phagocytes et ainsi éliminer les débris cellulaires. Ces cellules établissent également un réseau

entre les différentes cellules du SNC responsables d’une réponse immune. En effet, la

microglie peut sécréter des cytokines et des prostanglandines qui donnent un signal aux

astrocytes d’amplifier la réponse inflammatoire résultant ainsi en une accumulation de

neurotoxines dans le SNC. Elles permettent également, au niveau du site d’activation

l’infiltration de cellules immunomodulatrices provenant du sang périphérique. Ainsi cette

microglie peut dans certains cas, participer à l’extinction de la réponse immune et la

régulation de leur propre apoptose. Ces cellules microgliales sont ainsi la preuve directe que

le SNC n'est pas un site de privilège immun total et qu'il existe des réactions immunitaires

réalisées par ces dernières.

- Les astrocytes :

Les astrocytes ont une forme étoilée, avec de nombreux prolongements autour de la

cellule et forme une sorte de squelette qui joue un rôle de support structural au sein du SNC.

Ils ont également un rôle nourricier. Les pieds astrocytaires entourent les capillaires sanguins

qui irriguent le cerveau, constituant la couche interne de la barrière hémato-encéphalique. Les

astrocytes captent ainsi les éléments nutritifs présents dans le sang pour fournir l'énergie

nécessaire à l'activité des cellules nerveuses.

Page 101: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

101

- Les cellules épendymaires :

Les cellules épendymaires constituent la paroi des cavités cérébrales contenant le

liquide céphalo-rachidien ou LCR. Leur localisation fait de ces cellules une barrière filtrante

qui règle les échanges entre le LCR et le système nerveux central.

- Les oligodendrocytes :

Les oligodendrocytes, par leurs prolongements, sont à l'origine des gaines de myéline

qui entourent les axones des fibres nerveuses et permet d'accélérer la transmission de l'influx

nerveux. Il existe des portions d'axones non recouvertes de myéline appelées nœuds de

Ranvier. Le segment situé entre deux nœuds est appelé inter-nœud (zone myélinisée de

l'axone). Les oligodendrocytes peuvent myéliniser plusieurs inter-noeuds d'un même axone ou

des inter-noeuds d'axones différents. Cette capacité permet un gain de place considérable dans

le SNC. Malheureusement, ceci s'accomplit au prix d'une vulnérabilité de la myéline du SNC

puisque la perte d'un oligodendrocyte va entraîner des altérations de plusieurs axones.

Chez l'homme, bien que les oligodendrocytes apparaissent dans la moelle à partir de 45

jours après la conception, la myélinisation ne commence dans le cerveau que plusieurs

semaines plus tard (fin du 2ème, début du 3ème trimestre de grossesse), après la croissance

des axones. La myélinisation parachève la mise en place de structures déjà fonctionnelles.

Elle s'intensifiera après la naissance jusque 5-6 ans et se poursuivra pendant l'adolescence,

parallèlement au développement des fonctions cognitives.

Les précurseurs des oligodendrocytes ont la capacité de division et de migration pour

leur permettre de rejoindre leur position finale au niveau des axones. Au cours de sa

maturation, l'oligodendrocyte devient une cellule post-mitotique fortement ramifiée. Les

changements morphologiques qui accompagnent cette différenciation semblent impliqués

dans la perte de mobilité de la cellule. L'étape ultime de maturation des oligodendrocytes

s'accompagne de la synthèse des protéines spécifiques de la myéline.

La gaine de myéline est formée grâce à l'enroulement compact de la membrane des

prolongements des oligodendrocytes. Elle se présente comme une structure lamellaire

répétitive parfaitement régulière et compacte et possède une très haute résistance électrique.

De ce fait, les potentiels d'action, signaux électriques permettant aux neurones de

communiquer entre eux ou avec d'autres cellules, se propagent rapidement le long de l’axone

d’un nœud de Ranvier à l’autre. Outre le gain en rapidité et en fidélité dans la conduction de

l'influx nerveux, ce mode de transmission saltatoire représente une économie d'énergie et

d'espace. En effet, à vitesses de conduction égales, le volume d'un axone non myélinisé serait

Page 102: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

102

100 fois supérieur à celui d'un axone myélinisé.

L'autre rôle de la gaine de myéline sur l'axone est probablement un rôle protecteur,

l'oligodendrocyte produisant vraisemblablement des facteurs trophiques qui protègent l'axone

et permettent de maintenir son intégrité. De plus, il a été montré que cette gaine de myéline

pouvait jouer un rôle dans la communication entre les cellules du SNC. En effet, des signaux

issus de l'axone sont absolument indispensables à l'élaboration de la gaine de myéline comme

par exemple l'activité électrique de l'axone qui est nécessaire à l'initiation du processus de

myélinisation dans le cerveau, puisque son blocage expérimental inhibe la myélinisation.

L'activité électrique induirait la libération d'adénosine tout le long de l'axone et celle-ci, en se

fixant sur les récepteurs purinergiques des oligodendrocytes, médierait l'interaction entre

l'axone électriquement actif et la cellule myélinisante. De plus, la myélinisation est

dépendante de molécules d'adhérence localisées à la surface de l'axone. Certaines de ces

molécules, comme la PSA-NCAM, sont inhibitrices de la myélinisation et c'est avec leur

disparition, au cours du développement, que la myélinisation peut débuter.

ii. Spécificité

• Les barrières

Le SNC est considéré comme un tissu immunoprivilégié. Ceci peut s’expliquer par

plusieurs éléments cellulaires et moléculaires. Tout d’abord, l’accès au SNC est limité pour

les composants du système immunitaire. En effet, outre les jonctions serrées étroites entre les

cellules endothéliales des capillaires sanguins irrigant ce tissu qui gênent la diapédèse, il

existe un obstacle physique composé d’une double membrane basale entourant ces vaisseaux

et derrière laquelle sont accumulées des cellules microgliales et des extensions astrocytaires.

L’ensemble de ces éléments constitue la barrière hémato-encéphalique qui limite la diffusion

des facteurs solubles tels que les cytokines, les anticorps et les chimiokines entre le sang et le

parenchyme nerveux (Engelhardt and Sorokin 2009). Cette barrière hémato-encéphalique se

subdivise en trois barrières ou interfaces. Premièrement, la barrière entre le LCR et le tissu

cérébral est constituée par les épendymocytes formant l’épendyme et par la glia limitans

composée de prolongements astrocytaires. En microscopie électronique, ces cellules sont

unies entres elles par des jonctions gap et portent des cils et des microvillosités apicales qui

facilitent le flux du LCR. Contrairement aux véritables cellules épithéliales, les cellules

épendymaires ne reposent pas sur une lame basale, mais envoient des prolongements effilés

Page 103: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

103

qui se mêlent aux prolongements des astrocytes sous-jacents. A l’interface entre le sang et le

parenchyme cérébral, se situe la barrière hémato-tissulaire qui est constituée de jonctions

serrées (tight junctions) qui relient entre elles les cellules endothéliales de la paroi des

vaisseaux sanguins cérébraux. Cette paroi empêche le passage de macromolécules (protéines

notamment), limite celui des petites molécules et favorise celui des molécules essentielles aux

fonctionnements du SNC telles que, le glucose ou les acides aminés (transport actif). De plus,

la barrière est renforcée par la présence de pseudopodes astrocytaires et d’extensions

cytoplasmiques de péricytes inclus dans un dédoublement de la lame basale. Enfin, les plexus

choroïdes (PC), constitués de cellules épithéliales polarisées possédant des jonctions serrées,

contrôlent le passage sélectif des molécules et des cellules entre le sang et le LCR. Ce passage

est dépendant de la lipophilie et de la taille du composé moléculaire mais aussi de la présence

ou non, de protéines de transport spécifiques. Les plexus choroïdes sont situés dans les

ventricules du cerveau et synthétisent le liquide céphalo-rachidien. Chaque plexus choroïde

est constitué d’un tissu de soutien richement vascularisé (stroma) recouvert de cellules

épithéliales cylindriques. Ces cellules sont unies par des complexes de jonction, reposant sur

une lame basale, possèdant des microvillosités apicales.

On a longtemps considéré que cette barrière pouvait bloquer l’entrée des lymphocytes

dans le SNC. En effet, cette barrière permet une quasi absence de flux intercellulaire et

transcellulaire grâce aux cellules endothéliales directement au contact du sang. Ces cellules

forment des jonctions serrées, ne sont pas ou peu capables de pinocytose. Entourant ces

cellules, la lame basale, qui contient des intégrines transmembranaires, des laminines, du

collagène (IV et VII), du perlécan (protéoglycane spécifique de la lame basale) et du

nidogène/entactine, permet la régulation de la vasomotricité et un ralentissement des

mouvements des cellules infiltrantes. Une troisième couche, les pieds astrocytaires, permet le

maintien de toute cette barrière hémato-encéphalique en régulant les échanges entre le sang et

les neurones. Ainsi à l’état basal cette barrière hémato-encéphalique est un mur quasi

infranchissable.

Mais ce concept d’imperméabilité de la barrière hémato-encéphalique aux lymphocytes

a dû être reconsidéré ces dernières années. Nous savons aujourd’hui que lorsqu’un

lymphocyte est activé, il exprime à sa surface des molécules d’adhésion qui lui permettent

d’être retenu à la surface de l’endothélium. Il a notamment été montré que l’interaction entre

l’intégrine VLA-4 exprimé par le LT activé et la molécule VCAM-1 présente à la surface des

cellules endothéliales jouait un rôle important dans le recrutement des lymphocytes à travers

la barrière hémato-encéphalique (Weller, Engelhardt et al. 1996). Par ailleurs, les

Page 104: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

104

lymphocytes activés synthétisent des métalloprotéinases qui facilitent leur progression en

dégradant la matrice extracellulaire.

Mais le seul fait d’être activé ne suffirait pas aux LT pour entrer dans le SNC. Ceci est

montré chez des souris MBP TCR transgéniques où l’immunisation avec la MBP émulsionnée

dans de l’adjuvant induit une activation des LT spécifiques de l’antigène, mais ne suffit pas à

susciter le développement de l’EAE, car ces LT, malgré leur état d’activation, n’arrivent pas à

franchir la barrière hémato-encéphalique, à moins que ces souris soient traitées à la toxine

pertussique (Brabb, Goldrath et al. 1997) qui perméabilise cette barrière (Linthicum, Munoz

et al. 1982).

De plus, des données plus récentes montrent que des LT naïfs sont capables d’entrer

dans le SNC (Brabb, von Dassow et al. 2000; Cose, Brammer et al. 2006). Plus précisément,

il a été montré, chez le rat, que la substance blanche et la substance grise du SNC étaient

infiltrées par des LT naïfs majoritairement CD8+.

Des données récentes montrent également que les CD pourraient passer cette barrière

hémato-encéphalique et ainsi activer les LT dans des conditions neuroinflammatoires. Ces CD

se trouveraient dans le LCR (Pashenkov, Huang et al. 2001), dans les méninges (Baas, Prufer

et al. 2000; Serafini, Rosicarelli et al. 2006; Bailey, Schreiner et al. 2007), dans les espaces

périvasculaires (Serafini, Rosicarelli et al. 2006; Bailey, Schreiner et al. 2007) et dans le

parenchyme du SNC (Teleshova, Pashenkov et al. 2002). La manière dont ces CD migrent

dans le SNC reste très controversée. Des études récentes montrent cependant que lors d’une

EAE, il y a migration des CD du LCR dans le SNC au niveau des parenchymes périvasculaire

et cervical et des méninges (Hatterer, Touret et al. 2008) pouvant ainsi activer les LT,

particulièrement les LT-CD4+ (Bailey, Schreiner et al. 2007).

De plus, il est clairement admis aujourd’hui que cette barrière hémato-encéphalique est

une barrière imparfaite car certaines zones en sont dépourvues. C’est le cas par exemple des

organes circumventriculaires comme les plexus choroïdes, l’épiphyse, qui n’ont pas cette

barrière mais qui par contre ont un renforcement immunitaire puisqu’ils sont enrichies en

cellules de CMH de classe II. Ces organes seraient donc des sites privilégiés pour l’initiation

de la réponse immune.

Outre cette barrière hémato-encéphalique (BHE) [figure 23], il en existe trois autres

responsables d’une protection supplémentaire au sein du SNC. L’on peut citer la barrière

immuno-encéphalique (IBB) (Bechmann, Mor et al. 1999), la barrière méningo-éncéphalique

(BME) et la barrière hémato-méningée (BHM). La BHM est une barrière qui sépare le sang

des méninges. Elle est très peu perméable (quelques petits ions) dans le sens sang/LCR mais

Page 105: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

105

par contre montre une très grande perméabilité dans le sens LCR/Sang. La BME, qui est une

barrière entre les méninges et l’encéphale est très mal caractérisée encore aujourd’hui.

Figure 23 : les différentes barrières au niveau du SNC

• Le drainage lymphatique

Au sein du SNC, il n’existe pas de système lymphatique bien défini. Cependant un

drainage lymphatique non conventionnel semble exister puisque d’après les travaux de Ling,

on retrouve des antigènes dans les ganglions cervicaux suite à une injection de ces mêmes

antigènes dans le SNC (Ling, Sandor et al. 2003). Trois hypothèses sont actuellement émises

(Ransohoff, Kivisakk et al. 2003; Walker, Calzascia et al. 2003) [figure 24].

La première hypothèse consiste à dire que les antigènes suivent le flux du liquide

céphalo-rachidien ou LCR.

La deuxième privilégie le rôle des cellules dendritiques qui pourraient prendre en

charge les antigènes et les transporter jusqu’au bulbe olfactif et ganglions cervicaux. Pour

cette hypothèse reste à connaître l’origine de ces cellules dendritiques ?

La dernière hypothèse est en faveur du rôle des cellules microgliales qui telles des CPA

prendraient en charge les antigènes et se dirigeraient vers les ganglions cervicaux.

Espace périvasculaire

Cortex

Pie-mère

Espace sous-arachnoïdien : LCR

Arachnoïde

Dure-mère

Voûte du crâne Veine

BME = Barrière Méningo-Encéphalique : sépare l’encéphale des méninge.

BHM = Barrière Hémato-Méningée : sépare le sang des méninges. Flux entre sang et LCR.

BHE = Barrière Hémato-Encéphalique : limite la diffusion de facteurs solubles entre le sang et le parenchyme nerveux.

Page 106: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

106

FIGURE 24 : hypothèse du trajet intracérébral d’un antigène. Les cellules dendritiques résidant dans les méninges et les plexus choroïdes pourraient capturer l’antigène et le transporter aux ganglions cervicaux ou la rate via soit le liquide céphalo-rachidien (LCR) soit directement la circulation sanguine. Pour les antigènes circulants par le LCR, ils longeraient le système ventriculaire pour arriver dans l’espace sous-arachnoïdien (1). De ce compartiment, les antigènes pourraient entrer soit dans les sinus veineux à travers les villosités de l’arachnoïde soit dans les ganglions lymphatiques cérébraux. Les antigènes qui se trouvent dans les fluides interstitiels pourront eux drainer via le LCR ou alimenter les ganglions cervicaux à travers les voies periartérielles du cerveau et des méninges. (2). Les espaces périvasculaires sont peuplés de cellules monocytaires et macrophagiques capables de migrer et d’entrer dans la circulation sanguine.

• Les cellules présentatrices d’antigènes

Une autre particularité du SNC est qu’il a longtemps été considéré comme ne possédant

pas de cellules présentatrices d’antigènes professionnelles capables d’induire une réponse

primaire (Perry 1998).

La microglie :

Il a très vite été suggéré que la microglie pourrait être la source principale de CPA

résidentes du SNC. Mais cette hypothèse n’est pas encore démontrée. Leur origine reste

Feuillet profond de la pie-mère

Espace sub-arachnoïde

Dure-mère

Arachnoïde

Système lymphoïde périphérique

Nœuds lymphatiques cervicaux

Bulbe olfactif

Feuillet profond de la pie-mère

Espace sub-arachnoïde

Dure-mère

Arachnoïde

Système lymphoïde périphérique

Nœuds lymphatiques cervicaux

Bulbe olfactif

Page 107: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

107

inconnue même si l’hypothèse privilégiée est une colonisation précoce du parenchyme

nerveux par des précurseurs du mésoderme qui se différencieraient en microglie. Puis en cas

d’inflammation, il y aurait recrutement de précurseurs hématopoïétiques (Soulet and Rivest

2008).

Malgré le fait que ces cellules de la microglie présentent une plasticité morphologique

et fonctionnelle différente suivant le stade de développement (fœtal, adulte quiescent, adulte

activé) (Becher, Prat et al. 2000; Ponomarev, Shriver et al. 2006), il a récemment été montré

qu’elles pouvaient avoir les fonctions de CPA et présenter l’antigène comme les CPA du reste

de l’organisme. C'est-à-dire qu’elles sont capables d’activer, dans le SNC, des LT CD4+

(Matyszak, Denis-Donini et al. 1999; Aloisi, Ria et al. 2000; Mack, Vanderlugt-Castaneda et

al. 2003; Heppner, Greter et al. 2005), des LT CD8+ (Havenith, Askew et al. 1998) par

présentation classique des molécules de CMH de classe II et I respectivement. Ces cellules

sont aussi capables d’activer des LT CD8+ par présentation antigénique croisée (Beauvillain,

Donnou et al. 2008).

Ces cellules de la microglie sont également capables de sécréter un très large répertoire

de facteurs influençant la réponse immunitaire. De manière non exhaustive, nous pouvons

citer des facteurs anti-inflammatoires tels que le TGF-β et l’IL-10, des facteurs

chimioattractants qui recrutent et activent les cellules immunitaires comme l’IL-8, MCP-1,

RANTES, des facteurs neurotrophiques permettant la survie neuronale et la régénération

axonale tels que le BDNF, GDNF ou NGF, des facteurs cytotoxiques comme le NO ou encore

des facteurs pro-inflammatoires favorisant les réponses Th1 comme l’IL-12, l’IL-23 ou le

TNF-α qui est aussi un activateur de cette microglie.

Les astrocytes :

D’autres cellules résidentes du SNC pourraient jouer un rôle de CPA. C’est par exemple

le cas des astrocytes dont la fonction majoritaire est le soutien neuronal et la formation de la

barrière hémato-encéphalique. Ses fonctions en tant que CPA sont très récemment décrites

(Seth and Koul 2008). Elles ont été mises en évidence tout d’abord après activation in vitro

permettant à ces cellules d’exprimer les molécules de CMH de classe II et de co-stimulation.

Mais par rapport à la microglie, ces expressions sont tardives et ne surviennent seulement

qu’en cas de stimuli très importants. Il leur est donc donné plutôt un rôle régulateur,

intervenant plutôt dans l’arrêt des réponses inflammatoires.

Page 108: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

108

Les macrophages périvasculaires :

Les cellules périvasculaires pourraient potentiellement être des CPA (Bechmann, Priller

et al. 2001). Les macrophages périvasculaires auraient un rôle dans l’initiation de certaines

réponses immunitaires dans le SNC (Polfliet, Zwijnenburg et al. 2001; Polfliet, van de

Veerdonk et al. 2002; Silva, Nagib et al. 2004). Un rôle probable de CPA pour les péricytes a

également été suggéré mais aucune démonstration n’a pu être faite de par la difficulté de leur

isolement mais il semblerait qu’ils jouent un rôle dans l’initiation de certaines réponses

immunes (Thomas 1999).

Les cellules dendritiques :

La question reste également entière pour les CPA les plus efficaces de l’organisme : les

cellules dendritiques. Ce que l’on sait c’est qu’elles ne sont pas présentes dans un SNC sain à

l’exception de certaines zones comme les plexus choroïdes (Matyszak and Perry 1996) mais

qu’elles apparaissent très rapidement dans le parenchyme lors d’une inflammation. Plusieurs

hypothèses sont actuellement émises. Plus anciennement il a été suggéré une différenciation

in situ à partir de cellules résidentes (Fischer and Reichmann 2001; Ponomarev, Shriver et al.

2005). Deux hypothèses supplémentaires sont apparues ces dernières années : celle du

recrutement à partir du sang (Newman, Galea et al. 2005) et celle de la différenciation à partir

de précurseurs localisés dans les méninges et/ou plexus choroïdes (Nataf, Strazielle et al.

2006).

De plus, l’on sait que pour la présentation antigénique, les molécules de CMH sont des

acteurs fondamentaux. Or, seules de rares cellules expriment les molécules de CMH de classe

II à l’état physiologique. Mais après exposition à un environnement pro-inflammatoire, les

oligodendrocytes, neurones et astrocytes, déjà capables d’exprimer des molécules de CMH de

classe I et donc d’activer des LT-CD8+, vont pouvoir exprimer de manière inductible des

molécules de CMH de classe II à leur surface et conduire à l’activation de LT-CD4+ (Wong,

Bartlett et al. 1984; Ford, Foulcher et al. 1996). Aujourd’hui il est également beaucoup

discuté la possibilité que certaines CD puissent entrer ou être générées au sein du SNC

inflammé. En effet, des CD ont été identifiées dans les lésions de SEP humaine. Sur le plan

fondamental, des CD exprimant des marqueurs phénotypiques de cellules microgliales sont

nécessaires et suffisants pour réactiver des LT-CD4+ entrant dans le SNC dans un modèle

d’EAE passive (Greter, Heppner et al. 2005) ou des CD sont capables d’initier l’extension

d’épitopes (McMahon, Bailey et al. 2005). La présence donc de CPA professionnelles dans le

Page 109: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

109

SNC pourrait changer considérablement la façon d’envisager la pathogenèse de l’EAE et de la

SEP, pouvant ouvrir la voie à de nouvelles approches thérapeutiques.

• Le statut immunologique particulier du SNC

Le SNC présente toutefois un statut immunologique particulier. Il a longtemps été

considéré comme un site immuno-privilégié. Mais est-ce bien une réalité ? Nous pouvons

définir un site immunologiquement privilégié par trois caractéristiques :

- un site sur lequel les greffes allogéniques et xénogéniques ont une durée de vie

prolongée par rapport aux greffes sur les sites classiques (Barker and Billingham 1977)

[tableau 3].

Pour le SNC, il est clairement admis que les réponses T destructrices dans le parenchyme

sont plus difficiles à initier que dans d’autres sites.

TABLEAU 3 : le SNC un site immuno-privilégié

- Un site interdisant le développement et la dissémination d’une réponse

inflammatoire, car même une petite inflammation peut altérer l’intégrité et la fonction de

l’organe.

Ceci reste incontestable pour le SNC si l’on imagine les conséquences que peuvent avoir des

inflammations au sein du cerveau. Une altération ou perte d’intégrité ou de fonction de cet

organe serait handicapante voire fatale pour l’individu.

Tissu é tranger

Peau Rejet

Parenchyme du SNC

Survie prolongée

Greffe

Bact é rie (BCG)

peau R é ponse T anti -BCG pro- inflammatoire

Parenchyme du SNC

Infection

Recrutement neutrophiles et macrophages

Pas de réponse T pro-inflammatoire

Recrutement macrophages

Page 110: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

110

- Un site dans lequel les cellules immunocompétentes, du fait de leurs localisations

particulières, vont tolériser les cellules/antigènes. Cette définition se révèle vrai pour le SNC

grâce aux travaux de Carson qui montrent que les cellules de la microglie sont

immunocompétentes mais orientent vers ces réponses lymphocytaires neuro-protectrices

(Carson, Doose et al. 2006).

Malgré l’immunoprivilège du SNC, il n’en demeure pas moins que dans certaines

situations des réponses immunologiques se développent. En effet, lorsque les LT ont réussi à

franchir la barrière hémato-encéphalique, ils se retrouvent confrontés à un environnement

constitutivement immunodéprimé dans lequel les réactions inflammatoires ne se déclenchent

qu’en cas d’absolue nécessité. Cette immunosuppression est active et dépend des cellules

gliales et neuronales elles-mêmes. Le TGF-β est l’un des acteurs majeurs de cette

immunosuppression. Appartenant à une superfamille très étendue, le TGF-β comprend 3

isoformes chez les mammifères : TGF-β1, β2 et -β3. Dans le système nerveux central, les trois

isoformes peuvent être produit mais pas forcément par tous les types cellulaires, ni dans les

mêmes circonstances (Constam, Philipp et al. 1992; Gomes, Sousa Vde et al. 2005). Ainsi, les

astrocytes constituent la source principale de TGF-β dans un cerveau sain en secrétant

constitutivement les isoformes 2 et 3 (Flanders, Ludecke et al. 1991), bien que les neurones et

les oligodendrocytes en produisent également (Dobbertin, Schmid et al. 1997; Zhu, Roth-

Eichhorn et al. 2000). Les cellules microgliales quant à elles ne produisent que l’isoforme 1,

notamment après activation par du TNF-α ou de l’IL-1 in vitro (Chao, Hu et al. 1995) ou dans

un cerveau ischémique ou infecté par le VIH in vivo (Lehrmann, Kiefer et al. 1998). Les effets

du TGF-β sont nombreux et variés mais contribuent généralement à inhiber les réponses

inflammatoires (Pratt and McPherson 1997). Il va ainsi activer les astrocytes, les rendre

hypertrophiques et stimuler leur synthèse de composants de la matrice extracellulaire

favorisant les cicatrices (Baghdassarian, Toru-Delbauffe et al. 1993) ou encore inhiber leur

expression d’ICAM-1 bloquant l’interaction avec les lymphocytes T infiltrants (Shrikant, Lee

et al. 1996). Sur la microglie, le TGF-β va avoir pour action générale d’inhiber leur fonctions

immunitaires (Paglinawan, Malipiero et al. 2003). Il peut ainsi inhiber l’expression de CMH

de classe II et des molécules costimulatrices, induites par des stimuli inflammatoires à leur

surface (Wei and Jonakait 1999), inhiber leur production de radicaux oxygénés ou encore

bloquer leur prolifération (Suzumura, Sawada et al. 1993). Un autre facteur important de

l’immunosuppression du système nerveux central est la vitamine D3 ou plus particulièrement

sa forme active : la 1,25 dihydroxy-vitamine D3 (1,25-(OH)2-D3) (Lemire 2000). Son

Page 111: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

111

récepteur, le VDR, est exprimé par les neurones et les cellules gliales (Neveu, Naveilhan et al.

1994; Prufer, Veenstra et al. 1999; Baas, Prufer et al. 2000). La 1,25-(OH)2-D3 a des effets

généralement neuroprotecteurs et entraîne également une inhibition de l’activation

microgliale. Etant donné ce potentiel, des analogues non hypercalcémiants de la vitamine D3

ont donné des résultats encourageants dans le traitement de l’EAE (Garcion, Sindji et al.

2003). Certains neuropeptides ont également une fonction immunosuppressive, à l’image du

VIP (vasoactive intestinal peptide), qui inhibe la production de cytokines pro-inflammatoires

(Delgado and Ganea 2003) ou de chimiokines (Delgado, Abad et al. 2002) par la microglie.

Ainsi, VIP, somatostatine, hormone a stimulant les mélanocytes (a-MSH) et neuropeptide Y

contribuent au statut immunitaire particulier du système nerveux central (Reinke and Fabry

2006). Les neurones ont donc un rôle particulièrement actif dans le contrôle des réactions

immunitaires par la sécrétion de ces neuropeptides, de facteurs neurotrophiques, mais aussi en

contrôlant l’état d’activation des cellules microgliales. Tout cela permet ainsi de créer un

environnement anti-inflammatoire et de maintenir activement une immunosuppression

constitutive au sein du SNC via l’inhibition de l’expression des molécules de CMH, le

blocage de l’activation du complément et l’induction d’apoptose des LT.

Il est clairement admis aujourd’hui qu’une réponse immunitaire peut se développer dans

le SNC mais nécessite des stimuli beaucoup plus importants que dans le reste de l’organisme.

Comme dans tout l’organisme, le SNC peut être la cible de réponses innées et adaptatives.

En ce qui concerne les fonctions innées des cellules du SNC, il existe plusieurs

mécanismes à l’origine de ces réactions. Tout d’abord les cellules du SNC peuvent

reconnaître des pathogènes grâce à l’expression à leur surface de PRR (pattern recognition

receptors). Ces PRR permettent en effet la reconnaissance des motifs conservés des micro-

organismes. Plusieurs types de PRR sont présents dans le SNC. Les plus représentés sont les

TLR (Toll-like receptors) qui sont des récepteurs membranaires conservés reconnaissant les

motifs propres aux micro-organismes. Ils sont exprimés sur toutes les cellules du SNC (Jack,

Arbour et al. 2005; Olson, Ercolini et al. 2005; Prehaud, Megret et al. 2005; Wadachi and

Hargreaves 2006; Mishra, Gundra et al. 2008). La deuxième famille de PRR sont les

récepteurs scavengers. Ils reconnaissent des molécules endogènes comme les cellules

apoptotiques et parfois des motifs de pathogènes. Ils ne sont exprimés que par la microglie

(Husemann, Loike et al. 2002; Alarcon, Fuenzalida et al. 2005). Il y a aussi au sein de ce SNC

d’autres types de récepteurs impliqués dans la réponse innée comme DC-SIGN, CR3, CD1d,

Page 112: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

112

CD14. Au niveau fonctionnel, la microglie et les astrocytes sont capables de phagocyter et de

sécréter un large panel de facteurs pro-inflammatoires tels que l’IL-1, l’IL-6, le TNFα …

L’immunité adaptative dans le parenchyme du SNC peut se diviser en deux branches :

la branche afférente et la branche efférente. La branche afférente sert à la présentation

antigénique aux LT naïfs et agit selon une voie fluidique où les antigènes solubles sont

drainés par le LCR et par le sang à travers des villosités arachnoïdes permettant d’induire une

réponse humorale tolérisante (Th2). La branche efférente permet la migration dans le SNC de

neutrophiles, macrophages et de LT et LB périphériques activés par la voie afférente.

Toutefois, les LT migrant dans le parenchyme doivent faire face à de nombreux obstacles

avant d’exercer leur fonction effectrice : mort par apoptose Fas-dépendante, sécrétion de

molécules suppressives et neuroprotectrices par les astrocytes, la microglie et les neurones.

Une difficulté majeure s’impose également au niveau du SNC : les cellules résidentes

n’expriment pas les molécules de CMH de classe II, il n’y a pas d’expression de

costimulateurs et il n’y réside pas de LT. La présentation antigénique en est donc rendu

impossible. Tout ceci est vrai lorsque le SNC est sain. Mais en conditions inflammatoires ou

lors de neurodégénérescences, un changement majeur s’opère sur les cellules résidentes du

SNC puisqu’elles se mettent à surexprimer les molécules de CMH de classe I, à exprimer les

molécules de CMH de classe II ainsi que les molécules co-stimulatrices B7 (Issazadeh,

Navikas et al. 1998; Juedes and Ruddle 2001).

• La tolérance locale

Il existe aussi des mécanismes de tolérance locale dans le SNC.

Un de ces mécanismes, évoqué par Carson, est le phénomène de neuroprotection. La

présentation d’antigènes du SNC induirait une réponse T neuroprotectrice et non

inflammatoire. Mais ceci nécessite-t-il la présentation des antigènes par la microglie ou

l’induction d’une production de facteurs neurotrophiques par les LT ?

D’autres mécanismes mettent en jeu l’expression de molécules qui vont permettre une

protection du SNC. C’est le cas de l’expression de FasL (Suvannavejh, Dal Canto et al. 2000;

Reich, Spering et al. 2008), de la prostaglandine E2 (Mannie, Prevost et al. 1995), de la

galectine-9 (Zhu, Anderson et al. 2005) et la production de cytokines de type Th2 qui

pourraient, en changeant l’orientation de la réponse, induire une protection (Khoury, Hancock

et al. 1992). Paradoxalement une cytokine sécrétée notamment par les neurones (Yin, Zhao et

Page 113: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

113

al. 2006), l’IL-6, considérée comme régulatrice est aujourd’hui grâce aux travaux de Bettelli,

impliquée dans le processus pathogénique car elle induit en combinaison avec le TGF-β la

différenciation de LT naïfs en Th17 encéphalithogènes.

Il a également été montré que des T-reg s’accumulent dans le SNC durant la phase de

guérison de l’EAE aiguë (McGeachy, Stephens et al. 2005). Ces cellules sont fortement

suppressives in vitro et leur transfert en faible nombre (2.10^4) améliore les scores cliniques

d’EAE des receveurs immunisés la veille ou le lendemain. Un rôle prépondérant leur est

donné dans la SEP puisque même si la fréquence de ces Treg dans le sang et le liquide

céphalo-rachidien ne diffère pas entre un patient et un individu sain (Haas, Hug et al. 2005),

leur activité suppressive est très largement réduite lorsqu’ils sont issus de patients atteints de

SEP à rechutes (Viglietta, Baecher-Allan et al. 2004; Huan, Culbertson et al. 2005; Venken,

Hellings et al. 2006). De plus une corrélation a été établie entre la durée de la maladie et une

augmentation de l’activité de Treg. De récentes études ont suggéré que des LT-reg étaient

capables de migrer dans le SNC dans des conditions inflammatoires et d’ainsi moduler

activement la fonction des LT effecteurs. Des résultats montrent également que lors d’une

EAE, les T-reg, activés en périphérie, se retrouvent accumulés dans le SNC (Korn, Reddy et

al. 2007). La population T-reg se retrouve également enrichie dans le LCR de patients atteints

de SEP (Venken, Hellings et al. 2006; Feger, Luther et al. 2007). Ainsi, dans l’EAE comme

dans la SEP, ces T-reg sembleraient contribuer à restreindre la susceptibilité et la sévérité de

la maladie.

b. Similarités entre EAE et SEP

Un grand nombre de signes cliniques et de caractéristiques histologiques sont similaires

entre la SEP et l’EAE. Ce modèle animal de SEP a ainsi permis de valider au stade pré-

clinique plusieurs stratégies thérapeutiques actuellement en développement clinique ou

approuvées chez les patients atteints de SEP.

i. Les caractéristiques et le déclenchement de la pathologie

Tout d’abord les deux maladies sont invalidantes pour l’individu et conduisent à une

paralysie des membres dans leurs formes les plus sévères. Nous venons de voir les différents

stades cliniques chez la souris dans le paragraphe précédent. Chez l’homme, les symptômes

dus à la SEP diffèrent d’un sujet à l’autre. La SEP peut ainsi engendrer des troubles visuels

Page 114: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

114

(atteinte inflammatoire du nerf optique), des troubles de la sensibilité (engourdissements,

fourmillements…), des troubles de la motricité (baisse de la force musculaire qui avec le

temps peut s’accompagner de spasticité ou raideur des membres), des troubles de l’équilibre

et de la coordination des mouvements, des troubles urinaires, intestinaux et sexuels.

Pour déclencher une maladie auto-immune, un auto-antigène doit être efficacement

présenté. La meilleure cellule présentatrice d’antigène est comme nous l’avons vu

précédemment la cellule dendritique. L’importance du mode de présentation de l’antigène

dans le déclenchement des pathologies auto-immunes a été démontrée pour la première fois

par l’équipe d’Ohashi en 1991 en utilisant les techniques de transgénèse (Ohashi, Oehen et al.

1991), montrant un mimétisme moléculaire. À l’occasion d’une infection par une bactérie, un

virus ou un parasite exprimant des peptides antigéniques communs avec les autoantigènes du

patient, l’organisme va déclencher une réponse immunitaire qui va détruire à la fois cet agent

infectieux mais aussi ses propres cellules. Une élégante démonstration du déclenchement

d’une maladie auto-immune HAM/TSP (HTLV-1-associated myelopathy/tropical spastic

paraparesis) suite à une infection par le virus HTLV-1 (human T-lymphotropic virus type 1)

qui partage des antigènes avec les cellules de patients infectés a récemment été publiée

(Levin, Lee et al. 2002; Levin, Lee et al. 2002) en montrant que l’infection virale entraîne une

présentation efficace des antigènes viraux déclenchant une réponse immunitaire où LT et LB

sont activés aboutissant ainsi à la production d’anticorps responsables des lésions neuronales.

Il en est de même dans les maladies auto-immunes expérimentales où la seule injection de

l’auto-antigène (par exemple la myéline pour induire l’EAE) ne permet pas le déclenchement

de la maladie. Il faut simultanément une injection de protéine ou stimulant immunitaire pour

entraîner une inflammation favorisant la réaction immunitaire. Toutes ces substances

(adjuvant de Freund, séquences CpG déméthylées…) qui déclenchent une immunité non

spécifique sont appelées signaux de danger et sont souvent d’origine infectieuse. Cette

réaction inflammatoire déclenche ainsi l’attraction et l’activation de cellules de l’immunité

innée comme les macrophages, cellules NK, polynucléaires via leur TLR mais aussi de

cellules de l’immunité adaptative qui expriment sur leur membrane des TLR et des récepteurs

aux chimiokines et cytokines libérées.

Page 115: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

115

ii. L’évolution

Tant l’EAE que la SEP présentent des formes évolutives très variables. Nous avons vu

trois formes chez la souris dans le chapitre précédent. Chez l’homme, nous retiendrons

également trois grandes catégories de SEP suivant leur évolution.

La forme la plus courante est la SEP rémittente. Elle affecte au moins 85% des

personnes atteintes de SEP. Elle se traduit par une succession de « poussées » (nouvelle

attaque ou récidive d’un ancien symptôme) et de « rémissions » (phase de stabilité). Au

moment des poussées, il existe une inflammation due aux cellules immunocompétentes,

dirigée contre la gaine de myéline qui s'altère, suivie d'un processus de remyélinisation

complète ou partielle. Cette forme de sclérose en plaques peut évoluer vers une forme

secondairement progressive.

La SEP secondairement progressive survient après une forme évoluant par poussées,

dans un délai variable selon les individus (15, 20, 30 ans.). Cette forme est définie lorsque

l'état du sujet n'est pas stable entre les poussées, et s'altère progressivement. Le sujet peut

encore présenter des poussées, mais elles sont de moins en moins fréquentes.

La troisième catégorie est la SEP progressive qui concerne 10 % des personnes

atteintes. Elle se caractérise par une aggravation d’emblée progressive des symptômes dès le

début de la maladie. Dans cette forme, les poussées sont absentes ou très peu individualisées.

iii. L’histologie

Histologiquement, l’EAE comme la SEP présentent des zones de démyélinisation du

SNC caractérisées par des lésions focales. En effet, la démyélinisation est définie comme un

processus inflammatoire ayant pour conséquence des lésions focales dans la substance

blanche du cerveau et de la moelle épinière. On retrouve au niveau des zones inflammatoires

du SNC une infiltration massive de LT, de LB, de macrophages activés et de cellules de la

microglie. Une désorganisation de la barrière hémato-encéphalique est également observée

(Kirk, Plumb et al. 2003; Hochmeister, Grundtner et al. 2006) ainsi qu’une expression locale

de cytokines et de chimiokines pro-inflammatoires et de leurs récepteurs (Cannella and Raine

1995). Cette démyélinisation est souvent corrélée avec divers degrés de dommages axonaux

voire pertes axonales (Trapp, Peterson et al. 1998), dommages accentués lorsque la

remyélinisation est inhibée (Irvine and Blakemore 2008).

Page 116: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

116

Des analyses histologiques de tissus de patients atteints de SEP ont démontré qu’il y

avait des dépots d’Ac et de complément sur la gaine de myéline provoquant des lésions

hétérogènes en fonction du patient étudié. En effet, quatre classes de lésions ont pu être

établies en fonction des données inflammatoires et de l’état de la myéline (Bitsch, Kuhlmann

et al. 2001). Les deux premières classes se regroupent par le fait de l’apparition d’aires de

démyélinisations. Par contre elles sont démarquées par les régions d’infiltrations des LT dans

le premier groupe et de macrophages activés dans le deuxième. La présence (groupe 2) ou

l’absence (groupe 1) de dépots d’Ac et de complément distinguent également ces deux

groupes, suggérant un niveau d’implication des LB différent. Une infiltration de LT et de

macrophages a également été retrouvée pour les groupes 3 et 4. Ces patients présentaient

cependant un défaut d’oligodendrocytes avec une perte préférentielle de MAG pour le groupe

3 et une quasi perte complète d’oligodendrocytes et une absence de remyélinisation pour le

groupe 4.

Comme nous l’avons mentionné dans le paragraphe précédent, une des conséquences

de la démyélinisation est une perte axonale. Mais le ou les mécanismes amenant à cette perte

ne sont pas encore aujourd’hui élucidés.

iv. Les facteurs de susceptibilité

Chez le rat et la souris, la contribution des gènes du CMH a largement été étudiée

(Nepom and Erlich 1991; Campbell and Milner 1993). Les premières expériences chez le rat

ont suggéré une association entre le CMH et la susceptibilité à la maladie (Gasser, Newlin et

al. 1973). Aujourd’hui, il est admis que les gènes responsables de la susceptibilité à l’EAE

sont vraisemblablement situés en dehors du locus pour les gènes du CMH (Happ, Wettstein et

al. 1988), la susceptibilité au déclenchement de l’EAE de rats congéniques dont les gènes du

CMH sont identiques étant variable (Gasser, Palm et al. 1975).

Chez la souris, l’importance de l’haplotype H-2 dans le développement de l’EAE a été

testée dans différentes lignées de souris congéniques. Le remplacement des haplotypes H-2

provenant des souches résistantes (a et k) par ceux provenant de souches susceptibles (s, b ou

q) n’augmente pas la susceptibilité à la maladie (Levine and Sowinski 1973). Par la suite, des

études plus poussées avec différentes souches congéniques ont trouvé que la susceptibilité à la

maladie corrélait plutôt avec le fond génétique qu’avec l’haplotype H-2 du CMH

(Montgomery and Rauch 1982). La susceptibilité des souris SJL et B10.S au développement

de l’EAE en constitue un exemple. En effet ces deux souches sont congéniques pour

Page 117: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

117

l’haplotype H-2s du CMH. Cependant, les souris B10.S sont résistantes alors que les souris

SJL sont très sensibles au développement de l’EAE (Encinas, Lees et al. 1996). Ainsi nous

pouvons conclure que si les gènes codant pour les molécules du CMH sont clairement

impliqués, d’autres gènes en dehors de ce locus sont aussi déterminants pour conférer la

susceptibilité à l’EAE.

L’utilisation de micro-satellites a permis d’analyser, de manière non biaisée, des régions

génomiques qui sont associées au développement de l’EAE. Cette méthode a permis en effet

d’identifier plusieurs loci qui contribuent à la maladie (Baker, Rosenwasser et al. 1995;

Sundvall, Jirholt et al. 1995; Croxford, O'Neill et al. 1997; Butterfield, Blankenhorn et al.

1999). C’est ainsi, par exemple, qu’un locus situé sur le chromosome 3, qui correspond aussi

à un locus de susceptibilité pour le diabète chez la souris NOD, a été identifié par cette

approche. Ce locus contient, entre autres, le gène pour l’IL-2. Un polymorphisme dans le gène

de l’IL-2 a été retrouvé entre les souris SJL et B10.S (Encinas and Kuchroo 1999). Il est ainsi

possible que des différences dans le gène de l’IL-2 puissent affecter l’activation et/ou

l’expansion des LT auto-réactifs dans certaines souches.

En ce qui concerne l’homme, des études ont montré que la SEP était plus fréquente chez

certains groupes ethniques comme les caucasiens d’Europe du nord alors qu’elle est quasi

absente des populations non caucasiennes. Les patients caucasiens atteints de SEP expriment

les molécules HLA de classe II majoritairement sous l’haplotype DR15 Dw2 comprenant

deux hétérodimères, DR2a (DRα et DRB5*0101) (RR = 4,68) et DR2b (DRα et DRB5*1501)

(RR = 4,9). Un sous-groupe de patients exprimant DR3 a également été décrit ainsi que des

groupes ethniques exprimant DR4w4 ou DR6 (RR = 5,08) (Vogt, Killian et al. 1994; Epplen,

Jackel et al. 1997; Muraro, Vergelli et al. 1997).

Des études ont ensuite essayé d’étudier l’association des gènes codant pour des

cytokines, des récepteurs à ces cytokines et des gènes dont le produit est associé à la myéline.

Seule une faible corrélation entre le gène codant pour le récepteur à l’IL-2 et la susceptibilité

à la SEP a été trouvée par le premier groupe (Reboul, Mertens et al. 2000). La deuxième étude

révèle que le gène codant pour MOG semble être associé à la susceptibilité à la maladie.

Cependant l’interprétation de ces résultats est rendue délicate par le fait que ce gène est situé

dans le locus du CMH. Actuellement, bien que la région du CMH soit revendiquée comme la

seule région du génome conférant un risque majeur dans le développement de la SEP, il est

maintenant reconnu que d’autres gènes non-CMH contribuent aussi à ce risque, mais avec un

effet moindre. Au cours de ces deux dernières années, 16 gènes ont été identifiés comme

Page 118: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

118

associés à la SEP (Fugger, Friese et al. 2009). Cependant peu de gènes ont été confirmés

génétiquement excepté le récepteur à l’IL-7 (gHafler, Compston et al. 2007), le récepteur à

l’IL-2 (Ramagopalan, Anderson et al. 2007; Weber, Fontaine et al. 2008), le CD58 (De Jager,

Baecher-Allan et al. 2009) et la tyrosine kinase 2 (Ban, Goris et al. 2009).

Outre ces facteurs génétiques, il existe également des risques associés à

l’environnement. En effet, parmi les facteurs environnementaux nous pouvons citer l’hygiène

de vie (pays développés, vaccins, contact avec certains pathogènes) qui augmente la

prévalence de la maladie, ou encore la géographie et l’exposition lumineuse. Il existerait

également une relation entre la présence d’agents infectieux et l’apparition de la maladie.

Nous pouvons citer par exemple l’EBV et le HHV6 (Ascherio and Munger 2007). La

vitamine D pourrait également prévenir la maladie (Orton, Morris et al. 2008; Correale,

Ysrraelit et al. 2009).

c. Rôles des cellules immunitaires

i. Immunité innée

Si les cellules T jouent un rôle primordial dans les désordres neurologiques induits dans

la maladie murine et humaine, des données actuelles indiquent que d’autres cellules du

système immunitaire sont non seulement impliquées dans la phase effectrice de la maladie,

mais également dans l’initiation et la régulation des réponses immunes associées à la

pathogénèse de l’EAE et de la SEP.

Les macrophages :

Les macrophages sont majoritaires dans les infiltrats des lésions de SEP (Lucchinetti,

Bruck et al. 2000). Ils sécrètent de l’IL-6 qui permet une prolifération et différenciation des

lymphocytes B, de l’IL-8 puissant agent chimiotactique, de l’IL-1 et du TNF-α qui jouent un

rôle important dans l’inflammation. Ils permettent également une stimulation de l'adhérence

des leucocytes à l'endothélium en augmentant l'expression des molécules d'adhésion à la

surface des cellules endothéliales (en particulier E-sélectine et ICAM-1). Ils sont également

capables de phagocyter la myéline (van der Laan, Ruuls et al. 1996). L’équipe de Prinéas a

ainsi démontré que suite à la mort cellulaire des oligodendrocytes et aux changements

impliqués sur la gaine de myéline, les macrophages amplifiaient, via leur activité

Page 119: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

119

« scavenger », la réponse inflammatoire, attribuant ainsi à cette population un rôle premier

dans la pathogénie (Barnett, Henderson et al. 2006).

Les cellules NK et NKT :

Les lymphocytes NK, les cellules tueuses spécialisées impliquées dans les réponses

anti-virales ou anti-tumorales (Hamerman, Ogasawara et al. 2005) peuvent jouer aussi un rôle

dans la maladie. En effet, l’élimination de ces cellules in vivo par un anticorps dirigé contre

leurs récepteurs NK1.1 conduit à une aggravation de l’EAE chez les souris immunisées

(Zhang, Yamamura et al. 1997). Ces cellules sont capables de contrôler le développement des

réponses Th1 pendant la phase d’activation ainsi que pendant la phase effectrice de la

maladie, par un mécanisme encore inconnu mais indépendant des LT, LB et iNKT. Chez

l’homme, ces cellules NK semblent avoir à la fois un rôle protecteur et un rôle délétère. En

effet, chez certains patients en rémission, il a été montré que ces cellules NK pouvaient jouer

un rôle protecteur. Elles exprimeraient de forts taux de CD95 permettant de tuer les cellules T

pathogènes. Elles seraient également capables de sécréter des cytokines de type 2 comme

l’IL-5 et l’IL-13 et d’induire un phénotype régulateur aux LT via leur sécrétion d’IL-

10 (Sakuishi, Miyake et al. 2009).En contre partie, ces cellules NK infiltrant le SNC sont

aussi capables de synthétiser des facteurs induisant une lyse directe des neurones et

provoquant les dommages tissulaires assimilés à la SEP. Elles peuvent également promouvoir

la génération de LT auto-réactifs pathogènes via une différenciation Th1 et ainsi activer des

cellules dendritiques qui produiront à leur tour des cytokines pro-inflammatoires (Morandi,

Bramanti et al. 2008). La fonction, protectrice ou délétère, sera déterminée par la localisation

particulière qu’auront ces cellules NK (environnement cytokinique ou les récepteurs de

surface des cellules environnantes).

Les iNKT (invariant natural killer T) qui montrent des propriétés tantôt

immunorégulatrices tantôt augmentant les réponses auto-immunes (selon la façon dont elles

sont activées) induisent lorsqu’elles sont stimulées in vivo par leur ligand l’α-galSER une

protection des souris contre l’EAE (Singh, Wilson et al. 2001; Furlan, Bergami et al. 2003).

Des souris surexprimant ces cellules sont également protégées (Mars, Laloux et al. 2002). Les

mécanismes feraient intervenir une augmentation de la production de cytokines de type Th2

telles que l’IL-4, ou une activité cytotoxique dirigée contre les lymphocytes auto-réactifs, ou

encore un contrôle de l’activation des LT-CD8+ (Mars, Novak et al. 2004). Plus récemment, il

a été montré que ces iNKT pouvaient jouer un rôle sur le lignage Th17 en inhibant ce dernier

Page 120: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

120

et donc devenir une barrière naturelle contre ces cellules pathogènes (Mars, Araujo et al.

2009).

Les mastocytes :

Il est clairement établi aujourd’hui qu’au niveau des sites inflammatoires, il existe une

infiltration cellulaire de mastocytes dans le cerveau et la moelle épinière. Le pourcentage de

dégranulation de ces mastocytes corrèle avec les signes cliniques de la SEP (Brenner, Soffer

et al. 1994). De même, des drogues inhibant la dégranulation mastocytaire serait bénéfique

chez la souris pour améliorer les signes cliniques de la maladie. De multiples effets pouvant

potentiellement aggraver la maladie ou la déclencher sont ainsi attribués aux mastocytes. Les

facteurs qu’ils sécrètent pourraient en effet favoriser la perméabilisation de la barrière

hémato-encéphalique, le recrutement et l’activation de lymphocytes dans le SNC, ainsi que la

mort des oligodendrocytes et des neurones (Zappulla, Arock et al. 2002). En 2003, une étude

de microscopie électronique a montré la présence de mastocytes dégranulés (donc activés)

dans le cerveau de ouistitis immunisés, avant l’apparition des signes cliniques d’EAE

(Letourneau, Rozniecki et al. 2003) alors qu’une étude chez la souris indiquait que les

mastocytes pouvaient influencer le développement de l’EAE sans entrer dans le SNC

(Tanzola, Robbie-Ryan et al. 2003). De plus, des études récentes ont montré que les

mastocytes producteurs de TNF-α et de VIP (vasoactive intestinal peptide) pouvaient

influencer la maturation des Th17 indépendamment de l’IL-6 (Kimura, Naka et al. 2007). Les

cellules Th2 productrices d’IL-4, d’IL-5 et d’IL-13 sont associées à la maturation des

mastocytes et ont été suggérées comme étant importantes dans la physiopathologie de la SEP

(Pedotti, DeVoss et al. 2003).

D’autres cellules du système immunitaire inné, tels que les neutrophiles, les

éosinophiles ainsi que des facteurs solubles contribueraient à la formation ou à l’aggravation

des plaques (Sospedra and Martin 2005), mais ils sont très rares dans les lésions actives de

SEP.

ii. LB et anticorps

Les évènements pathologiques de la sclérose en plaques comme de l’EAE, comme nous

l’avons précédemment évoqué, résultent en une infiltration cellulaire, une apparition de

lésions focales de démyélinisation et des pertes axonales. Par conséquent, l’hypothèse

Page 121: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

121

dominante est que cette maladie aurait une origine médiée par les LT. Cependant plusieurs

arguments sont en faveur également d’un rôle des LB et des anticorps dans la pathologie

animale et humaine [figure 25].

Comme pour les LT, les LB auto-réactifs sont éliminés au cours de leur développement

qui se déroule pour eux non pas dans le thymus mais dans la moelle osseuse ainsi que durant

leur maturation dans la rate et les ganglions drainants (Hardy and Hayakawa 2001). Pour cette

tolérance B, deux facteurs semblent essentiels : l’IL-7 et BAFF (B cell activating factor)

(Miosge and Goodnow 2005).

A la fin des années 80, les premières expériences démontrant le rôle des anticorps ont

été réalisées sur le modèle du rat Lewis. En effet, les auteurs sont partis d’une observation

faite par le groupe de Linington où ils montraient que le transfert adoptif de LT spécifiques de

la MBP induisait une réponse inflammatoire dans le SNC avec une perméabilité accrue de la

barrière hématoencéphalique mais une démyélinisation modérée (Linington, Bradl et al.

1988). Dans ce modèle, les injections d’anticorps spécifiques de MOG (le 8-18C5)

conduisaient à l’aggravation des signes cliniques d’EAE ainsi que la démyélinisation dans le

SNC (Lassmann, Brunner et al. 1988). Une année auparavant, l’équipe de Schluesener avait

montré chez les souris SJL que l’injection de ce même anticorps induisait une mort subite

alors que les animaux étaient en rémission (Schluesener, Sobel et al. 1987). Suite à ces

résultats, il a ainsi été proposé qu’après infiltration des cellules T spécifiques des antigènes

myéliniques dans le SNC, initiation de l’inflammation et rupture de la barrière hémato-

encéphalique, les auto-anticorps dirigés contre les protéines myéliniques pouvaient pénétrer

dans le SNC et induire la démyélinisation. Des résultats ultérieurs ont suggéré que ces

anticorps induisant la démyélinisation seraient des anticorps capables de fixer le complément

(Linington and Lassmann 1987; Linington, Morgan et al. 1989; Piddlesden, Lassmann et al.

1993). Cela permettrait ainsi d’attirer les macrophages qui détruiraient les oligodendrocytes et

relargueraient des protéines du complément et des cytokines proinflammatoires ayant un effet

cytopathique direct. Mais les controverses sont nombreuses et certains résultats prouvent au

contraire que les LB pourraient jouer un rôle protecteur dans l’EAE en influençant la

production de cytokines et ainsi permettre une déviation de la réponse immune. En effet, le

traitement de rats Lewis immunisés avec le peptide encéphalithogène de la MBP lié de

manière covalente à un anticorps de souris IgD anti-rat protège ces animaux contre le

développement de l’EAE. Il a ainsi été suggéré que l’association anticorps-peptide permet la

présentation de l’antigène par les cellules B induisant ainsi la production de cytokines de type

Th2 qui elle-même contrôlerait les cellules Th1 pathogènes (Saoudi, Simmonds et al. 1995).

Page 122: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

122

FIGURE 25 : le système humoral dans la sclérose en plaques et l’EAE

a : infiltrats inflammatoires périvasculaires : dans la pathogenèse de la SEP et de l’EAE, les cellules T activées (T), les cellules B (B) et les macrophages (M) peuvent traverser la barrière hémato-encéphalique provoquant ainsi une infiltration inflammatoire périvasculaire. b : Lésion aigüe : les nombreuses cellules inflammatoires attaquent la gaine de myéline et les oligodendrocytes provoquant ainsi une démyélinisation et une perte de ces oligodendrocytes. Les LB spécifiques de la myéline peuvent être activés d’une manière dépendante des LT, ce qui résulte en une différenciation des LB en plasmocytes (P) relargant des cytokines et synthétisant des anticorps localement. Ces autoanticorps spécifiques de la myéline peuvent opsoniser leur cible et induire une démyélinisation médiée par les macrophages. Les anticorps peuvent aussi agir via le complément (C) en détruisant la myéline grâce au complexe d’attaque membranaire (CAM). Les fragments actifs du complément ainsi que ces CAM servent de molécules chimioattractantes pour les lymphocytes et macrophages et permettent le relargage de molécules potentiellement toxiques comme les radicaux oxygénés, les cytokines proinflammatoires et les métalloprotéases. Ceci favorise la rupture de la BHE permettant l’accès du SNC aux cellules effectrices, aux autoanticorps systémiques et au complément. c : il existe des structures ressemblants aux follicules lymphoïdes, particulièrement dans l’espace périvasculaire de Virchow-Robin, qui peuvent donner lieu à des réactions immunes en permettant l’accumulation, la différenciation et l’activation de cellules immunes ainsi que la présentation d’antigène. Il est supposé que ces sites sont des lieux privilégiés de persistance des cellules B et plasmocytaires, permettant une présenattion antigénique continue et donc une synthèse d’anticorps permanente. d-i : rôles possibles du système humoral dans la SEP et l’EAE : présenattion antigénique par les LB et production d’anticorps (d), costimulation des LT par les LB (e), opsonisation de la myéline par les LB et les anticorps (f), recrutement de cellules inflammatoires au niveau des lésions (g), influence de l’immonorégulation par les LB et les anticorps (h), rémyélinisation par les LB (i).

Page 123: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

123

D’autres études se sont intéressées au rôle spécifique des LB dans l’EAE par

l’utilisation de souris µMT (déficientes pour la chaîne lourde µ) sur fond B10.PL ou C57Bl/6

immunisées respectivement par le peptide MBPAc1-11 ou par le peptide MOG35-55. Ces souris

développent une maladie similaire à celle des souris contrôles de même fond génétique.

Cependant dans la phase chronique de la maladie, les souris déficientes en LB présentent

moins de rémissions que les contrôles. D’après ces résultats, les auteurs ont donc suggéré que

les LB ne jouaient pas de rôle dans l’activation des LT encéphalitogènes et donc dans

l’initiation de la maladie mais par contre que ces LB avaient un rôle régulateur dans la phase

chronique de l’EAE (Wolf, Dittel et al. 1996; Litzenburger, Fassler et al. 1998). Mais

l’implication des LB dans l’EAE semble plus complexe, puisque une autre étude a montré que

chez ces souris µMt de fond génétique C57Bl/6, bien qu’étant sensible au développement de

l’EAE induite par immunisation avec le peptide MOG35-55, sont complètement résistantes au

déclenchement de la maladie induite par la protéine entière MOG (Lyons, San et al. 1999).

Ces résultats suggérent ainsi que les LB pourraient jouer un rôle déterminant dans l’initiation

de la maladie en tant que cellules présentatrices d’antigènes.

Chez l’homme, il est clairement établi que la déplétion en cellules B chez un patient

atteint de SEP a des effets bénéfiques sur l’évolution de la maladie (Hauser, Waubant et al.

2008). Ainsi il est suggéré, comme chez l’animal, que les LB contribueraient à la pathogenèse

du SNC par différentes voies.

Les LB peuvent agir comme source d’anticorps qui reconnaissent les composants de la

myéline, des axones ou des neurones contribuant ainsi au phénomène de démyélinisation ou

de dommages axonaux. Ces Ac peuvent agir de différentes manières. Tout d’abord, ils

peuvent être dirigés directement contre des récepteurs de surface comme le récepteur à

l’acéthylcholine dans la myasténie ou contre le récepteur à la TSH dans la maladie de Grave

(Bain and Toublanc 2002; Kohn and Harii 2003). Ces Ac peuvent également former des

complexes immuns avec les Ag circulants qui s’accumulent dans les organes cibles comme

dans le lupus et l’arthrite rhumatoïde (Dorner and Lipsky 2004; Davidson and Aranow 2006;

Rahman and Isenberg 2008). D’autres Ac peuvent se lier aux cellules circulantes comme les

érythrocytes ou les plaquettes, favorisant la lyse médiée par le complément ou la phagocyte

via les récepteurs Fc des cellules (Elson and Barker 2000). Dans la SEP, on sait que la

présence oligoclonale d’IgG dans le LCR est caractéristique de beaucoup de patients (Owens,

Ritchie et al. 2003) ainsi que la présence d’anticorps au niveau des lésions (Dalakas 2008).

Cependant les IgG oligoclonaux du LCR ne sont pas retrouvés dans le sérum des patients

Page 124: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

124

indiquant une production intrathécale de ces Ig. Ces hautes concentrations d’Ig dans le LCR

sont en partie dues à une réponse locale impliquant les isotypes IgG1 et les IgG3 (Walsh and

Tourtellotte 1986; Losy, Mehta et al. 1990; Archelos and Hartung 2000). Ainsi, cette réponse

Ac reste un marqueur très utilisé pour le diagnostic d’une SEP. De plus, il a été montré que le

réarrangement des gènes des immunoglobulines diffère entre les LB isolés du LCR et de la

périphérie des patients atteints de SEP, suggérant ainsi que les anticorps sont produits par les

LB qui maturent dans le SNC et répondent spécifiquement à l’antigène. Très récemment,

l’équipe de Obermeier a montré, grâce aux protéomes des Ig et au transcriptome des LB dans

le LCR de patients atteints de SEP, que les bandes oligoclonales d’Ig observées

correspondaient en fait à l’expansion clonale de LB, décrits comme marqueur de la SEP. Il

reste cependant à découvrir la cible de ces IgG oligoclonaux. En outre, la formation de

follicules tertiaires lymphoïdes (qui contiennent à la fois les LB et les cellules folliculaires

dendritiques) dans les méninges des patients développant une maladie progressive secondaire

implique un engagement des LB à la fois dans la présentation antigénique et dans la

production d’anticorps dans le SNC de ces patients. La présence de ces follicules est corrélée

avec une sévérité plus importante de la maladie (Magliozzi, Howell et al. 2007). Des analyses

histologiques de tissus provenants de patients atteints de SEP ont démontré des dépôts d’Ac et

de complément au niveau des lésions sur la gaine de myéline. Les Ac spécifiques pour la

myéline (Warren and Catz 1993; Genain, Cannella et al. 1999) et pour les protéines axonales

(Mathey, Derfuss et al. 2007) ont été largement étudiés pour les lésions de SEP. Le complexe

terminal du complément C9neo a également été retrouvé dans les lésions actives de SEP

contenant des IgG (Prineas and Graham 1981; Storch, Piddlesden et al. 1998). D’autres

analyses histologiques ont montré une phagocytose active médiée par les macrophages et une

détection de fragments de myéline opsonisés dans les vésicules endocytiques. L’étude

révélant que la présence des Ac dirigés contre MOG était corrélée avec une augmentation du

risque de progression dans la SEP (Berger, Rubner et al. 2003) n’a jamais été reproduit par

d’autres groupes alors que ces Ac peuvent être associés à des taux élevés dans les lésions en

IRM(Kuhle, Lindberg et al. 2007; Pelayo, Tintore et al. 2007). Des Ac contre les autres

composants de la myéline comprenant la MBP, la PLP et la MAG ont également été détectés

dans le sérum ou le LCR de patients atteints de SEP. Mais la fréquence de tous ces Ac varie

considérablement d’une étude à l’autre, les excluant pour un pronostic ou diagnostic de SEP.

De plus, une étude récente a mis en évidence chez des patients atteints de SEP, que la réponse

des LB pouvait être dirigée contre des protéines axonales, contribuant ainsi à la

démyélinisation et au dommage axonal. Un tiers des patients aurait des Ac dirigés contre la

Page 125: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

125

neurofascine, une molécule d’adhésion exprimée par les oligodendrocytes et les neurones

(Mathey, Derfuss et al. 2007). Les Ac contre cette neurofascine agirait via l’activation du

complément.

Ils peuvent également jouer le rôle de CPA pour les LT spécifiques des antigènes du

SNC (Dalakas 2008; Dalakas 2008). En effet, l’épitope immunodominant de l’Ac de la MBP

collocalise avec l’épitope T du même Ag (Wucherpfennig, Catz et al. 1997). En se liant au

BCR, il confère ainsi une protection contre la dégradation via cet épitope. De manière

similaire, l’épitope majeur qui reconnaît les Ac de haute affinité spécifique de l’insuline est

localisé sur le même segment que l’épitope cible des LT spécifiques du même Ag. La

présence de cet auto-Ac avec cette spécificité est un moyen prédictif pour le développement

tardif du diabète de type 1. Ces actions synergiques des LB et des LT ont très récemment été

développées dans un modèle spontané de maladie auto-immune du SNC. Des souris qui

expriment seulement un TCR spécifique de MOG développent une inflammation du nerf

optique en absence de signes cliniques classiques d’une EAE (Bettelli, Pagany et al. 2003).

Un knock-in dans ces souris avec la chaine lourde de l’anti-MOG résulte en une fréquence

très importante de LT et de LB spécifiques de MOG responsables d’une maladie auto-immune

très agressive avec des lésions confinées dans le nerf optique et la moelle épinière, comme

pour les patients atteints de NMO (Bettelli, Carrier et al. 2006; Krishnamoorthy, Lassmann et

al. 2006).

De plus, les LB sont des producteurs abondants de cytokines immunomodulatrices et de

facteurs de croissance. Ils peuvent produire des cytokines de type 1 comme l’IFN-γ, l’IL-12

pour induire l’activation de LT de type Th1, contribuant ainsi aux dommages tissulaires

survenant dans les maladies auto-immunes. Le TNF-α produit par les LB peut également

influencer cette différenciation en Th1. La production d’IL-6 par les LB, en combinaison avec

le TGF-β, promouvoit la différenciation en Th17 producteur d’IL-17, autre cytokine pro-

inflammatoire. Les LB peuvent également produire des cytokines de type 2 influençant la

différenciation des LT en Th2, alors modulateurs de l’inflammation par production de

cytokines responsables des clairances de pathogènes extracellulaires (Harris, Haynes et al.

2000). Il est aussi connu que les cytokines produites par les LB sont critiques pour la

formation des centres germinatifs dans les ganglions drainants et dans les tissus inflammés.

Par exemple chez la souris, la lymphotoxine et le TNF sont importants pour la maturation des

cellules folliculaires dendritiques et l’organisation des centres germinatifs dans la rate (Fu,

Vallee et al. 2009). Or, cette lymphotoxine et ce TNF sont retrouvés dans les lésions de

Page 126: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

126

patients atteints de SEP, responsables de la formation de centres germinatifs ectopiques dans

le SNC de ces patients (Selmaj, Raine et al. 1991). De plus, la production de l’IL-10 par les

LB a permis de montrer un rôle régulateur de ces cellules. En effet, l’IL-10 a des propriétés

anti-inflammatoires et peut inhiber la présentation d’antigène par les LT-CD4+ indirectement,

en diminuant leur activation, leur production cytokinique ainsi que leur prolifération

(Roncarolo, Gregori et al. 2006). La production d’IL -10 par les LB est essentielle dans la

rémission de l’EAE induite par le peptide MOG (Fillatreau, Sweenie et al. 2002). La

surexpression de cet IL-10 permet également, chez les souris, une protection contre l’EAE

(Cua, Groux et al. 1999). Chez les patients atteints de SEP, il a été montré que leurs LB

produisaient moins d’IL-10 alors que de hauts titres de cette cytokine étaient retrouvés après

un traitement par le Rituximab qui permettait sa synthèse de novo par des LB nouvellement

générés (Duddy, Niino et al. 2007).

De récentes études ont également mis en évidence le rôle de BAFF dans la pathogenèse

de maladies auto-immunes. En effet, des taux élevés de BAFF solubles ont été retrouvés dans

le serum et les organes cibles des modèles murins de lupus (Gross, Johnston et al. 2000),

d’arthrite rhumatoïde. Ce facteur d’activation est également retrouvé en plus grande quantité

dans le cerveau des patients atteints de SEP, ceci étant corrélé avec l’activité et le titre d’Ac

pathogéniques dans la maladie (Piazza, DiFrancesco et al.).

Actuellement, il est clairement établi que les LB et les Ac sont impliqués dans la

pathogenèse de la SEP et qu’un traitement ciblant ces molécules pourrait avoir un effet

bénéfique à long terme. Une étude récente a mis en évidence que les follicules riches en LB

CD20+ étaient retrouvés dans le cerveau de patients atteints de SEP progressive secondaire

(Magliozzi, Howell et al. 2007). En effet, les LB mémoires et les plasmocytes sont capables

de migrer dans la moelle osseuse mais aussi dans la rate et les autres organes lymphoïdes et

dans le cerveau où ils se transforment, après rencontre avec l’Ag, en cellules productrices

d’Ac . Il a été montré que ce sont les chimiokines CXCL13, CXCL10 et CXCL12 à la surface

des cellules endothéliales qui interagissent avec leurs récepteurs à la surface du LB qui sont

fondamentales pour l’homéostasie de ces LB (Dalakas 2008; Dalakas 2008). Or ces molécules

sont surexprimées dans le cerveau des patients atteints de SEP, expliquant en partie le

recrutement et la transmigration de ces LB sécréteurs d’Ac dans le cerveau (Meinl,

Krumbholz et al. 2006).

Page 127: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

127

Des traitements récents ont donc focalisé leurs effets sur la fonction des LB. C’est le cas

de l’IFN-β, de l’acetate glatiramer, du natalizumab. Un autre traitement, avec un anti-CD20

(Rituximab), a montré son efficacité en activant les facteurs du complément qui attaquent

ainsi les LB-CD20+ des radeaux lipidiques de la membrane et qui permettent d’induire une

apoptose de ces cellules provoquant ainsi une réduction du nombre de lésions et une

amélioration des signes cliniques (Hauser, Waubant et al. 2008).

iii. LT

• Rupture de la tolérance vis-à-vis des antigènes du SNC

Le rôle joué par le thymus dans la maturation des LT et l’élimination des clones auto-

réactifs a été décrit précédemment. Nous allons dans ce paragraphe détailler les connaissances

sur ce phénomène de sélection négative dans le cas des antigènes spécifiques du SNC.

MBP :

Chez la souris, le rat et l’homme, le gène codant pour MBP peut être transcrit sous deux

formes, une pendant la vie fœtale (la forme golli-MBP pour gene expressed in

oligodendrocyte lineage), forme qui est exprimée dans le thymus et les oligodendrocytes et

l’autre après la naissance (forme MBP classique) exprimée dans les oligodendrocytes (Pribyl,

Campagnoni et al. 1993). Après la naissance, plusieurs types de cellules thymiques expriment

les golli-MBP, notamment les macrophages et les thymocytes (Feng, Givogri et al. 2000).

L’analyse des répertoires des LT chez les souris MBP TCR transgéniques croisées avec

des souris MPB+/+, MBP+/- ou MBP-/- montre qu’une sélection négative existe vis-à-vis de

clones de LT-CD4+ spécifiques de MBP, et qu’elle dépend du niveau d’expression de

l’antigène dans l’organisme. De façon intéressante, ce phénomène semble impliquer des

cellules issues de la moelle osseuse plutôt que des cellules thymiques épithéliales (Huseby,

Liggitt et al. 2001).

Les LT-CD8+ spécifiques de MBP peuvent également subir une sélection négative

intrathymique (Perchellet, Stromnes et al. 2004). Par ailleurs, chez des souris exprimant le

même CMH, mais avec des fonds génétiques distincts, une plus forte susceptibilité à l’EAE

est associée à la lignée présentant la plus faible expression de MBP dans le thymus (Liu,

MacKenzie-Graham et al. 2001). Cependant, en dépit de ces mécanismes de tolérance, il est

Page 128: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

128

établi que des LT-CD4+ (Lafaille, Nagashima et al. 1994) et CD8+ spécifiques de MBP

participent au développement de l’EAE (Huseby, Liggitt et al. 2001), suggérant que les

facteurs influençant l’expression des auto-Ag in vivo pouvaient influencer la susceptibilité à

l’auto-immunité.

Chez l’homme, des clones isolés de sang de patients atteints de SEP ont montré une

spécificité pour l’épitope immunodominant CD4+ de la MBP85-99. (Sun, Link et al. 1991;

Olsson 1992; Olsson, Sun et al. 1992). En outre, le transfert de LT-CD4+ transgéniques

spécifiques de MBP111-129, générés à partir de clones T issus d’un patient SEP, à des souris

transgéniques exprimant le CMH humain HLA-DRB1*0401, induit une pathologie

caractérisée par des lésions inflammatoires et des altérations de la démarche ainsi qu’une

paralysie et dysphagie (Quandt, Baig et al. 2004). Ces données suggèrent donc que

l’expression de MBP dans le thymus, chez l’homme comme dans les modèles animaux, existe

mais à un niveau qui ne suffit pas à induire une délétion totale des LT auto-réactifs.

Une étude plus récente a montré qu’au niveau structural, un clone T-CD4+ spécifique

d’un peptide de MBP, isolé à partir du sang d’un patient atteint de SEP, présentait une

topologie particulière résultant en une réduction de l’interaction entre le TCR et le complexe

CMH:peptide, et donc à une faible affinité du TCR pour ce complexe, alors que l’association

du co-récepteur CD4 est elle aussi modifiée (Hahn, Nicholson et al. 2005). Ceci ayant pour

conséquence de rendre le clone auto-réactif réfractaire à la sélection négative et de favoriser

son activation par des peptides microbiens de structures proches.

PLP :

Ce gène est très peu exprimé dans le thymus. En revanche, les transcrits codant pour la

molécule DM20, issus du même gène par épissage alternatif (Nave, Lai et al. 1987), sont

transcrits dans le thymus et le SNC, chez l’homme et la souris (Pribyl, Campagnoni et al.

1996; Anderson, Nicholson et al. 2000; Klein, Klugmann et al. 2000).

L’expression thymique de DM20 semble être le fait de cTEC et de mTEC (Klein,

Klugmann et al. 2000; Bruno, Sabater et al. 2002). Chez la souris, l’expression naturelle de

DM20 par les cellules épithéliales thymiques radiorésistantes permet d’induire une tolérance

contre les peptides de DM20 mais pas contre les épitopes codés par l’exon de PLP excisé dans

DM20. On retrouve également des LT-CD4+, en périphérie, spécifiques de PLP139-151 chez des

souris SLJ non immunisées (mais susceptibles à l’induction de l’EAE par cet antigène) le

nombre de lymphocytes augmentant avec l’âge (Anderson, Nicholson et al. 2000; Kuchroo,

Anderson et al. 2002).

Page 129: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

129

De plus, l’utilisation de greffes de thymus de souris sauvages ou déficientes pour PLP à

des souris sauvages a permis de montrer que l’induction de tolérance aux clones spécifiques

de PLP était due à l’expression de cet antigène par les cellules stromales du thymus. En outre,

si l’on force l’expression de PLP139-151 par injection aux souris gestantes d’une protéine de

fusion entre une immunoglobuline et ce peptide, l’on observe une réduction du nombre de LT

auto-réactifs (Anderson, Nicholson et al. 2000).

L’ensemble de ces données indique donc qu’il existe une tolérance marquée vis-à-vis

des seuls épitopes de la PLP qui sont exprimés dans le thymus.

MOG :

Son immunogénicité en fait l’une des cibles clés de la réponse immunitaire durant

l’EAE (Adelmann, Wood et al. 1995).

Des LT-CD4+ (Bettelli, Pagany et al. 2003; Mendel, Natarajan et al. 2004) et LT-CD8+

(Sun, Whitaker et al. 2001) spécifiques de MOG sont encéphalitogènes chez la souris. Les LT

de sang de patients atteints de SEP montrent également une forte réactivité contre MOG.

Contrairement aux deux protéines précédentes, l’expression thymique de MOG reste

très faible chez la souris (Delarasse, Daubas et al. 2003) et non détectable chez l’homme

(Bruno, Sabater et al. 2002). Elle a toutefois été mise en évidence dans des préparations

purifiées de cellules épithéliales médullaires thymiques humaines (Gotter, Brors et al. 2004)

et murines (Derbinski, Schulte et al. 2001). Cette faible expression a des conséquences

controversées sur l’induction de la tolérance. En effet, la comparaison des réponses immunes

chez les souris MOG-/- et sauvages a conduit certains laboratoires à conclure à une

élimination de certains clones T spécifiques de MOG (Linares, Mana et al. 2003) alors que

d’autres concluent à une absence totale d’induction de tolérance (Delarasse, Daubas et al.

2003; Fazilleau, Delarasse et al. 2007).

Il semblerait donc que le niveau d’expression de MOG soit insuffisant à l’élimination de

la grande majorité des clones auto-réactifs.

Au niveau du SNC, l’accessibilité de MOG a fait que cette cible potentielle des Ac a été

largement étudiée (Brunner, Lassmann et al. 1989). MOG a été découvert par purification

d’affinité avec un Ac bien caractérisé : le 8-18C5 qui reconnaît un épitope conformationnel

(Linington, Izumo et al. 1984) et qui peut exacerber la démyélinisation quand il est administré

à des animaux souffrant d’EAE (Linington, Bradl et al. 1988; Breithaupt, Schubart et al.

2003). L’habilité des Ac dirigés contre MOG à exacerber la démyélinisation dans les modèles

animaux en a fait un candidat antigénique attractif pour expliquer les lésions dans la SEP. De

Page 130: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

130

plus, on retrouve une fréquence plus importante de ces Ac anti-MOG dans le sérum et le LCR

de patients atteints de SEP.

D’autres antigènes du SNC potentiellement cibles de la réponse auto-immune dans ce

tissu sont concernés par l’induction de tolérance dans le thymus. C’est le cas par exemple des

protéines astrocytaires comme la S100β qui pourrait participer au développement d’une auto-

immunité dans le SNC. En effet, des LT-CD4+ spécifiques de cette protéine ont pu être isolés

à partir de thymus de rat adulte malgré une expression de S100β dans les cellules thymiques

médullaires des rats donneurs (Kojima, Reindl et al. 1997). Après activation in vitro, le

transfert de ces cellules a induit une encéphalite des animaux receveurs.

• Infiltration et réactivation des LT dans le SNC

L’infiltration :

Pour initier l’inflammation au niveau du SNC, les cellules T spécifiques de la myéline

doivent être activées en périphérie, passer les barrières menant au système nerveux central et

enfin être réactivées par les CPA locales (Goverman 2009). Cette réactivation nécessite la

production de médiateurs solubles tels que l’IFNγ et le TNF-α (Allavena, Noy et al.; Cannella

and Raine 1995) par les cellules résidentes qui permet un recrutement massif de cellules

inflammatoires qui vont pouvoir passer, grâce à la présence à leur surface de molécules

d’adhésion, de récepteurs aux chimiokines et d’intégrines la barrière hémato-encéphalique

(Engelhardt and Sorokin 2009). Et c’est en effet le cas des lymphocytes T activés et mémoires

(Ransohoff, Kivisakk et al. 2003). Mais les conditions qui font que les CPA périphériques

présentent des épitopes de la myéline à des LT naïfs dans un contexte immunogénique ne sont

pas encore bien définies, même si l’hypothèse majeure reste le mimétisme moléculaire malgré

le fait qu’aucun pathogène spécifique n’a été découvert comme cause de la maladie.

Au cours de l’EAE, il a été décrit une interaction critique entre les leucocytes et

l’endothélium inflammé, l’interaction α4β1/VCAM-1, pour le passage de la barrière hémato-

encéphalique. Ainsi en bloquant l’intégrine α4 ou en délétant l’intégrine β1 sur les cellules T

spécifiques de la myéline, la maladie murine est inhibée (Kerfoot, Norman et al. 2006; Bauer,

Brakebusch et al. 2009). Les molécules concernant l’adressage et le « rolling » des LT à

l’endothélium durant l’EAE restent un sujet de controverse même si l’implication de la P-

Page 131: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

131

sélectine et de son ligand PSLG-1 a largement été démontrée (Kerfoot, Norman et al. 2006). Il

reste également à déterminer les molécules impliquées dans la diapédèse au travers de cette

barrière inflammée. Cependant, il est clairement établi que les sites où les cellules T

encéphalitogènes peuvent traverser les cellules endothéliales sont déterminés par la

composition en laminine présente au niveau de la membrane. C’est ainsi que l’équipe

d’Anderson a montré que la laminine α4 était cruciale pour la transmigration des T dans le

SNC. Toutefois, il a récemment été montré qu’une molécule d’adhésion présente sur les LT

activés, ALCAM (ou CD166) était surexprimée suite à un stimulus inflammatoire. Ainsi

durant la transmigration des LT, ALCAM co-exprimé avec son ligand CD6 forment un

complexe facilitant la traversée. Des coupes post-mortem de cerveau de patients atteints de

SEP et de cerveau de souris ayant développé une EAE montrent une forte expression

d’ALCAM alors que des Ac bloquants dirigés contre ALCAM permettent une réduction

d’accumulation des LT-CD4+ ainsi qu’une moindre sévérité et un délai plus important dans

l’apparition de la maladie (Cayrol, Wosik et al. 2008). Pour traverser cette barrière hémato-

encéphalique, les LT doivent migrer à travers des jonctions serrées. Or, récemment, le CD99,

une protéine O-glycosylée exprimée par les leucocytes, a été localisée dans l’endothélium

(Schenkel, Mamdouh et al. 2002). L’équipe de Bixel a montré, suite à cette observation, que

des Ac anti-CD99, inhibaient la transmigration des LT encéphalitogènes à travers la barrière

hémato-encéphalique in vitro, suggérant ainsi un rôle du CD99 dans le recrutement des LT à

travers cette barrière in vivo (Bixel, Kloep et al. 2004). Après avoir pénétré la monocouche de

cellules endothéliales, les lymphocytes doivent traverser la membrane basale en provoquant

une rupture de ses deux couches pour atteindre le parenchyme cérébral. Cette pénétration du

parenchyme corrèle avec des sites présentant des activités locales des métalloprotéinases

(MMP). Ainsi plusieurs MMP sont impliquées dans l’EAE incluant MMP-14/MMP-2, MMP-

9, et probablement MMP-7 et MMP-8 (Toft-Hansen, Nuttall et al. 2004; Toft-Hansen,

Babcock et al. 2007). Pour les Th17, il semblerait toutefois que c’est au niveau des plexus

choroïdes que les LT auraient le plus de facilité à pénétrer dans le SNC via le LCR. Le groupe

de Reboldi a mis en évidence très récemment un mécanisme moléculaire impliqué dans le

recrutement des populations T dans ce compartiment. En effet, ils ont montré l’importance

d’un récepteur aux chimiokines, le CCR6, présent à la surface d’un sous groupe de cellules T

pathogéniques qui faciliterait l’entrée des LT dans le SNC via une interaction avec le CCL20

constitutivement exprimé par les cellules des plexus choroïdes chez l’homme et chez la souris

suggérant ainsi que l’axe CCR6-CCL20 dans les plexus choroïdes contrôle la surveillance

immune dans le SNC (Reboldi, Coisne et al. 2009).

Page 132: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

132

Réactivation des LT-CD4+ :

Des études d’imagerie (IRM) ont confirmé que l’espace sous-arachnoïdien (où circule le

LCR) était le premier site où les LT-CD4+ (préalablement activés en périphérie) serait

réactivés par les CPA locales dans un contexte CMH de classe II. Cette reconnaissance du

ligand conduit à la formation d’agrégats lymphocytaires dans cet espace (Kivisakk, Imitola et

al. 2009). Cette réactivation est suivie d’une activation des cellules endothéliales

périvasculaires qui permet le recrutement d’autres populations lymphocytaires. De plus, la

production locale de TNF semble importante pour la migration des LT-CD4+ de cet espace

périvasculaire vers le parenchyme (Gimenez, Sim et al. 2006). En effet, cette équipe a montré

que le récepteur TNF-R1 au TNF jouait un rôle important dans la production des chimiokines

CXCL2 et CCL2 associées à l’inflammation. Des expériences de chimères de moelle osseuse

ont démontré que l’expression de ce récepteur était critique pour l’induction d’une réponse

inflammatoire médiée par les Th1.

En outre, il a été montré que la force de réactivation était déterminée par le degré

d’inflammation du parenchyme et non par l’habilité des LT à infiltrer l’espace périvasculaire,

force due à la fois à l’affinité du TCR pour son ligand (l’épitope myélinique présenté par les

molécules de CMH) et par le nombre spécifique de complexes peptide:CMH reconnus.

Réactivation des LT-CD8+ :

Pour les LT-CD8+, il semblerait que cet espace sous-arachnoïdien soit également le

premier colonisé. Ceci a été montré par le groupe de McGavern où les LT-CD8+ qui

répondent au LCMV apparaissent en premier dans cet espace. Cependant les mécanismes

d’infiltration entre les populations CD4+ et CD8+ diffèrent. En effet, des expériences de

microscopie intravitale sur la souris montrent que des LT-CD8+ isolés de patients atteints de

SEP adhérent beaucoup plus fortement aux veinules inflammées du SNC que les LT-CD4+

issus de ces mêmes patients ou que les LT-CD8+ issus de sujets sains (Battistini, Piccio et al.

2003). Il a été montré que cette adhérence dépendait de l’expression de PSGL-1 dont le

récepteur est constitutivement exprimé sur les micro-vaisseaux des plexus choroïdes. La

différence d’adhérence peut s’expliquer par le fait que les LT-CD8+ expriment ce ligand alors

que les LT-CD4+ expriment préférentiellement l’intégrine α4 (Battistini, Piccio et al. 2003).

Le développement des nouvelles lésions au sein du SNC est ensuite corrélé à l’expression de

CCR5 et CXCR3 particulièrement sur les LT-CD8+ plus que les LT-CD4+, ce qui suggère

que les LT-CD8+ pourraient contribuer à la pathogénèse de la maladie à ce stade là.

Page 133: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

133

• Réponse des LT-CD4+

Les premières expériences montrant le rôle des lymphocytes T dans l’EAE ont été

apportées dans les années 1970. En effet, des rats déplétés en LT par thymectomie et

irradiation étaient résistants à l’induction de l’EAE, suggérant un rôle important de ces LT

dans le déclenchement de la pathologie (Gonatas and Howard 1974; Ortiz-Ortiz and Weigle

1976).

Spécificité antigénique :

Parmi les populations T, l’importance des LT-CD4+ est clairement admise aujourd’hui.

Cette importance a été observée pour la première fois en 1981 où seule l’élimination des LT

spécifiques de la MBP Ly1+ étaient capables de prévenir le transfert d’EAE (Pettinelli and

McFarlin 1981). Des expériences ultérieures ont montré que l’injection d’anticorps anti-CD4

pouvait inhiber ou freiner la progression de l’EAE (Brostoff and Mason 1984; Waldor, Sriram

et al. 1985). Mais la preuve directe du rôle des cellules LT-CD4+ dans la pathologie vient des

expériences montrant que le transfert de lignées cellulaires T ou de clones LT-CD4+

spécifiques de la MBP, PLP ou MOG sont capables d’induire l’EAE (Ben-Nun and Cohen

1982; Zamvil, Nelson et al. 1985; Kuchroo, Sobel et al. 1992; Baron, Madri et al. 1993).

D’autres observations, chez l’homme, sont venues à l’appui de cette hypothèse. Comme

le fait que la fréquence des LT-CD4+ sanguins présentant une forte affinité pour les antigènes

de la myéline est supérieure chez les patients atteints de SEP. Cette fréquence corrèle avec la

sévérité des lésions examinées par IRM (Bielekova, Sung et al. 2004). Ou encore que certains

allèles de gènes du CMH de classe II confèrent comme nous l’avons vu précédemment une

susceptibilité au développement de la maladie (Tienari, Bonetti et al. 2006; gHafler,

Compston et al. 2007).

En ce qui concerne cette spécificité antigénique, comme nous venons de le voir, la

susceptibilité à la maladie nécessite non seulement l’expression des molécules de CMH de

classe II qui peuvent se lier à des auto-Ag dérivés de la myéline ou d’autres composants du

SNC, mais aussi que les LT spécifiques de cette myéline échappent à la sélection thymique

(tolérance centrale) pour être activés en périphérie. Comme nous l’avons vu précédemment,

l’échappement à cette tolérance centrale peut être la conséquence de deux phénomènes : une

expression du TCR à faible affinité pour son complexe CMH:peptide ou une mauvaise

reconnaissance du CMH qui implique une absence de liaison du TCR à son complexe

Page 134: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

134

CMH:peptide. Dans le cas de l’EAE et de la SEP, l’observation que les protéines de la

myéline sont exprimées dans le thymus suggère que ces LT spécifiques de la myéline qui

échappent à cette sélection sont les LT qui ont la plus faible affinité pour les auto-antigènes

(Seamons, Perchellet et al. 2003). Cependant, cette avidité des LT envers les auto-antigènes

peut être augmentée dans certaines circonstances, particulièrement quand les APC répondant

à un antigène immunogénique, comme dans le cas d’une infection, augmentent leur

expression de molécules co-stimulatrices et de complexe CMH à leur surface. Cette avidité

augmentée permet ainsi aux LT qui ont échappé à la sélection de désormais répondre à l’auto-

antigène (Seamons, Perchellet et al. 2003).

De plus, de hautes fréquences de cellules exprimant des TCR polyspécifiques (c’est à

dire qui peuvent lier de multiples complexes CMH :peptides distincts) sont retrouvés chez les

patients atteints de SEP (Zhang, Tang et al. 2008). Cette observation est intéressante dans

l’hypothèse du mimétisme moléculaire, où en effet, il a déjà été montré que des cellules

possédant à leur surface des TCR polyspécifiques pouvaient reconnaître les épitopes du

pathogène aussi bien que les antigènes de la myéline (Wucherpfennig and Strominger 1995;

Lang, Jacobsen et al. 2002; Zang, Li et al. 2004; Markovic-Plese, Hemmer et al. 2005). Ainsi,

la plupart des LT qui auraient un TCR polyspécifique aurait beaucoup plus de chance d’être

activés en réponse à un antigène spécifique qui initierait la réponse auto-immune contre les

antigènes de la myéline.

Chez la souris, la preuve formelle de cette implication des LT-CD4+ est donnée par les

résultats issus de l’élimination de ces LT-CD4+ par un traitement avec un anticorps anti-CD4

déplétant qui bloque totalement l’EAE (Montero, Nussbaum et al. 2004).

Réponse effectrice :

Les cellules effectrices impliquées dans la pathogénie de la SEP et de l’EAE ont été

longtemps décrites comme de type Th1. En effet, chez les patients atteints de SEP, les

lymphocytes auto-réactifs présentent une différenciation en Th1 (Bielekova, Sung et al.

2004). Durant la phase inflammatoire, la production des cytokines telles que le TNF-α, l’IFN-

γ et l’IL-2 est très largement augmentée dans le CNS et le LCR (Gutcher and Becher 2007).

De plus, il a été montré que l’IL-12, cytokine induisant la différenciation en Th1 jouait un rôle

majeur dans le développement de l’EAE. En effet, le traitement des souris par des anticorps

neutralisant l’IL-12 inhibe le développement de la maladie, tandis que l’injection d’IL-12 à

des souris aggrave l’EAE. On peut ajouter également que l’ajout d’IL-12 dans des cultures de

Page 135: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

135

lymphocytes T stimulés avec PLP augmente leur encéphalogénicité (Leonard, Waldburger et

al. 1995).

De plus, plus récemment, des études ont montré que l’IL-12 partage une sous-unité avec

une autre cytokine l’IL-23 : la sous unité p40. Cette sous-unité est associée à la p19 pour l’IL-

23 et la p35 pour l’IL-12. Et l’utilisation de souris déficientes pour l’une ou l’autre sous-unité

a permis de montrer que c’est l’expression d’IL-23, plutôt que d’IL-12, qui permet de

maintenir l’inflammation nécessaire au développement de l’EAE, alors que les réponses Th1

sont conservées chez les souris déficientes en p19, qui sont pourtant résistantes à l’induction

de la maladie (Cua, Sherlock et al. 2003). Nous savons désormais que l’IL-23 induit une

nouvelle sous population de LT-CD4+ productrice d’IL-17, d’IL-22/21 et de TNF : les Th17

(McGeachy, Chen et al. 2009). Cette population s’avère très encéphalitogène et serait

essentielle pour le développement d’une réponse inflammatoire auto-immune dans le SNC

(Langrish, Chen et al. 2005). En effet, une forte production d’IL-17 a été mise en évidence

dans le SNC de souris ayant développé une EAE et la neutralisation de cette cytokine par

l’administration d’un anticorps réduit les scores cliniques (Hofstetter, Ibrahim et al. 2005). De

plus, la neutralisation de l’IL-23 permet également d’améliorer les signes cliniques d’EAE et

de diminuer l’inflammation du SNC (Chen, Langrish et al. 2006). Chez l’homme, il existe des

résultats similaires quant à l’importance de ce lignage, puisque les LT-CD4+ issus de patients

atteints de SEP sécrètent davantage d’IL-17 (Vaknin-Dembinsky, Balashov et al. 2006) et que

les transcrits IL-17 sont augmentés dans les lésions de SEP chronique comparées à des tissus

issus d’individus sans pathologie du SNC (Lock, Hermans et al. 2002). Si l’on transfère ces

Th17, la maladie induite est beaucoup plus sévère comparée à une EAE induite par les Th1

(Langrish, Chen et al. 2005). Ce qui suggère un rôle imminent des Th17 dans la pathologie

comme effecteur de l’auto-immunité dans le SNC (Hofstetter, Ibrahim et al. 2005;

Komiyama, Nakae et al. 2006).

Cependant, ce dogme Th1 pour l’EAE est aujourd’hui en partie remis en question. En

effet pendant de nombreuses années, on a donné une importance à la réponse Th1 dans

l’induction de la pathogénicité, et un rôle protecteur aux cytokines de type Th2 dont la

production augmente lors de la phase de rémission (Khoury, Hancock et al. 1992). Mais les

expériences du groupe de Lafaille démontrent que les LT-CD4+ spécifiques d’un peptide de

MBP, différenciés in vitro en Th2 en présence d’IL-4 sont encéphalitogènes après transfert de

ces cellules chez des souris receveuses déficientes pour Rag (Lafaille, Keere et al. 1997).

Page 136: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

136

Régulation de l’inflammation (T-reg) :

Parmi ces LT-CD4+ les T-reg jouent un rôle important dans l’évolution de la maladie.

En effet, la première équipe à avoir mis en évidence l’importance de ces cellules a été

l’équipe de Furtado qui a démontré que les LT-CD4+ déplétés en CD25 ne conféraient pas de

protection contre le développement spontané de la maladie contrairement aux LT-CD4+

totales lorsque ces LT étaient transférés dans des souris MBP TCR Rag-/- (ces souris ne

possédant pas elles-mêmes de T-reg). De façon directe, le transfert de T-reg polyclonaux a

permis de réduire la sévérité de l’EAE chez des receveurs C57Bl/6 ou SLJ (Zhang, Koldzic et

al. 2004). De plus, une déplétion in vivo des T-reg CD25+ augmente la sévérité de la maladie

(Cabarrocas, Cassan et al. 2006).

Par la suite, il a été montré que des T-reg s’accumulent dans le SNC durant la phase de

guérison de l’EAE aiguë (McGeachy, Stephens et al. 2005). Ces cellules sont fortement

suppressives in vitro et leur transfert en faible nombre améliore les scores cliniques d’EAE

des receveurs préalablement immunisés. Plusieurs groupes ont montré l’importance de ces

cellules dans le contrôle de la réponse auto-immune contre le SNC par des modèles de

déplétion ou d’inactivation des T-reg (McGeachy, Stephens et al. 2005; Gartner, Hoff et al.

2006).

Chez l’homme, la fréquence des T-reg dans le sang des patients atteints de SEP et des

sujets sains ne diffèrent pas (Putheti, Pettersson et al. 2004; Haas, Hug et al. 2005), et leur

fréquence dans le LCR des patients est identique à celle que l’on trouve dans leur sang. Au

niveau fonctionnel, les T-reg issus de patients atteints de SEP possèdent un effet suppresseur

moindre (Venken, Hellings et al. 2006). Cette réduction est associée à une baisse de

l’expression du facteur de transcription FoxP3 par les cellules CD4+CD25+ du sang

périphérique, à la fois au niveau ARNm et protéique (Huan, Culbertson et al. 2005).

Que ce soit dans le modèle animal ou chez l’homme, les T-reg semblent donc contribuer

à restreindre la susceptibilité et la sévérité de la maladie.

• Réponse des LT-CD8+

Spécificité antigénique :

Le rôle des LT-CD8+ dans la SEP est un concept beaucoup plus récent (Liblau, Wong et

al. 2002; Neumann, Medana et al. 2002; Friese and Fugger 2005; Goverman, Perchellet et al.

2005). Le postulat est bâti sur l’observation qu’une déplétion en LT-CD4+ chez des patients

Page 137: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

137

atteints de SEP n’améliore pas la maladie alors que la déplétion des populations leucocytaires

(CD4 et CD8) semble être bénéfique.

Chez les patients atteints de SEP, ces lymphocytes, issus d’un nombre réduit de clones

ayant proliféré in situ, ont été identifiés au sein des lésions (Babbe, Roers et al. 2000). De

plus, les LCR et sang de patients atteint de SEP sont préférentiellement enrichis en CD8

mémoires par rapport aux CD4 mémoires, CD8 qui montrent une expansion oligoclonale.

Contrairement à la population des LT-CD4+ où aucune modification de fréquence n’a été

observée tant chez les sujets sains que chez les patients atteints de SEP, pour la population des

LT-CD8+, il a été démontré une fréquence plus élevée chez les patients (Crawford, Yan et al.

2004). En outre, l’équipe de Bitsch a trouvé une corrélation statistiquement significative entre

la présence de ces LT-CD8+ et le dommage axonal au sein des lésions (Bitsch, Schuchardt et

al. 2000; Kuhlmann, Lingfeld et al. 2002).

En ce qui concerne l’association génétique du CMH de classe I avec la SEP, le sujet est

controversé. Toutefois, l’allèle HLA-A3(A*0301) a été montré comme augmentant la

susceptibilité à la maladie alors que l’allèle HLA-A2 (A*0201) semble conférer une

protection, montrant ainsi la dualité des rôles des LT-CD8+ qui peuvent être soit bénéfiques

soit pathogènes (Brynedal, Duvefelt et al. 2007; Burfoot, Jensen et al. 2008).

Les premières expériences réalisées chez des souris déficientes pour le CD8 ont montré

une amélioration de la maladie avec plus de périodes de rémission suggérant ainsi un rôle

régulateur (Koh, Fung-Leung et al. 1992). Cependant, le transfert de LT-CD8+ spécifiques de

MOG35-55 (Sun, Whitaker et al. 2001) ou de MBP79-87 (Huseby, Ohlen et al. 1999) ou de

PLP45-53 (Friese, Jakobsen et al. 2008) induit une EAE chez des souris receveuses montrant

cette fois-ci un rôle pathogénique de ces cellules. Par ailleurs, le transfert de LT-CD8+ activés

in vitro et spécifiques d’un néo-autoantigène glial entraîne une encéphalomyélite, non suivi de

signes cliniques, mais montrant une dégradation spécifique des astrocytes, avec un profil

d’inflammation différent de celle qui est induite par des LT-CD4+ (Cabarrocas, Savidge et al.

2003).

Mécanismes effecteurs :

Les LT-CD8+ peuvent agir selon deux mécanismes: la lyse dépendante du contact et la

production de médiateurs solubles.

En effet, les granules lytiques contenues dans les LT-CD8+ sont polarisées vers les

axones et les oligodendrocytes et il a été clairement montré que les LT-CD8+ spécifiques de la

MBP isolés de patients atteints de SEP pouvaient lyser les oligodendrocytes humains

Page 138: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

138

(Jurewicz, Biddison et al. 1998; Liblau, Wong et al. 2002; Neumann, Medana et al. 2002;

Friese and Fugger 2005; Goverman, Perchellet et al. 2005). Cependant, deux études ont

montré que la perforine n’apparaissait pas avoir un rôle majeur dans cette cytotoxicité. En

effet, les LT-CD8+ ne peuvent pas tuer les neurones grâce au processus dépendant de la

perforine, ce qui corrèle avec les expériences menées par l’équipe de Khanna où les LT-CD8+

contrôlaient l’infection des neurones sensitifs par le HSV sans initier cette cytotoxicité (Liu,

Khanna et al. 2000; Khanna, Bonneau et al. 2003). Les neurones semblent donc relativement

résistants à la cytotoxicité médiée par la perforine. Un autre mécanisme devait donc être

impliqué puisque l’amplification des dommages tissulaires est clairement corrélée avec le

nombre croissant de LT-CD8+ dans le SNC. Dans ce contexte, l’équipe de Neumann a

démontré que la molécule Fas Ligand était effectrice du dommage neuronal et promouvait

ainsi la cytotoxicité (Neumann, Cavalie et al. 1995; Neumann, Medana et al. 2002). Des

études complémentaires ont montré l’interaction de ces LT-CD8+ avec le tissu nerveux via

une cytotoxicité médiée par la molécule Fas Ligand entre ces LT et les neurones directement

en contact .

Une étude très récente a montré un rôle direct de ces LT-CD8+ infiltrant le SNC. En

effet, l’équipe de Wiendl a prouvé que les LT-CD8+ infiltrant le SNC pouvaient attaquer

directement les oligodendrocytes et provoquaient une apoptose des neurones collatéraux via

l’activation de la voie des caspases (Gobel, Melzer et al.).

Cependant, du fait de la difficulté d’obtention des tissus nerveux issus de patients

atteints de SEP, les études se sont plutôt portées sur l’analyse du sang périphérique des

patients, même s’il est admis que les cellules immunes en périphérie et au sein du SNC sont

différentes. Néanmoins, ces études pouvaient donner quelques indications indirectes sur

l’activité de ces LT-CD8+ au sein du SNC. C’est ainsi que l’équipe de Sepulcre a montré une

expression significativement plus élevée de l’IFN-γ produit à la fois par les LT-CD4+ et LT-

CD8+ isolés du sang de patient présentant une forme de SEP avec des périodes de poussées et

de rémissions successives. Cette étude a également montré que le niveau d’expression de

l’IFN- γ par les LT-CD8+ est corrélé avec l’handicap des patients (Sepulcre, Sanchez-Ibarrola

et al. 2005).

De plus des études ont prouvé que des LT-CD8+ spécifiques de la MBP issus de

patients atteint de SEP produisaient des cytokines pro-inflammatoires comme le TNF-α ou

l’IFN- γ (Zang, Li et al. 2004). Une étude récente montre aussi que plus de 70% des LT des

lésions aigues et chroniques de SEP sont productrices d’IL-17 (Tzartos, Friese et al. 2008).

Page 139: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

139

Régulation de l’inflammation :

Pour cette population lymphocytaire, deux voies d’action sont actuellement mises en

évidence : l’une montrant comme nous venons de le voir précédemment que ces LT-CD8+

auraient un rôle effecteur et l’autre suggérant un rôle suppresseur de ces LT-CD8+ sur la

maladie.

En 1992, il a en effet été montré que des LT-CD8+ pouvaient protéger des périodes de

crises chez l’animal (Jiang, Zhang et al. 1992). Ces observations initiales ont été confirmées

par la suite grâce à des transferts adoptifs de LT-CD8+ isolés de souris souffrant d’EAE dans

des receveurs immunisés avec la MBP. Ces souris devenaient résistantes à l’induction d’EAE,

montrant la capacité des LT-CD8+ à inhiber la réponse LT-CD4+ spécifique de la MBP.

Tout comme pour les LT-CD4+, il existe donc une population régulatrice pour les LT-

CD8+. Et ces LT-CD8+-reg ont été retrouvés chez des patients atteints de SEP et chez la souris

développant une EAE (Zozulya and Wiendl 2008). Initialement, ce sont les LT-CD8+CD122+

naturels qui ont été décrits comme inhibant les fonctions effectrices des LT-CD8+ via la

sécrétion d’IL-10 (Rifa'i, Shi et al. 2008). Mais il existe aussi des LT-CD8+-reg induits qui

semblent supprimer la maladie par le biais d’une induction d’effets tolérogènes sur les cellules

dendritiques (Najafian, Chitnis et al. 2003). D’autres LT-CD8+-reg, induits par l’expansion

des LT-CD4+ effecteurs en périphérie, éliminent les LT-CD4+ par reconnaissance d’un CMH

non classique Qa-1 à la surface de ces lymphocytes (Lu, Kim et al. 2008).

Des études récentes montrent que l’on peut extrapoler ce rôle des LT-CD8+-reg aux

patients atteints de SEP, ces lymphocytes étant retrouvés chez ces patients en moindre nombre

durant la phase d’exacerbation de la maladie (Zozulya and Wiendl 2008).

• Coopération des populations lymphocytaires

Nous venons de voir l’implication de chaque population lymphocytaire sur le

déclenchement et l’évolution de la maladie. Cependant comme nous l’avons discuté dans le

premier chapitre, tout le système immunitaire agit de façon intégrée impliquant chaque

population cellulaire. Mais malgré ce postulat très peu d’études ont été réalisées pour

comprendre, aux vues des rôles importants des LT-CD4+ et LT-CD8+ dans la pathologie, la

coopération de ces deux populations et analyser ainsi le poids de chacune d’elles et leur action

en synergie sur l’évolution de la maladie.

Ce sont par ces études que des populations régulatrices, qu’elles soient LT-CD8+ ou LT-

CD4+, et leur mécanisme d’action ont été découverts dans la SEP ou d’autres maladies auto-

Page 140: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

140

immunes (Jiang, Braunstein et al. 2001). Mais le rôle de la coopération des populations

effectrices est très peu connu.

Or une suggestion avait été émise sur ce rôle là car, dans un modèle animal humanisé,

l’initiation de la maladie était due à l’implication de LT-CD8+ alors que le devenir de cette

maladie dépendait principalement des LT-CD4+. Mais une première collaboration des

populations LT-CD8+ et LT-CD4+ a toutefois été mise en évidence mais dans des conditions

particulières que sont les conditions lymphopéniques. En effet, pour de nombreuses maladies

auto-immunes comme la polyarthrite rhumatoïde, le syndrome de Sjögren, le lupus, l’auto-

immunité avait été largement associée à une lymphopénie. Dans ce cadre, l’équipe

d’Hernandez est parti du postulat que la prolifération et la différenciation des LT auto-réactifs

pouvaient résulter d’une induction d’auto-immunité dans un environnement lymphopénique.

C’est ainsi que les auteurs ont démontré que des LT-CD8+ et LT-CD4+ mémoires pouvaient

coopérer pour rompre la tolérance périphérique dans des conditions lymphopéniques et

induire une auto-immunité (Hernandez, Shen et al. 2008). Dans ces mêmes conditions, Mak a

démontré que l’auto-immunité pouvait apparaître en conséquence d’un coopération

CD4+/CD8+ où les LT-CD4+ auto-réactifs permettaient l’expansion des LT-CD8+ non pas via

une interaction cellulaire (CD28 et CD40) mais via la production d’une cytokine produite

abondamment dans les conditions lymphopéniques, l’IL-7 (Calzascia, Pellegrini et al. 2008).

Récemment, il a également été montré qu’au cours de l’EAE, il y avait des changements

chronologiques de ces deux populations, la phase précoce étant dominée par les LT-CD4+

alors que les LT-CD8+ sont plus nombreux dans les phases tardives de la maladie. Une équipe

américaine s’est donc intéressée plus particulièrement aux rôles respectifs des LT-CD4+ et

LT-CD8+ dans l’EAE. Ils ont, par immunisation avec différents épitopes dominants, montré

que les LT-CD8+ pathogéniques spécifiques de MOG avaient besoin des LT-CD4+

spécifiques de MOG pour soutenir l’inflammation du CNS au cours d’une EAE chronique

(Bettini, Rosenthal et al. 2009).

Dans un contexte viral, l’équipe de C. Gerard a démontré également un rôle synergique

des deux populations lymphocytaires CD4+ et CD8+. En effet, l’aide des LT-CD4+ pour

l’activation des LT-CD8+ in vivo est très bien établie aujourd’hui. Cependant, le rôle de ces

LT-CD4+ auxilaires dans le contrôle de la réponse des CTL au stade effecteur n’avait jamais

été investigué. Cette équipe a ainsi pu montrer que les CTL seuls ne pouvaient pas pénétrer

dans le tissu infecté mais avaient un réel besoin d’aide des LT-CD4+ pour le faire. Dans ce

contexte là, les LT-CD4+ contrôlent la migration des CTL indirectement par la sécrétion

d’IFN-γ et l’induction de chimiokines dans le tissu infecté (Nakanishi, Lu et al. 2009)

Page 141: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

141

• Réponse des LT-γδ

Même si leur rôle précis n’a pas été clairement démontré, les LT-γδ restent

possiblement impliqués dans la pathogenèse de la SEP et de l’EAE. Récemment, leur rôle

potentiel dans l’auto-immunité du SNC a été fortement suggéré lorsque l’équipe de Miller a

montré que ces LT-γδ s’accumulaient chez les patients atteints de SEP et présentaient une

expansion oligoclonale suggérant une réponse antigène spécifique (Blink and Miller 2009).

Dans le modèle animal, un rôle régulateur a été suggéré par des études de déplétion de

cellules LT-γδ. En effet, chez les animaux présentant des déplétions en LT-γδ, la maladie

était exacerbée et il n’y avait plus de périodes de rémission (Ponomarev and Dittel 2005). En

outre, plusieurs études sont compatibles avec un rôle pathogénique de ces cellules car des

souris déficientes en LT-γδ ont une sévérité de la maladie moindre et une production réduite

de cytokines pro-inflammatoires.

De façon intéressante, nous avons vu précédemment que de nombreux LT produisant l’IL-17

sont recrutés dans le SNC durant l’EAE. Or 60% de ces LT sont des LT-γδ, suggérant ainsi un

rôle important de ces cellules dans la pathogenèse de la maladie.

iv. Cytokines

Les cytokines, produites par de nombreux types cellulaires (LT, macrophages,

microglie, astrocytes, oligodendrocytes…) sont susceptibles de jouer différents rôles dans la

maladie. Tout d’abord, l’on peut envisager un rôle de directionalité de la réponse immune. En

effet, comme nous l’avons vu précédemment, les cytokines peuvent influencer la

différenciation des LT vers un phénotype pathogénique ou « inoffensif ». Elles peuvent

également jouer un rôle dans le recrutement et le cheminement des cellules dans le SNC. On

peut également émettre l’hypothèse qu’elles peuvent agir sur l’activation ou la neutralisation

des cellules pathogéniques aux sites de l’inflammation.

• Cytokines associées aux cellules Th1

Les cytokines produites par les LT-CD4+ de type Th1 jouant un rôle prépondérant dans

la sclérose en plaques et l’EAE sont l’IFN-γ et le TNF-α.

Page 142: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

142

L’IFN-γ :

Cette cytokine est produite presque exclusivement par les LT. L’IFN-γ peut avoir des

influences importantes sur les CPA du SNC. En effet, il augmente l’expression des molécules

de CMH et d’adhésion à la surface de l’endothélium cérébrovasculaire, permettant ainsi aux

LT de traverser plus facilement la barrière hémato-encéphalique (Dore-Duffy, Balabanov et

al. 1996). Il induit aussi l’expression des molécules de co-stimulation à la surface des

macrophages et des cellules du SNC comme les astrocytes et les cellules de la microglie. Ceci

a pour conséquence de perpétuer l’inflammation du SNC et la démyélinisation en permettant

la présentation des auto-antigènes dans le SNC (Tan, Gordon et al. 1998). Toutefois son

implication dans l’EAE reste complexe. Alors que quelques études ont décrit un rôle

pathogène direct (Baron, Madri et al. 1993), beaucoup d’autres montrent que l’absence d’IFN-

γ ou de signal à travers son récepteur accentue l’EAE. En effet, l’on sait désormais que

(Duong, St Louis et al. 1992; Duong, Finkelman et al. 1994) l’administration d’anticorps

neutralisant l’IFN-γ conduit à une exacerbation de la maladie dans différentes souches de

souris. De manière similaire, les travaux de Lublin (Lublin, Knobler et al. 1993) et Billiau

(Billiau, Heremans et al. 1988) montrent que l’injection d’IFN-γ réduit la sévérité de la

maladie chez les souris.

Des analyses plus récentes ont montré que chez des souris IFN-γ-/- et IFN-γR-/- la

maladie était similaire voire exacerbée par rapport à des souris contrôles (Ferber, Brocke et al.

1996; Krakowski and Owens 1996). De plus, si l’on transfère des LT spécifiques de MOG

provenant de souris déficientes en IFN-γR à des souris IFN-γR+/+ alors on observe une

maladie très sévère qui progresse sans rémission alors que ces mêmes cellules transférées à

des souris sauvages induisent une maladie similaire, à la seule différence que les animaux

montrent la possibilité de rentrer en phase de rémission. Ces résultats montrent donc que ces

LT provenant des souris IFN-γR-/- induisent non seulement une pathologie mais en plus

stimulent le circuit inhibiteur en retour via leur production d’IFN-γ qui diminue le processus

inflammatoire et permet une rémission de la maladie. `

Le TNF-α et la lymphotoxine-α :

Comme l’IFN-γ, le TNF-α a été associé au pouvoir encéphalithogène des cellules Th1.

En accord avec ces observations, l’administration d’anticorps neutralisants anti-TNF-α

permet de diminuer la sévérité de l’EAE (Ruddle, Bergman et al. 1990). Il en est de même

pour la lymphotoxine (LT-α). L’analyse des souris déficientes en LT-α a montré des résultats

Page 143: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

143

similaires puisque ces souris sous fond C57Bl/6 immunisées avec le peptide MOG35-55

développent une maladie moins sévère que les souris contrôles (Suen, Bergman et al. 1997).

Les résultats pour les souris déficientes en TNF-α sont beaucoup plus controversés. En effet,

une étude montre que ces souris TNF-α-/- générées directement sur fond C57Bl/6 développent

une maladie similaire à celle des souris contrôles à la seule différence que le déclenchement

de la maladie est retardé, alors que d’autres études montrent que ces souris TNF-α-/- croisées

sur fond C57Bl/6 développent une maladie plus sévère sans aucun délai de déclenchement

(Liu, Marino et al. 1998).

• Cytokines régulatrices

Le TGF-β :

Une action admise aujourd’hui pour le TGF-β est qu’il inhibe la prolifération des LT et

LB (Kehrl, Roberts et al. 1986; Kehrl, Wakefield et al. 1986) et la production ou l’effet des

cytokines IFN-γ, TNF-α, TNF-β et IL-2 (Espevik, Figari et al. 1987). Par contre son effet sur

les macrophages est beaucoup plus complexe : il exerce un pouvoir chémoattractant sur ces

derniers tout en les inactivant de leurs fonctions lorsqu’ils sont différenciés (Tsunawaki,

Sporn et al. 1988). Des souris traitées avec un anticorps anti-TGF-β développent une maladie

plus sévère alors que l’administration de TGF-β réduit la sévérité de la maladie (Kuruvilla,

Shah et al. 1991; Racke, Dhib-Jalbut et al. 1991; Racke, Cannella et al. 1992). Des

expériences d’induction de tolérance chez des animaux ayant reçu des antigènes de la myéline

par voie orale ont aussi permis de montrer l’importance du TGF-β dans la régulation de

l’EAE. Des LT produisant du TGF-β apparaissent chez des rats entrant en rémission

spontanée, ces cellules inhibant la production d’IFN-γ par les LT pathogéniques. Ceci suggère

ainsi un rôle de régulation directe du TGF-β sur les LT encéphalitogènes (Racke, Dhib-Jalbut

et al. 1991).

L’IL-10 :

Une autre cytokine produite par les LT-CD4+ de type Th2 et Th0, les LB ainsi que par

les macrophages activés (Mosmann 1994) semble désormais jouer clairement un rôle dans la

différenciation des cellules T-CD4+ en cellules Th1 ou Th2 : l’IL-10.

Quant à son rôle dans la pathologie, il a été montré que l’ARNm pour l’IL-10 atteignait

son maximum d’expression lorsque débutait l’épisode de rémission (Kennedy, Torrance et al.

Page 144: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

144

1992; Issazadeh, Ljungdahl et al. 1995; Tanuma, Kojima et al. 1997). De plus il semble que

l’expression de cet ARNm décroisse dans le sang périphérique des patients atteints de SEP

avant les épisodes de rechute. Cependant, un autre groupe ne trouve aucune corrélation entre

ce niveau d’expression de l’ARNm et les phases de rémission de la maladie. Au contraire, ces

auteurs trouvent que l’ARNm de l’IL-10 est induit rapidement après les premiers signes

cliniques de l’EAE et que son expression reste relativement stable durant la phase chronique

de la maladie (Begolka and Miller 1998).

Des résultats contradictoires ont également été trouvés pour les études in vivo. L’équipe

de Rott démontre que l’administration d’IL-10 durant la phase d’induction de l’EAE peut

supprimer l’apparition des signes cliniques chez le rat (Rott, Fleischer et al. 1994) alors que

l’équipe de Cannelle montre que l’injection d’IL-10 chez les souris exacerbe le

développement de la maladie.

Une étude très récente s’est intéressée aux effets différentiels du traitement à l’IFN-β

dans une cohorte de patients atteints de SEP et chez des animaux développant une EAE suite

à un transfert adoptif de Th1 ou Th17 spécifiques de la myéline. Cette équipe a ainsi montré

que le traitement à l’IFN- β améliorait l’EAE induite par les Th1 alors qu’elle intensifiait celle

induite par les Th17. Or la différence majeure entre les deux groupes (Th1 et Th17) est la

synthèse d’Il-17 et d’IL-10 dont la synthèse est augmentée après le traitement. Chez les

patients, les mêmes résultats ont été retrouvés à savoir que les patients non-répondeurs au

traitement IFN-β avaient des taux élevés d’IL-17F endogène (Wekerle and Hohlfeld).

L’IL-4 :

Même si l’IL-4 est la cytokine cruciale pour la différenciation des LT en Th2 (Swain,

Weinberg et al. 1990; Seder, Paul et al. 1992), l’inhibition ou l’élimination de cette cytokine

n’ont révélé jusqu’à présent que des effets modestes sur le développement de la maladie,

comme l’administration directe d’IL-4 recombinante qui réduit la sévérité de la maladie

(Racke, Bonomo et al. 1994). Par l’étude de souris déficientes pour l’IL-4, il a été montré que

ces souris, sur fond génétique PL/J, développaient une maladie similaire à celle des souris

contrôles (Liblau, Steinman et al. 1997). De plus, Estelle Bettelli a montré que le transfert de

Th2 spécifiques d’auto-antigènes qui produisaient de l’IL-4 et de l’IL-10 pouvait prévenir ou

réverser une EAE. Ces résultats ont été confirmés par l’utilisation de souris déficientes pour

ces deux cytokines montrant que les souris déficientes pour l’IL-10 étaient plus susceptibles et

développaient une EAE plus sévère. Par contre les souris déficientes en IL-4 développaient

une EAE similaire à des souris contrôles (Bettelli, Das et al. 1998).

Page 145: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

145

d. Pathogenèse

FIGURE 26 : schéma récapitulatif de la pathogenèse de la SEP et EAE (Goverman

2009)

Activation des LT-CD4+ (rouge) : Les LT-CD4+ sont activés en périphérie par les cellules dendritiques présentant des épitopes de la myéline. Les APC résidentes du SNC peuvent capturer les antigènes de la myéline in situ et migrer vers les ganglions lymphatiques cervicaux. Parallèlement, les antigènes solubles de la myéline peuvent être drainés du SNC vers les ganglions lymphatiques et être phagocytés par les APC locales (1). Les LT-CD4+ entrent dans l’espace sous-arachnoïdien en traversant les plexus choroïdes ou les veinules méningées (2). Les LT sont alors réactivés dans cet espace par les macrophages exprimant les molécules de CMH de classe II et par les CD exprimants les épitopes de la myéline (3). Ces LT réactivés vont à leur tour activer les cellules microgliales qui vont elles-même activer d’autres cellules microgliales distales (4). Les LT ainsi activés vont pouvoir également adhérer et traverser la barrière hémato-encéphalique, entrer dans l’espace périvasculaire et être réactivés par les macrophages périvasculaires et les cellules dendritiques (5). Les LT pénètrent alors dans le parenchyme et ensemble, avec les macrophages et les cellules microgliales activées, vont sécréter des médiateurs solubles responsables de la démyélinisation (6). Activation des LT-CD8+ (bleu) : les LT-CD8+ sont activés par présentation croisée dans les ganglions drainants via les CD (1). Les étapes 2 à 5 sont les mêmes que pour les LT-CD4+. Cependant, les LT-CD8+ sont uniquement activés par les macrophages, cellules microgliales et CD par présentation croisée. Les cellules endothéliales peuvent directement présenter l’antigène si elles ont accès aux épitopes de la myéline (6). Toutes ces cellules sécrètent ainsi des médiateurs solubles (7). Les LT-CD8+ peuvent également directement lyser les oligodendrocytes et les neurones exprimant les molécules de CMH de classe I et les épitopes de la myéline.

Page 146: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

146

Nous venons de voir que la SEP est une maladie particulièrement complexe, faisant

intervenir des acteurs multiples qui combinent leurs actions [figure 26]. D’une manière

générale, on peut constater un déroulement en deux phases de la maladie : une phase

d’induction et effectrice ou poussées et une phase de rémission. Durant la phase d’induction,

les LT-CD4+ s’activent en périphérie, par exemple par des antigènes viraux, et migrent vers le

SNC. Leur état d’activation leur permet de passer la barrière hémato-encéphalique et d’entrer

dans le tissu, où ils vont être réactivés par les cellules présentatrices locales, macrophages et

cellules dendritiques. Ces acteurs de l’activation ainsi que les LT-CD4+ eux-mêmes vont

sécréter des facteurs recrutant les autres populations du système immunitaire comme les LT-

CD8+. Ainsi les LT-CD4+ auraient un rôle d’orchestration de la réponse effectrice, alors que

les autres acteurs comme les macrophages, les anticorps, les facteurs solubles, …

participeraient à la dégradation de la myéline. Après cette phase inflammatoire traduite sur le

patient par une poussée, survient en général une phase de récupération ou « rémission » dont

les mécanismes ne sont pas totalement caractérisés. Quelques hypothèses ont été émises

comme : la réduction de l’inflammation par apoptose des cellules immunes activées dans le

SNC (Suvannavejh, Dal Canto et al. 2000), la production de cytokines protectrices (Khoury,

Hancock et al. 1992). Cependant, des facteurs, eux aussi non déterminés, aboutissent,

quelques semaines à quelques mois voire années plus tard, à la formation d’une nouvelle

plaque dans une autre zone du SNC et/ou dans une région déjà précédemment affectée.

Page 147: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

147

LES MODELES D’AUTOLES MODELES D’AUTOLES MODELES D’AUTOLES MODELES D’AUTO----IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME IMMUNITE DU SYSTEME

NERVEUX CENTRALNERVEUX CENTRALNERVEUX CENTRALNERVEUX CENTRAL

1. Elaboration des modèles d’auto-immunité dans le SNC

a. Les outils expérimentaux

L’ étude du système immunitaire chez les vertébrés nécessite des modèles animaux

appropriés. Le choix de l’animal dépend de sa pertinence pour atteindre un but de recherche

particulier. Dans la plupart des recherches en immunologie, la souris est l’animal

expérimental de choix. Elle est facile à manipuler, elle est génétiquement bien caractérisée et

elle a un cycle de reproduction rapide. Un autre aspect très avantageux chez la souris pour les

immunologistes : la création de souches consanguines qui réduisent les variations

expérimentales provoquées par les différences dans le génome des animaux expérimentaux.

Des animaux génétiquement identiques sont ainsi produits par croisement de souris de même

souche. De cette façon, l’hétérozygotie des allèles normalement rencontrée chez les souris

accouplées au hasard est remplacée par une homozygotie au niveau de tous les locus. Ces

modèles servent ainsi à étudier, aux vues de la syngénie de ces animaux, les caractères

immunologiques dans un contexte génétique fixé.

Des dysfonctionnements auto-immuns semblables à certaines maladies auto-immunes

humaines peuvent être induits expérimentalement chez certains animaux. Plusieurs méthodes,

génétiques ou cellulaires, sont aujourd’hui disponibles.

Au plan génétique, nous pouvons citer les transferts de gènes isolés et clonés grâce à

l’utilisation des techniques d’ADN recombinant. L’expression et la régulation de ces gènes

ont été étudiées en les introduisant dans des cellules de mammifère en culture et plus

récemment dans des lignées germinales d’animaux. Ce qui nous intéresse ici est le transfert de

gènes clonés dans des embryons de souris qui permet la création de souris transgéniques et

l’étude de la fonction du gène in vivo. En construisant un transgène avec un promoteur

Page 148: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

148

particulier, il est ainsi aisé de contrôler l’expression de ce transgène donné. Par exemple, les

souris transgéniques porteuses d’un transgène lié au promoteur de la MOG expriment le

transgène dans le SNC au niveau des oligodendrocytes, mais pas dans les autres tissus. Étant

donné qu’un transgène est intégré dans l’ADN chromosomique des embryons de souris au

stade d’une cellule, il sera intégré à la fois dans les cellules somatiques et dans les cellules de

la lignée germinale. Les souris transgéniques résultantes pourront donc transmettre le

transgène à leur descendance comme un trait mendélien. Toute une variété de telles lignées

transgéniques sont couramment disponibles et largement utilisées dans la recherche

immunologique. Parmi ces dernières figurent des lignées porteuses de transgènes qui codent

des immunoglobulines, des récepteurs T, des molécules de CMH de classe I ou de classe II,

de nombreuses cytokines avec divers antigènes étrangers.

Cependant une des limitations des souris transgéniques est que le transgène est intégré

au hasard dans le génome. Ceci signifie que certains transgènes s’insèrent dans des régions de

l’ADN qui ne sont pas transcriptionnellement actives et où donc le gène ne pourra pas être

exprimé. Pour contourner cette limitation, une technique a été développée, permettant à un

gène choisi d’être dirigé vers des sites spécifiques au génome d’une souris. L’utilisation

essentielle de cette technique a été de remplacer un gène normal par un allèle mutant ou une

forme altérée du gène, invalidant ainsi la fonction du gène. Les souris transgéniques qui

portent un tel gène invalidé sont appelées souris knock-out. Outre cette délétion d’un gène

sélectionné, il est aussi possible de remplacer le gène endogène par une forme mutée de ce

gène. Comme dans la stratégie d’invalidation d’un gène, des constructions d’ADN qui portent

des mutations d’un gène particulier peuvent être échangées avec le gène endogène. Ce sont les

souris knock-in. Récemment, en plus de ces délétions de gènes par criblage, de nouvelles

stratégies expérimentales qui permettent la délétion spécifique d’un gène à étudier dans un

tissu précisément choisi ont été élaborées. Ces techniques s’appuient sur l’utilisation de

recombinases spécifiques de sites provenant de bactéries ou de levures. Le système le plus

fréquemment utilisé est le sytème Cre/lox. La recombinase Cre, isolée du bactériophage P1,

reconnaît un site spécifique de l’ADN de 34pb connu sous le nom de loxP et catalyse la

recombinaison. Par conséquent les séquences d’ADN flanquées par loxP sont reconnues par

Cre et l’évènement de recombinaison se traduit par la délétion des séquences d’ADN

intercalées. La réelle innovation de cette technique est que l’expression du gène de la

recombinase Cre peut être contrôlée par l’utilisation d’un promoteur spécifique de tissu.

Page 149: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

149

Sur le plan cellulaire, une technique de transfert adoptif peut permettre d’étudier des

populations isolées de cellules in vivo. Pour cela, plusieurs outils sont nécessaires comme les

cultures primaires de cellules immunes dérivées du sang ou des organes lymphoïdes, les

lignées cellulaires lymphoïdes clonées ou hybrides, ou encore l’utilisation de l’irradiation

pour détruire le système lymphoïde ou hématopoïétique (suivant la dose d’irradiation

utilisée).

b. Applications au SNC

i. Généralités

Si parmi les modèles animaux de maladies auto-immunes du SNC, les modèles

spontanés, malheureusement peu nombreux, sont théoriquement les plus intéressants pour

l’analyse des mécanismes lésionnels dans leur ensemble, d’autres modèles n’en restent pas

moins utiles pour la compréhension des phénomènes d’auto-immunité, la mise au point et

l’évolution de nouvelles approches thérapeutiques.

L’on peut citer par exemple les modèles de transfert à l’animal par des injections

d’anticorps humains, ou les modèles induits par l’injection d’un auto-Ag, provoquant une

activation et une prolifération de ces lymphocytes avec une réaction auto-immune au site

anatomique de l’antigène. Il existe également des systèmes de croisement où des souris

knock-out sont créées déficientes pour un gène. Il existe ainsi des souris déficientes en LT-

CD4+ ou en LT-CD8+, pour des cytokines… Leur croisement avec des souris développant une

pathologie auto-immune peut permettre d’approcher le rôle des gènes invalidés. Cependant,

les plus utilisés restent les modèles transgéniques pour le TCR ou le BCR. Les gènes codant

pour les récepteurs T ou les immunoglobulines correspondantes peuvent être séquencés et

introduits par transgénèse dans le génome des animaux, ces animaux pouvant, spontanément

ou secondairement après injection des antigènes, développer des phénomènes auto-immuns.

Avant de citer différents modèles animaux, il est intéressant de souligner que c’est grâce

à un modèle animal de lapin d’une maladie auto-immune non pas du SNC mais du système

nerveux périphérique que le mimétisme moléculaire (un des mécanismes plausibles de

l’explication de la cause des maladies auto-immunes) a été décrit.

Page 150: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

150

ii. Quelques exemples

En ce qui concerne l’auto-immunité du SNC, nous connaissons aujourd’hui plusieurs

maladies auto-immunes qui affectent cet organe et qui sont sujettes à des recherches sur des

modèles animaux.

Pour citer un exemple de maladie auto-immune du SNC spontanée nous pouvons

décrire les modèles animaux donnant une neuropathie optique spontanée ou la maladie de

DEVIC. En effet, pour plus de 50% des animaux MOG35-55-TCR Tg (souris transgénique pour

le TCR reconnaissant l’épitope 35-55 de la MOG), il y a développement de cette maladie

spontanément (Krishnamoorthy, Lassmann et al. 2006). Cette neuromyélite optique de Devic

ou NMO a également été caractérisée par immunisation de Rats Norway . Les cerveaux, nerfs

optiques et moelles épinières de ces rats ont été étudiés par histochimie et les résultats ont

montré chez ces animaux immunisés avec la MOG développaient une névrite optique sans

atteinte encéphalique. L’expression de l’aquaporine-4 (AQP4) et du principal marqueur

astrocytaire était diminuée dans les nerfs optiques atteints et augmentée dans certaines régions

médullaires démyélinisées. Cet anticorps anti-AQP4 a également été détecté dans le plasma

des rats malades dirigés contre différentes structures de l'AQP4. Ce modèle remplit donc les

critères actuels de NMO et est associé à la présence d’anticorps anti-AQP4. Ce modèle de

NMO induit par la MOG est ainsi un outil intéressant pour étudier le lien entre l’AQP4 et la

démyélinisation et évaluer de nouvelles thérapeutiques immunomodulatrices ou

immunosuppressives.

Un autre exemple d’une maladie auto-immune qui atteint le système nerveux central est

le lupus érythémateux disséminé (LED) où il existe également des modèles animaux de

maladie spontanée. En effet si les souris de souche NZB sont croisées avec des souris NZW

alors la génération issue de ce croisement développera un LED spontanément. L’analyse des

modèles animaux murins (souris SCID déficientes en LT et LB) a permis de montrer que

l’injection d’autoanticorps anti-ADN double-brin provenant de patients lupiques provoquait

une protéinurie et des dépôts glomérulaires d’immunoglobulines chez certaines de ces souris.

L’un des premiers modèles de maladie auto-immune induite expérimentalement décrit a

été découvert par hasard en 1973 lorsque des lapins ont été immunisés avec des récepteurs

nicotiniques de l’acétylcholine isolés des anguilles électriques. Les animaux développaient

rapidement une faiblesse musculaire semblable à celle rencontrée dans la myasthénie. Les

Page 151: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

151

auteurs ont montré que cette myasthénie auto-immune expérimentale se développait lorsque

les anticorps contre le récepteur à l’acétylcholine bloquaient la stimulation du muscle par

l’acétylcholine au niveau de la jonction neuro-musculaire. Dans l’année qui a suivi, ce modèle

a prouvé sa valeur lorsqu’on a découvert que les auto-anticorps dirigés contre ce récepteur

étaient la cause de la myasthénie chez l’homme.

L’EAE dont nous avons décrit les mécanismes d’induction et les similarités avec la SEP

dans le chapitre précédent est un autre modèle animal qui a considérablement augmenté la

compréhension de l’auto-immunité. L’immunisation de souris avec les protéines mineures de

la myéline du SNC injectées avec de l’adjuvant de Freund entraîne une affection

démyélinisante, apparentée à la SEP. Des souris transgéniques pour un récepteur T spécifique

d’un peptide de la myéline ont un développement quasi normal. Si on injecte le peptide MOG

spécifique à ces souris transgéniques, elles développent une maladie fulgurante

démyélinisante alors que les souris non transgéniques sont peu touchées. Les premières

souris ainsi transgéniques pour les gènes réarrangés du TCR (appelées souris TCR

transgéniques) ont été utilisées simultanément par deux groupes en 1988 (Kisielow,

Bluthmann et al. 1988). Différentes souris TCR transgéniques ont ensuite été développées

comme modèles de maladies auto-immunes. Ces différentes souris TCR transgéniques

expriment un TCR réarrangé spécifique d’un auto-antigène. Par exemple, les souris BDC2.5 et

NY4.1 ont servi à la compréhension des mécanismes impliqués dans le déclenchement du

diabète. Ces souris BDC2.5 et NY4.1 expriment chacune un TCR provenant d’un clone LT-

CD4+ spécifique d’un antigène inconnu des îlots de Langherans du pancréas, présenté dans le

contexte de la molécule du CMH I-Ag7 (Katz, Wang et al. 1993). Diverses souris TCR

transgéniques ont été établies dans le but d’offrir un modèle spontané d’EAE, afin de se

rapprocher des conditions conduisant au déclenchement de la SEP. Alors que le ou les auto-

antigènes reconnus dans les modèles transgéniques de diabète auto-immun ne sont pas

connus, les LT provenant des souris TCR transgéniques générés comme modèle de SEP

reconnaissent des antigènes du SNC bien définis. En effet, ces souris expriment chacune un

TCR différent provenant de clones LT CD4+ spécifiques d’épitopes immunodominants des

protéines associées à la gaine de myéline (MBP et PLP). En fonction du modèle, les souris

développent une maladie spontanée à partir de 6 semaines ou le plus souvent à partir de 4 à 5

mois. Les souris transgéniques pour un TCR spécifique de la MBP développent une maladie

avec une incidence de 0 à 14% (Goverman, Woods et al. 1993; Lafaille, Nagashima et al.

1994; Liu and Wraith 1995). Un plus grand pourcentage (40%) de souris transgéniques pour

un récepteur spécifique de la PLP développe spontanément l’EAE (Waldner, Whitters et al.

Page 152: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

152

2000). La maladie se caractérise par l’infiltration des LT exprimant le transgène dans le SNC,

la formation de foyers inflammatoires et de plaques de démyélinisation. Lorsque ces souris

sont immunisées avec le peptide spécifique, elles développent une maladie plus sévère et plus

rapide que les souris non transgéniques.

Cependant, l’incidence de la maladie n’atteignant jamais les 100% dans tous ces

modèles, l’on peut suggérer, comme pour les maladies auto-immunes humaines, un rôle non

négligeable de l’environnement dans le déclenchement de la maladie. De plus, des études sur

des souris de fond génétique Rag déficiente, où tous les LT expriment le TCR transgénique

sans association avec des chaînes TCRα endogènes réarrangées, suggèrent que les LT ayant

d’autres spécificités peuvent contrebalancer le pouvoir pathogénique des LT réactives.

2 . Les différents modèles utilisés

a. Souris TCR transgéniques

i. Souris CL4 – TCR Tg

Les souris CL4-TCR (Clone-4 TCR) sont transgéniques pour un récepteur à l’antigène

des LT spécifiques du peptide 512-520 de l’hémagglutinine (HA512-520) du virus influenza

restreint par la molécule de CMH de classe I, Kd (Morgan, Liblau et al. 1996). La chaîne β du

transgène résulte du réarrangement Vβ8.2 - Dβ1 - Jβ1.4 et la chaîne α du réarrangement

Vα10.3 - Jα34. Ce Clone-4 TCR a été obtenu via des clones CTL dérivés de souris B10.D2

préalablement immunisées avec le virus Influenza A/PR/8. L’ADN complémentaire de ce

clone a été inséré dans des vecteurs TCR-α et TCR-β. Ces constructions ont ensuite été

microinjectées dans des oocytes de souris fertilisée H-2bxd (C57Bl/6 x Balb/c). Cette

coinjection, comme nous l’avons vu précedémment, des deux plasmides résultent en

l’incorporation des deux gènes. Ces souris sont désormais maintenues par croisement sur le

fond génétique BALB/c.

Page 153: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

153

Chez ces souris, le rapport CD4/CD8 est inversé. On retrouve en effet 2 à 5 fois plus

de LT-CD8+ que de LT-CD4+ et environ 95% de ces CD8+ sont spécifiques du peptide 512-

520. Ces LT expriment des marqueurs d’activation après stimulation in vitro avec l’antigène

en présence de cellules présentatrices d’antigène et prolifèrent in vitro en réponse au peptide.

Ces souris ont été à l’origine de l’élaboration d’un modèle auto-immun spontané de

diabète néonatal (Morgan, Liblau et al. 1996). Plus récemment, elles ont, entre autres, permis

d’étudier le rôle des LT-CD8+ dans l’inflammation du SNC par transfert adoptif dans des

souris GFAP-HA (souris transgéniques qui expriment HA sous contrôle du promoteur

spécifique des astrocytes), LT-CD8+ qui peuvent induire une inflammation monophasique du

cerveau chez des souris immunocompétentes (Cabarrocas, Savidge et al. 2003).

ii. Souris 6.5 –TCR Tg

Les souris 6.5-TCR sont transgéniques pour un récepteur à l’antigène des LT

spécifiques du peptide 110-119 de l’hémagglutinine (HA110-119) du virus influenza restreint

par la molécule de CMH de classe II, I-Ed (Kirberg, Baron et al. 1994). La chaîne β du

transgène résulte du réarrangement Vβ8.2 - Jβ2.1 et la chaîne α du réarrangement Vα4 - Jα2.

Les gènes TCR-α et TCR-β réarrangés issus de l’hybridome 14.3.d spécifiques du peptide

110-119 de l’hémagglutinine du virus influenza ont été microinjectés dans des oocytes de

souris fertilisée C57Bl/6 x DBA/2J. Ces souris sont maintenues par croisement sur le fond

génétique BALB/c.

Chez ces souris, le TCR transgénique est exprimé à la surface des LT-CD4+ dont 20%

sont spécifiques du peptide 110-119. Mais il est aussi exprimé à la surface des LT-CD8+. Ces

LT expriment des marqueurs d’activation après stimulation in vitro avec l’antigène en

présence d’APC et prolifèrent in vitro en réponse au peptide.

Des études récentes avec ces souris ont contribué à la compréhension du mécanisme

régulateur induit par les LT, en montrant que ces souris 6.5-TCR Tg croisées avec des souris

GFAP-HA développaient des mécanismes tolérogènes qui protégeaient les souris doubles

transgéniques issus de ce croisement. En particulier le fait que les cellules T régulatrices

issues de la souris 6.5-TCR Tg inhibaient la sécrétion d’IFN-γ produit par les LT-CD8+

spécifiques du même antigène (Cabarrocas, Cassan et al. 2006).

Page 154: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

154

éExpression de HA spécifique aux oligodendrocytes..

souris MOG x - Cre : souris Knock Insouris Knock In

Rosa 26 LoxP-STOP-LoxP-HA– – –

XpROSA26

HASTOP

loxPloxP

pROSA26loxP

HA

CREpromoteur MOG

éExpression de HA spécifique aux oligodendrocytes..

souris MOG x - Cre : souris Knock Insouris Knock In

Rosa 26 LoxP-STOP-LoxP-HA– – –

XpROSA26

HASTOP

loxPloxP

pROSA26loxP

HA

CREpromoteur MOG

b. Souris MOG-HA

Ces souris sont des souris doubles transgéniques permettant l’expression conditionnelle

de HA dans un type cellulaire spécifique, les oligodendrocytes. Elles sont issues du

croisement des souris MOG-Cre où la recombinase Cre est sous la dépendance d’un

promoteur spécifique (MOG) avec les souris Rosa26-HA dans lesquelles l’ADNc de HA est

inséré dans le locus Rosa 26 et encadré d’une cassette STOP. Ainsi à l’issue de ce croisement,

la recombinase Cre permet l’ablation de la cassette STOP au niveau des sites loxP et la souris

double transgénique Rosa26-HA/Cre appelée souris MOG-HA peut initier la transcription de

HA uniquement dans le type cellulaire particulier correspondant au promoteur permettant

l’expression de Cre, ici MOG [figure 27].

FIGURE 27 : souris MOG-HA : réalisation d’une souris double transgénique permettant

l’expression conditionnelle de HA spécifiquement dans les oligodendrocytes.

i. Souris MOG-Cre

La phase ouverte de lecture de Cre a été introduite dans le premier exon du gène MOG

suivi directement par un signal de polyadénylation de l’hormone de croissance humaine. Le

gène de résistance à la néomycine ainsi que le gène de la thymidine kinase ont été

sélectionnés comme marqueur de sélection positif et négatif respectivement. Ainsi, des

cellules souches embryonnaires (cellules ES) dérivées de souris C57Bl/6 ont été transfectées

Page 155: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

155

avec le vecteur cible de manière classique. Les cellules ES qui portaient l’insertion ont été

injectées dans des blastocystes CB20 pour générer les souris MOG-Cre (Hovelmeyer, Hao et

al. 2005) [figure 28] . Ces souris ont été maintenues par croisement sur le fond génétique

BALB/c puis par accouplement croisé afin d’obtenir des souris MOG-Cre homozygotes.

FIGURE 28 : schéma de la construction de la souris transgénique MOG-Cre

La phase ouverte de lecture de Cre a été introduite dans le premier exon du gène MOG suivi directement par un signal de polyadénylation de l’hormone de croissance humaine. Le gène de résistance à la néomycine ainsi que le gène de la thymidine kinase ont été sélectionnés comme marqueur de sélection positif et négatif respectivement. Ainsi, des cellules souches embryonnaires (cellules ES) dérivés de souris C57Bl/6 ont été transfectées avec le vecteur cible de manière classique. Les cellules ES qui portaient l’insertion ont été injectées dans des blastocystes CB20 pour générer les souris MOG-Cre

ii. Souris Rosa26-HA

Une cassette d’expression conditionnelle, englobant la phase ouverte de lecture de HA

placée en 3’ d’une séquence STOP et contenant le gène de résistance à la néomycine et des

sites de polyadénylation du SV40 encadrée de site LoxP a été insérée dans les sites PacI-AscI

du vecteur pROSA26PA (Srinivas, Watanabe et al. 2001). Le vecteur cible a ensuite été

électroporé dans les cellules ES 129SV. Deux des cellules souches ayant une recombinaison

homologue correcte ont été injectées dans des blastocystes C57Bl/6. Ces souris knock-in

référées comme Rosa26tm(HA)1Lib ont été croisées sur plus de sept générations sur le fond

génétique Balb/c (Saxena, Bauer et al. 2008) [figure 29].

Vecteur

Locus

Locus

Recombinaison homologue

Page 156: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

156

FIGURE 29 : : schéma de la construction de la souris transgénique RoSA26-HA .

Une cassette d’expression conditionnelle, englobant la phase ouverte de lecture de HA placée en 3’ d’une séquence STOP et contenant le gène de résistance à la néomycine et des sites de polyadénylation du SV40 encadrée de site LoxP a été insérée dans les sites PacI-AscI du vecteur pROSA26PA (srinivas, costantini, 2001). Le vecteur cible a ensuite été électroporé dans les cellules ES 129SV. Deux des cellules souches ayant une recombinaison homologue correcte ont été injectées dans des blastocystes C57Bl/6. Ces souris knock-in référées comme Rosa26tm(HA)1Lib ont été croisées sur plus de sept générations sur le fond génétique Balb/c

iii. Souris MOG-HA

Des expériences antérieures réalisées au laboratoire ont montré chez ces souris des

résultats intéressants au niveau immunologique. En effet, lorsque ces souris sont croisées avec

les souris TCR transgéniques (CL4-TCR ou 6.5 TCR), une ignorance de l’antigène a été

observée. Ces animaux triples transgéniques ne développent aucun signe clinique

neurologique et leur profil thymique n’est pas modifié par rapport à des souris contrôles. En

effet, ces souris présentent le même pourcentage et nombre absolu de lymphocytes DN, DP et

SP que des souris MOG-HA.

Par contre, lorsque l’on procède à des transferts adoptifs de cellules T activées les

résultats sont tout autres. Lorsque ces souris MOG-HA reçoivent des LT-CD4+ activés

(culture cellulaire réalisée à partir des organes lymphoïdes des souris 6.5-TCR Tg), les

animaux présentent au niveau histologique des infiltrations T dans le SNC ainsi que quelques

zones d’inflammation. Lorsque ces souris reçoivent des LT-CD8+ activés (culture cellulaire

réalisée à partir des organes lymphoïdes des souris CL4-TCR Tg), l’on observe alors au

niveau histologique une inflammation du SNC avec une infiltration des LT et des zones de

démyélinisation. Dans 30% des cas les animaux développent aussi des signes cliniques

neurologiques avec une perte de poids (Saxena, Bauer et al. 2008).

Page 157: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

157

OBJECTIFSOBJECTIFSOBJECTIFSOBJECTIFS

Dans ce contexte de l’immuno-pathologie de la SEP, ma thèse contribuera, à l’aide de

différents modèles murins, à la compréhension d’une maladie auto-immune du SNC induite

par les LT-CD8+.

Le modèle repose sur l’utilisation de souris transgéniques MOG-HA, souris permettant

l’expression de l’Hémagglutinine (HA) du virus Influenza comme néo-auto-antigène

uniquement par les oligodendrocytes et par l’utilisation de transfert adoptif de Tc1

reconnaissant spécifiquement un pepetide de HA. Ces LT-CD8+ acivés in vitro sont issus de

souris CL4-TCR transgéniques.

La SEP étant une maladie multifactorielle faisant intervenir de nombreuses cellules de

l’immunité tant innée qu’adaptative, mon travail de thèse s’intéresse aux influences d’autres

facteurs de l’immunité adaptative sur la maladie expérimentale induite par ces Tc1.

Mon premier objectif est donc d’analyser l’influence de la population Th1, LT-CD4+

issus de souris 6.5-TCR transgéniques et activés in vitro, sur cette maladie induite par les Tc1.

Cette analyse se fera tant au niveau clinique (suivi des animaux au niveau pondéral et

moteur), histologique (coupes de cerveaux, moelle épinière et nerf optique) que fonctionnel

(analyse en cytométrie de flux des populations infiltrantes du SNC) à différents temps de la

maladie.

Mon second objectif est d’analyser l’influence des anticorps démyélinisants sur la

maladie induite par les Tc1. Cette analyse se basera sur des observations histologiques à

différents temps.

Page 158: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

158

MATERIELS MATERIELS MATERIELS MATERIELS

ET ET ET ET

METHODES METHODES METHODES METHODES

Page 159: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

159

MATERIELS ET METHODESMATERIELS ET METHODESMATERIELS ET METHODESMATERIELS ET METHODES Les souris

Les souris Balb/c sauvages :

Elles sont achetées à l’âge de 8 semaines chez Janvier (Le genest-Saint-Isle, France).

Les souris Balb/c CL4-TCR transgéniques :

Elles ont été générées par Sherman (J Immunol. 1996 Aug 1;157(3):978-83. Sherman

LA. Californie). L’élevage est maintenu par croisements de souris CL4-TCR avec des souris

Balb/c sauvages. Les descendants sont phénotypés par marquage en cytométrie en flux des

lymphocytes sanguins avec des anticorps anti-CD8 PE et anti-Vβ8 FITC. Les animaux

transgéniques seront ainsi CD8+ et Vβ8+.

Les souris Balb/c 6.5-TCR transgéniques :

Elles ont été générées par Von Boehmer (J Exp Med. 1994 Jul 1;180(1):25-34.Suisses).

L’élevage est maintenu par croisements de souris 6.5-TCR avec des souris Balb/c sauvages.

Les descendants sont phénotypés par marquage en cytométrie en flux des lymphocytes

sanguins avec des anticorps anti-CD4 PE et anti-Vβ8 FITC. Les animaux transgéniques seront

ainsi CD4+ et Vβ8+.

Les souris Balb/c MOG-Cre transgéniques :

Elles ont été générées par Waisman (J Immunol. 2005 Nov 1;175(9):5875-84.). Elles

ont été accouplées avec des souris Balb/c sauvages ; les F1 MOG-Cre+/- sont accouplés entre

eux afin d’obtenir des descendants homozygotes MOG-Cre+/+. L’élevage est ainsi maintenu

par croisements de souris MOG-Cre+/+ avec des souris MOG-Cre+/+. Les descendants sont

génotypés par deux PCR sur de l’ADN extrait de fragment de queue. L’amplification du

fragment du gène MOG : sens : 5’-GACAATTCAGAGTGATAGGACCAGGGTATC–3’,

antisens : 5’- GGTCAATCTACCTACAGGTCATTTGA- 3’ ; amplification du fragment du

gène Cre : sens : 5’ – TCCAATTTACTGACCGTACAC-3’, antisens : 5’-

CATCAGCTACACCAGAGACGGAAATC–3’ ; 94°C 2min, 94°C 30 sec, 55°C 30sec, 72°C

35sec, 35 cycles, 72°C 10min.

Page 160: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

160

Les souris Balb/c Rosa26-HA :

Elles ont été générées par le laboratoire. Elles sont maintenues par croisements avec des

souris Balb/c sauvages. Les descendants sont génotypés par une PCR détectant le gène HA

sur de l’ADN extrait de fragment de queue. L’amplification du fragment du gène HA : sens :

5’- TGAAAGGACTCTGGATTTCCATGAC-3’, antisens : 5’ –

CAGAAACTGATTGCCCCCAGG-3’ ; 94°C 2min, 94°C 30 sec, 55°C 30sec, 72°C 35sec, 35

cycles, 72°C 10min.

Les souris Balb/c MOG-HA :

Elles sont issues du croisement des souris Balb/c Rosa26-HA transgéniques par des

souris Balb/c MOG-Cre+/+ transgéniques. Les descendants sont génotypés par une PCR HA

sur de l’ADN extrait de fragment de queue.

Les élevages, les croisements décrits ci-dessus, et l’expérimentation, sont réalisés au

sein de l’animalerie EOPS de l’IFR30, dirigées par Mme Calise. Les souris sont manipulées

entre 7 et 16 semaines. Nos protocoles sont validés par le comité régional d’éthique sur

l’expérimentation animale de Midi-Pyrénées.

Extraction d’ADN pour le génotypage des souris :

Les prélèvements de queues de souris sont incubés dans du tampon de lyse contenant

50mM de TRIS HCL pH=8, 50mM d’EDTA et 0,5% de SDS avec de la protéinase K à 55°C

toute la nuit.

L’ADN du lysat est ensuite extrait avec un mélange volume à volume de

phénol/chloroforme et précipité avec de l’acétate d’ammonium 10M (0,2 volume) et de

l’EtOH 100% (2 volumes). Les culots sont alors ressuspendus dans du TRIS 5mM pH=8 et

conservés à 4°C durant 24H puis à –20°C.

Les milieux de cultures :

Les milieux dit « complets » sont :

- du RPMI 1640 (Invitrogen, Cergy Pontoise, France) additionné de 10% SVF (Serum

de Veau Fœtal, Invitrogen) décomplémenté par la chaleur, de glutamax 1X (Invitrogen), de

100U/mL Penicilline-Streptomycine (Eurobio, Courtaboeuf, France), de 10mM Hépès

(Invitrogen), de 1mM pyruvate de sodium (Invitrogen) et de 50µM β-mercaptoéthanol

(Sigma-Aldrich Chimie).

Page 161: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

161

- du DMEM + GlutaMAXTM-I (Invitrogen, Cergy Pontoise, France) additionné de

10% SVF (Serum de Veau Fœtal, Invitrogen) décomplémenté par la chaleur, de 100U/mL

Penicilline-Streptomycine (Eurobio, Courtaboeuf, France), de 10mM Hépès (Invitrogen), de

1mM pyruvate de sodium (Invitrogen) et de 50µM β-mercaptoéthanol (Sigma-Aldrich

Chimie).

Les anticorps :

Marquage :

Les anticorps utilisés au 1/200 pour le marquage en cytométrie en flux proviennent de :

- BD Pharmingen (San Diego, California, USA) : Vβ8-FITC (F23.1), CD69-PE

(H1.2F3), CD107a-PE (1D4B), IFNγ-PE, IFNγ-APC, TNFα-APC, CD8-APC (53-6.7), CD4-

PercpCy5.5 (RMA4-5), CD8-PercpCy5.5 (53-6.7), CD45-PercpCy5.5 (30-F11), CD4-Pacific

Blue (RMA4-5), CD19-APCCy7 (1D3), Thy1.2-biotinylé (53-2.1), CD11b-biotinylé (M1/70),

CD69-biotinylé (H1.2F3), streptavidine-PercpCy5.5, streptavidine-PeCy7, streptavidine-

PeCy5, streptavidine-APC.

- eBioscience (San Diego, California, USA) : Granzyme B PE (16G6), CD11b-FITC

(M1/70), CD11c-PE (N418), anti-CMH-II-APC (M5/114.15.2), Thy1.2-FITC (53-2.1), CD3-

APC (145-2C11), CD69-PerCpCy5.5 (H1.2F3), CD8-alexa700 (53-6.7), CD107a-Alexa647

(eBio1D4B).

- Certains anticorps ont été produits par la méthode des ascites au sein du laboratoire :

CD8 (53-6.72), CD4 (GK1.5), 6.5 (anticorps anti-TCR spécifique du complexe I-Ed-HA111-

119). Cet anticorps a été biotinylé au sein du laboratoire.

Injections :

Les anticorps utilisés pour l’injection en synergie avec les Tc1 sont :

- IgG2a (clone UPC 10, Sigma)

- Z2 (IgG2a) provenant de l’équipe de Linington à Glasgow (American Journal of

pathology, vol 143, no2, 1993)

Ces anticorps sont injectés par voie intrapéritonéale à une dose unitaire de 0,5µg par souris.

Pour les souris sacrifiée à J9, les Ac ont été injectés à J4, J6 et J8 après transfert de Tc1.

Pour les souris sacrifiée à J28, les Ac ont été injectés à J5, J8, J12 et J16 après transfert de

Tc1.

Page 162: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

162

Les réactifs :

L’interleukine 2 (IL-2) et l’IL-12 (R&D system, Lille, France)

La ionomycine et la PMA (Sigma Aldrich Chimie, St Quentin Fallavier, France)

Peptide CL4 et peptide SFE (NeOMPS, Strasbourg, France)

Golgi Plug (BD Pharmingen (San Diego, California, USA)

Billes magnétiques Goat anti rat IgG (Miltenyi biotec, Auburn, California, USA)

G418 (Sigma Aldrich Chimie, St Quentin Fallavier, France, A1720-5G)

Culture Th1 :

Préparation des suspensions cellulaires :

Les rates et les ganglions lymphatiques périphériques sont prélevés des souris 6.5-TCR

Tg dans du milieu RPMI simple. Les organes sont dissociés mécaniquement avec un potter et

la suspension cellulaire, après lavage par centrifugation 5 minutes à 1500rpm dans du RPMI

simple, est lysée dans 10mL de solution de 0,15M de NH4Cl pendant 5 minutes à température

ambiante. Après avoir été filtré à l’aide de seringues cotonnées, le lysat est lavé par

centrifugation dans du RPMI simple puis les cellules sont comptées avec du bleu trypan à

l’aide d’une cellule de Kovacs.

Culture cellulaire (37°C – 5% CO2) :

JOUR 0 : 5 000 000 cellules/mL de milieu complet sont mis en présence de peptide

SFE (10µg/mL), d’IL2 (1ng/mL ) et d’IL12 (20ng/mL)

JOUR 2 à 5 : la confluence des cellules ainsi que leur prolifération sont vérifiées et

les cultures sont ajustées avec du milieu complet supplémenté en IL2 (1ng/mL)

JOUR 6 : Après un Ficoll (séparation des lymphocytes par gradient de densité,

centrifugation de 20 minutes à 2000rpm à 20°C sans frein, récupération de l’interface), les

cellules sont comptées et purifiées.

Sélection positive de CD4+ :

Les cellules sont alors ressuspendues à 25.106cellules/mL dans du milieu complet en

présence de l’anticorps monoclonal IgG2b de rat anti–souris CD4 biotinylé (clone GK1.5) au

1/500 durant 30 minutes à 4°C (sur un agitateur). Après lavage par centrifugation dans du

Tampon MACS (500mL PBS1X + 2% de SVF + 2mM EDTA) durant 5 minutes à 1500rpm,

les cellules sont ressuspendues à 100.106cellules/mL dans du Tampon MACS en présence de

Page 163: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

163

billes magnétiques IgG de chèvre anti-rat couplées à la streptavidine au 1/7 durant 30minutes

à 4°C (sur un agitateur).

Séparation magnétique :

Après lavages par centrifugation des cellules et équilibrage des colonnes LS (Miltenyi

biotec) avec du tampon MACS, les cellules marquées sont purifiées sur ces colonnes. Après

cette étape d’enrichissement, les cellules sont marquées avec un anticorps anti-CD4-APC et

un anticorps anit-Vβ8-FITC pour vérifier la purification au FacsCalibur (Becton Dickinson)

du plateau technique de cytométrie de l’IFR30, dirigé par Fatima L’Faqihi Olive. La pureté

obtenue est >97% pour les LT-CD4+Vβ8+.

Préparation des APC irradiées (1 LT-CD4 pour 10 APC) :

Les APC sont préparées de la même manière que la suspension de LT à partir de

souris sauvages Balb/c. Après comptage, elles sont irradiées (irradiateur γ, 3500Rads).

Culture cellulaire (37°C – 5% CO2) :

JOUR 6 : 500 000 LT-CD4+/mL de milieu complet sont mis en présence de 5 000 000

APC/mL supplémenté en peptide SFE (10µg/mL), d’IL2 (1ng/mL ) et d’IL12 (20ng/mL)

JOUR 7 et 8: la confluence des cellules ainsi que leur prolifération est vérifiées et

les cultures sont ajustées avec du milieu complet supplémenté en IL2 (1ng/mL)

JOUR 9 : Après un Ficoll (séparation des lymphocytes par gradient de densité,

centrifugation de 20 minutes à 2000rpm à 20°C sans frein, récupération de l’interface), les

LT-CD4+ sont comptés et ressuspendus dans du PBS 1X pour injection. Une partie de ces

lymphocytes est gardée également pour vérifier l’état d’activation de ces cellules par un

marquage intracellulaire.

Culture Tc1 :

Préparation des suspensions cellulaires :

Les rates et les ganglions lymphatiques périphériques sont prélevés des souris CL4-TCR

Tg dans du milieu DMEM simple et préparés comme décrit ci-dessus.

Page 164: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

164

Sélection positive de CD8+ :

Les cellules sont alors ressuspendues à 25.106cellules/mL dans du milieu complet en

présence de l’anticorps monoclonal IgG2a de rat anti –souris CD8 biotinylé (clone 53-6.72)

au 1/500 durant 30minutes à 4°C (sur un agitateur) puis isolées comme décrit ci-dessus.

Préparation des APC irradiées (1 LT-CD8 pour 10 APC) :

Les APC sont préparées de la même manière que la suspension de LT à partir de

souris Balb/c sauvages. Après comptage, elles sont irradiées (irradiateur γ, 3500Rads).

Culture cellulaire (37°C – 5% CO2) :

JOUR 0 : 500 000 LT-CD8+/mL de milieu complet sont mis en présence de 5 000 000

APC/mL supplémenté en peptide CL4-HA (1µg/mL), d’IL2 (1ng/mL ) et d’IL12 (20ng/mL)

JOUR 2 à 5 : la confluence des cellules ainsi que leur prolifération sont vérifiées et

les cultures sont ajustées avec du milieu complet supplémenté en IL2 (1ng/mL)

JOUR 6 : Après un Ficoll (séparation des lymphocytes par gradient de densité,

centrifugation de 20 minutes à 2000rpm à 20°C sans frein, récupération de l’interface), les

LT-CD8+ sont comptés et ressuspendus dans du PBS 1X pour injection. Une partie de ces

lymphocytes sont gardés également pour vérifier l’état d’activation de ces cellules par un

marquage intracellulaire.

Transfert adoptif des lymphocytes :

Les LT-CD8+ (Tc1) et LT-CD4+ (Th1) sont injectés par voie intraveineuse dans le sinus

veineux oculaire à une concentration de 30.106 dans 200µL de PBS1X. Lors des doubles

transferts, les souris reçoivent en premier les Th1 et les Tc1 ne sont injectés qu’au minimum

4H après.

Suivi des souris :

Evaluation des scores cliniques classiques d’EAE :

Les scores cliniques sont déterminés de façon quotidienne selon l’échelle suivant : 0 :

souris non malade ; 0,5 : faiblesse de la queue ; 1 : paralysie de la queue ; 2 : faiblesse des

pattes arrières ; 3 : paralysie des pattes arrières ; 4 : faiblesse des pattes avant ; 5 : animal

décédé ou moribond et donc euthanasié.

Page 165: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

165

Evaluation du poids :

Les animaux sont suivis quotidiennement à la même heure et avec la même balance.

Evaluation en ROTA-ROD :

Ces souris ne développant pas systématiquement des signes classiques d’EAE, leur

performance motrice est évaluée par des tests avec une ROTA-ROD (Bioseb, Vitrolles,

France). Ces tests consistent à analyser la coordination motrice des animaux qui sont posés

sur une roue. Chaque roue voit sa vitesse de rotation augmentée de 4 à 40 rpm en 10 minutes.

Après un entraînement de 3 jours précédant les transferts adoptifs de Tc1, Th1, Tc1 et Th1 ou

de Tc1 et Ac, chaque souris s’exerce quotidiennement sur la rotarod. Chaque animal subit 4

essais, avec une pause de 20 minutes entre le deuxième et le troisième essai. Pour chaque

essai, le temps de latence avant de tomber est mesuré par un chronomètre intégré dans la

machine puis enregistré.

Histologie :

Marquage en PFA 4% :

Les souris transférées sont sacrifiées par injection IV d’une dose létale d’anesthésiques

(mélange de Rompun et kétamine 1:2), et subissent une perfusion intracardiaque de 20mL de

PBS-4% paraformaldéhyde. Après fixation par submersion dans du PBS-4%

paraformaldéhyde, les souris sont conservées dans de l’éthanol 70% à 4°C. Suivant les

expériences, les souris ont été sacrifiées à différents temps : J9, J11, J18 out J28.

Marquage en OCT :

Les souris transférées sont sacrifiées par injection IV d’une dose létale d’anesthésiques

(mélange de Rompun et kétamine 1:2), et subissent une perfusion intracardiaque de 20mL de

PBS. Les cerveaux, moelles épinières et nerfs optiques sont ensuite collectés et congelés dans

de l’OCT. Suivant les expériences, les souris ont été sacrifiées à différents temps : J9 et J28.

Les analyses histologiques ont été réalisées par l’équipe du Pr H. Lassmann (Brain

Research Institute, Université de Vienne) dans le cadre d’un réseau européen (Neuropromise).

Page 166: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

166

Préparation de lymphocytes du cerveau :

Après une perfusion intracardiaque des animaux avec du PBS 1X, le système nerveux

central des animaux est extrait. Les cerveaux ainsi que les moelles épinières sont passés

délicatement à travers des tamis cellulaires de 100µm puis 70µm. Les cellules sont ensuite

ressuspendues dans 5mL de mélange RPMI-30% Percoll (Amersham Biosciences, Orsay,

France). Ce milieu est déposé sur 6,25mL de RPMI-70% Percoll. Après 20 minutes de

centrifugation à 3000rpm, les cellules mononucléées sont récupérées à l’interface.

Les lymphocytes infiltrants le cerveau étant peu nombreux chez les souris, les cerveaux

de plusieurs souris sont généralement préparés de façon groupée afin d’obtenir un nombre de

cellules exploitables pour les expériences.

Analyses en cytométrie de flux :

Marquage de surface

Les suspensions cellulaires sont incubées à raison de 0,5 à 3.106 cellules par tube avec

les anticorps couplés à des fluorochromes dans 50µL de tampon Facs (PBS-10g/L albumine

sérique de bœuf – 0,2g/L NaN3) pendant 30 minutes sur de la glace à l’obscurité. Après une

étape de lavage dans du tampon Facs, les cellules marquées sont fixées dans du PBS-2%

paraformaldéhyde puis analysées au FacsCalibur ou au LSRII.

Marquage intracellulaire

Les cellules à raison de 4.106/mL sont incubées avec soit du Golgi plug soit du Golgi

plug additionné de PMA et de ionomicyne. Les cellules sont ainsi restimulées durant 4H à

37°C. Les cellules sont alors lavées. L’on procède ensuite au marquage de surface avec les

anticorps anti-CD8-PerCpCy5.5 (pour verification de la culture Tc1) ou anti-CD4-

PerCpCy5.5 (pour verification de la culture Th1) au 1/100 combiné avec l’anticorps anti-Vβ8-

FITC au 1/100. Après lavage dans du PBS 1X, les cellules sont permabilisées avec le kit BD

Cytofix/CytopermTM Plus (Fixation/perméabilisation Kit with BD Golgi PlugTM, BD

Pharmingen) durant 20 minutes à 4°C. Les cellules sont ensuite lavées avec du Perm/WashTM

deux fois. Les suspensions cellulaires sont incubées avec les anticorps couplés à des

fluorochromes dans 100µL de Perm/WashTM pendant 30 minutes à température ambiante dans

l’obscurité. Après une étape de lavage dans du PBS 1X, les cellules marquées sont fixées dans

du PBS-2% paraformaldéhyde puis analysées au FacsCalibur ou au LSRII.

Page 167: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

167

RESURESURESURESULTLTLTLTATS ATS ATS ATS

Page 168: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

168

RESULTATSRESULTATSRESULTATSRESULTATS Comme nous l’avons mentionné en introduction, la SEP est une maladie chronique

inflammatoire du SNC où des nombreux facteurs immunologiques et environnementaux

interviennent. En effet, il existe au niveau immunologique une contribution des facteurs

humoraux, des sous-populations de lymphocytes, des macrophages et de la microglie activés

qui sont présents dans les lésions actives de SEP. Au cours de ma thèse, je me suis plus

particulièrement intéressée à la contribution relative des sous-populations de lymphocytes T,

isolément ou en association, en utilisant un système de transfert adoptif de ces populations

dans un modèle murin de SEP : les souris transgéniques MOG-HA.

Dans une première partie, je me suis intéressée à la contribution relative des LT-CD8+

et LT-CD4+ reconnaissant un antigène oligodendroglial dans l’auto-immunité du SNC. En

effet, la coopération entre ces deux populations n’a pas été directement investiguée. Pour cela,

j’ai utilisé les souris double transgéniques MOG-HA (cf § Matériels et Méthodes) qui

expriment HA spécifiquement dans les oligodendrocytes, dans lesquelles j’ai transféré 30.106

de Tc1 spécifiques de HA ou 30.106 de Th1 spécifiques de HA ou 30.106 de chaque

population. Pour chaque groupe, j’ai analysé les conséquences cliniques et pathologiques de

l’inflammation du SNC et la destruction des cellules exprimant HA soit au niveau

histologique soit au niveau analytique (cytométrie de flux) à différents temps. Des résultats

antérieurs de l’équipe avaient montré, en collaboration avec l’équipe du professeur H.

Lassmann, que le transfert de cellules Tc1 spécifiques de HA dans ces souris MOG-HA

donnait des manifestations cliniques inconstantes et modérées (perte de poids, mobilité

réduite et perte d’équilibre) et induisait une inflammation constante mais locale du SNC

associée à des zones focales de démyélinisation (inflammation qui n’était pas retrouvée chez

les souris simple transgénique MOG-Cre).

Dans une seconde partie, je me suis focalisée sur la possible synergie entre des LT-

CD8+ et un anticorps anti-MOG démyélinisant (Z2) dans l’auto-immunité du SNC. Pour

répondre à cette question, les souris MOG-HA ont tout d’abord été transférées avec 30.106 de

Tc1 spécifiques de HA puis ont reçu soit l’anticorps Z2 soit un anticorps contrôle de même

isotype. Pour chaque groupe, j’ai analysé les conséquences cliniques et pathologiques de

l’inflammation du SNC et étudié les paramètres histologiques de cette coopération. Des

Page 169: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

169

études antérieures avaient montré que le potentiel démyélinisant des anticorps dirigés contre

MOG était corrélé à leur habilité à fixer le complément (Piddlesden, Lassmann et al. 1993).

Pour ma thèse, je me suis plus particulièrement focalisée sur l’anticorps Z2, hautement

pathogène dans un modèle d’EAE chez le rat. Cet Ac a été obtenu par l’équipe de Linington

(Piddlesden, Lassmann et al. 1993). Après purification, l’effet de l’Ac Z2 a été investigué

dans des rats Lewis injectés préalablement avec les LT spécifiques de la MBP. Les résultats

histologiques de l’analyse de ces rats ont montré une forte démyélinisation avec un dépôt

important de la molécule C9 et une activation à 90% du complément (Piddlesden, Lassmann

et al. 1993; Goverman 2009)qui exacerbait les dommages sur la gaine de myéline.

1. Coopération des Tc1 et des Th1 ?

Afin de comprendre le rôle respectif des populations Th1 et Tc1, des souris MOG-HA

ont été transférées avec soit :

- 30.106 de Tc1 spécifiques de HA

- 30.106 de Th1 spécifiques de HA

- 30.106 de Tc1 spécifiques de HA + 30.106 de Th1 spécifiques de HA

Figure 1 : récapitulatif des transferts adoptifs de Tc1 et/ou Th1 dans les souris MOG-HA

a. Pureté des cellules mises en culture

Comme nous l’avons mentionné dans le chapitre Matériels et Méthodes, lors des

cultures Th1 ou Tc1, nous procédons à une purification des LT sur colonnes magnétiques. Les

cellules isolées des organes lymphoïdes des souris 6.5-TCR transgéniques ou CL4-TCR

transgéniques sont marquées par un anticorps biotinylé spécifiques. Ces cellules sont ensuite

incubées avec des billes magnétiques couplées à la streptavidine qui permettront de retenir les

Au total, 24 souris MOG-HA ont été tranférées avec des Tc1, 28 avec des Th1 et 38 avec des Tc1 et des Th1. La répartition en fonction des jours de sacrifice est présentée dans le tableau. Plusieurs méthodes ont été utilisées pour l’analyse de ces souris : soit une analyse histologique après fixation dans de la PFA 4%, soit une analyse histologique après congélation du SNC dans de l’OCT soit une analyse des cellules infiltrant le SNC en cytométrie de flux.

J9-J11 J18 J28 J9 J18 J5 J9 nTc1 3 4 3 2 3 1 9 25

Th1 3 1 4 4 3 1 11 27

Tc1 + Th1 5 9 7 2 3 1 11 38

PFA 4% OCT Cytométrie

Page 170: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

170

LT du phénotype souhaité sur la colonne. Afin de vérifier la pureté des cellules mises en

culture, nous faisons une analyse en cytométrie de flux des fractions positives (fraction

cellulaire retenue sur la colonne) de la sélection. Les figures 2 et 3 représentent un exemple

d’analyse de pureté des lymphocytes T avant mise en culture.

Pureté des LT-CD4+ :

Figure 2 : Analyse de la pureté des LT avant mise en culture.

Marquage en cytométrie de flux de la fraction cellulaire de la sélection positive par billes magnétiques avec les Ac anti-CD8-APC, anti-CD4-PE et anti-Vβ8-FITC.

Les LT mis en culture Th1 sont à 90% des CD4+, spécifiques de HA (94,78% Vβ8+).

La proportion de CD8+ est très faible (1,37%).

Pureté des LT-CD8+ :

Figure 3 : Analyse de la pureté des LT avant mise en culture.

Marquage en cytométrie de flux de la fraction cellulaire de la sélection positive par billes magnétiques avec les Ac anti-CD8-APC, anti-CD4-PE et anti-Vβ8-FITC.

CD8 CD4 Vβ8

1,37 % 90,07 % 94,78 %

CD8 CD4 Vβ8

91,44 % 7,91 % 98 %

Page 171: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

171

0,54 10,91

87,331,21

9,77 87,76

1,22 1,25

2,21 81,67

7,37 8,75

Non stimulé

37,69 19,91

5,7536,66

Stimulé

TN

Fαα αα

-A

PC

Isot

ype

-A

PC

Vββ ββ8

-F

ITC

IFN

γγ γγ-

AP

C

Granzyme B - PE IFNγγγγ - PE

Isotype - PE

CD8 - PerCp-Cy5.5

0,11 15,78

79,684,43

0,54 10,91

87,331,21

0,54 10,91

87,331,21

9,77 87,76

1,22 1,25

9,77 87,76

1,22 1,25

2,21 81,67

7,37 8,75

2,21 81,67

7,37 8,75

Non stimulé

37,69 19,91

5,7536,66

37,69 19,91

5,7536,66

Stimulé

TN

Fαα αα

-A

PC

Isot

ype

-A

PC

Vββ ββ8

-F

ITC

IFN

γγ γγ-

AP

C

Granzyme B - PE IFNγγγγ - PE

Isotype - PE

CD8 - PerCp-Cy5.5

0,11 15,78

79,684,43

0,11 15,78

79,684,43

0,11 15,78

79,684,43

Les LT mis en culture Tc1 sont à 92% des CD8+, spécifiques de HA (98% Vβ8+). La

proportion de CD4+ est de 7%.

b. Activation des LT transférés

Avant chaque transfert, les LT des diverses cultures sont analysés par cytométrie de

flux pour évaluer leur état d’activation. Pour cela, les cellules, après culture, sont restimulées

in vitro avec l’association PMA/ionomycine pendant 4H. Un marquage intracellulaire est

ensuite réalisé pour analyser la production d’IFN-γ, de TNF-α et de granzyme B par ces LT.

Les figures 4 et 5 montrent un exemple représentatif de résultats obtenus après le marquage

intracellulaire des cellules provenant respectivement de cultures Tc1 et Th1. Ces figures nous

donnent également un renseignement sur la pureté des cellules injectées. En effet, un

marquage de surface CD4 ou CD8 combiné avec un marquage de surface Vβ8 nous permet de

discriminer nos cellules d’intérêt spécifiques de HA.

Figure 4 : Activation des Tc1.

Marquage en cytométrie de flux des LT isolés des cultures Tc1 après restimulation in vitro avec de la PMA-Ionomycine durant 4H. Les marquages de surface sont réalisés avec les Ac anti-CD8-PerCP-Cy5.5, Ac anti-Vβ8-FITC et le marquage intracellulaire avec les anticorps anti-IFNγ, anti-TNFα et anti- granzyme B.

Page 172: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

172

Ainsi comme le montre la figures 4, les LT issus des cultures Tc1 qui sont stimulés

sont bien des cellules activées productrices d’IFN-γ et/ou de TNF-α (92%) et d’IFN-γ et/ou de

Granzyme B (99,5%). On peut remarquer que les cellules non stimulées in vitro avec la

PMA/ionomycine expriment granzyme B, TNF-α et à moindre niveau l’IFN-γ traduisant leur

engagement dans une voie de différenciation en CTL. En effet, ces Tc1 sont producteurs

d’IFN-γ et/ou de TNF-α (64%) et d’IFN-γ et/ou de Granzyme B (80%). De plus, ces cellules

présentent un marquage de surface CD8+/Vβ8+ (88%) montrant que ces cellules sont

principalement des Tc1 spécifiques de HA. Les cellules transférées issues des cultures Tc1

sont donc bien des Tc1 activés et spécifiques de notre antigène d’intérêt.

Figure 5 : Activation des Th1.

0,54 10,91

87,331,21

Non stimulé

Stimulé

TN

Fαα αα

-AP

CIs

otyp

e-

AP

C

Vββ ββ8

-F

ITC

IFN

γγ γγ-

AP

C

Granzyme B - PE IFN γγγγ - PE

Isotype - PE

CD4 - PerCp-Cy5.5

0,08

84,76

1,29

13,86

2,38 7,78

51,81 38,03

6,82 72,71

6,3414,12

21,69 51,65

13,25 13,400,54 10,91

87,331,21

Non stimulé

Stimulé

TN

Fαα αα

-AP

CIs

otyp

e-

AP

C

Vββ ββ8

-F

ITC

IFN

γγ γγ-

AP

C

Granzyme B - PE IFN γγγγ - PE

Isotype - PE

CD4 - PerCp-Cy5.5

0,08

84,76

1,29

13,86

0,08

84,76

1,29

13,86

2,38 7,78

51,81 38,03

2,38 7,78

51,81 38,03

6,82 72,71

6,3414,12

6,82 72,71

6,3414,12

21,69 51,65

13,25 13,40

21,69 51,65

13,25 13,40

79,5 7,1

8,3 5,1

Marquage en cytométrie de flux des LT isolés des cultures Th1 après restimulation in vitro avec de la PMA-Ionomycine durant 4H. Les marquages de surface sont réalisés avec les Ac anti-CD8-PerCP-Cy5.5, Ac anti-Vβ8-FITC et le marquage intracellulaire avec les anticorps anti-IFNγ, anti-TNFα et anti- granzyme B.

Page 173: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

173

Il en est de même pour les cellules transférées issues des cultures Th1 [figure 5]. En

effet, ces LT, après stimulation sont bien des cellules activées productrices d’IFN-γ et/ou de

TNF-α (86%) et d’IFN-γ et/ou de Granzyme B (87%). On peut également remarquer que les

cellules non stimulées in vitro par la PMA/Ionomycine ont un faible profil d’activation

montrant que ces cellules expriment un phénotype effecteur à la fin de la culture. En effet, ces

Th1 sont producteurs d’IFN-γ et/ou de TNF-α (14%) et de Granzyme B (49%). De plus, ces

cellules présentent un marquage de surface CD4+/Vβ8+ (75%) montrant que ces cellules sont

principalement des Th1 spécifiques de HA. Nous pouvons ici mentionner l’expression

inattendue de la molécule granzyme B par ces cellules Th1. En effet, cette molécule est

connue pour être exprimée par les LT activés de type Tc1 ou par les cellules NK activées. Or,

il y a quelques années, une étude surprenante avait montré que les LT-CD4+ de type

régulateur pouvaient également synthétiser cette molécule et avoir un effet protecteur anti-

tumoral par la voie perforine/granzyme (Ley, 2007). Mais une étude très récente démontre

que les LT-CD4+ murins peuvent à leur tour synthétiser les molécules de granzymes suite à

une activation par des billes CD3/CD28 ou en MLR (Ley, 2009). Ceci pourrait donc expliquer

l’expression de granzyme par les Th1 dans notre modèle, où ces Th1 sont très fortement

stimulés par la PMA/ionomycine.

Des contrôles du potentiel pathogène in vivo de ces LT-CD4 ou CD8 spécifiques de

HA sont également effectués. Pour cela, 5.106 de Tc1 ou de Th1 sont transférés dans des

souris INS-HA (souris exprimant l’antigène HA sous contrôle d’un promoteur pancréatique).

Ces souris développent un diabète, 5-6 jours après le transfert de Tc1 et 8-9 jours après le

transfert de Th1. Les souris INS-HA malades sont euthanasiées après estimation du taux de

glucose dans l’urine.

Ainsi pour nos analyses, seules les souris ayant reçu des Tc1 et/ou Th1 avec un profil

activé in vitro et ayant induit un diabète de type 1 in vivo ont été prises en considération.

Page 174: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

174

c. Suivi clinique

Chaque groupe de souris a été suivi quotidiennement pour leur évolution pondérale.

Figure 6 : Evolution pondérale des animaux après transfert adoptif de LT.

Les animaux ont été suivis individuellement tous les jours. Les courbes ci-dessus montrent l’évolution du poids au cours du temps en faisant une moyenne du poids de chacun des groupes. Il existe 3 groupes : les souris MOG-HA transférées avec 30.106 de Tc1 spécifiques de HA (courbe bleue, période 0-9 jours : n=25, période 9-11 jours : n=11, période 11-18 jours : n=9, période 18-28 jours : n=2), les souris MOG-HA transférées avec 30.106 de Th1 spécifiques de HA (courbe rouge, période 0-9 jours : n=27, période 9-11 jours : n=11, période 11-18 jours : n=9, période 18-28 jours : n=5) et les souris MOG-HA co-transféreés avec 30.106 de Tc1 spécifiques de HA et 30.106 de Th1 spécifiques de HA (courbe verte, période 0-9 jours : n=38, période 9-11 jours : n=22, période 11-18 jours : n=19, période 18-28 jours : n=7). Les barres d’erreurs correspondent au SEM.

Comme le montre la figure 6, les différents groupes ont une évolution pondérale

différente dans le temps. En effet, en ce qui concerne les animaux transférés avec 30.106 de

Tc1 spécifiques de HA nous observons une perte de poids relative (3%) entre 9 et 18 jours

alors que pour les animaux transférés avec 30.106 de Th1 spécifiques de HA, la perte de poids

est beaucoup plus tardive (à partir du jour 18). Par contre, il est intéressant de souligner le fait

que les animaux ayant reçu les deux populations T (Tc1 + Th1) perdent du poids plus

précocement (entre le jour 5 et le jour 11) et que cette perte est en moyenne plus importante

(6%). Afin d’approfondir l’interprétation de ces résultats, nous avons analysé plus

particulièrement les périodes entre 0 et 9 jours et 9 et 18 jours après transfert. Pour cela, nous

Evolution du poids

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2890

95

100

105

110

115

Tc1 + Th1Th1

Tc1

Temps après transfert adoptif des LT (jours)

Evolution du poids

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2890

95

100

105

110

115

Tc1 + Th1Th1

Tc1

Temps après transfert adoptif des LT (jours)

Page 175: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

175

avons comparé la perte maximale de poids des animaux par rapport au jour 0 entre les

groupes comme représenté en figure 7.

Figure 7 : Différence pondérale des différents groupes d’animaux après transferts

adoptifs de LT.

Pour chaque groupe, le poids minimal de chaque animal (en % de la valeur basale) durant la période 0-9 jours (A) ou la période 9-18 jours (B) est représenté. Chaque point représente un animal. Pour la période 0-9 jours : n=25 pour le groupe Tc1, n=27 pour le groupe Th1, n=38 pour le groupe Tc1 + Th1. Pour la période 9-18 jours : n=11 pour le groupe Tc1, n=11 pour le groupe Th1, n=22 pour le groupe Tc1 + Th1. Les moyennes des groupes sont comparées statistiquement par un Student T test non apparié.

Ainsi nous confirmons les résultats précédemment obtenus par l’équipe selon lesquels

un transfert de Tc1 dans les souris MOG-HA provoque une perte de poids chez ces animaux à

partir du jour 9. Cette perte de poids n’est pas retrouvée chez les souris MOG-HA transférées

avec les Th1 durant les mêmes périodes. Elle semble plus tardive mais le faible nombre

d’animaux analysés à cette période (18-28 jours) ne nous permet pas de conclure sur la perte

de poids induite par les Th1 après 18 jours. En ce qui concerne les animaux ayant reçu le co-

transfert Tc1 + Th1, comme attendu, ils perdent également du poids. Mais il ne semble pas

que ce co-transfert des Tc1 et Th1 aggrave la perte de poids induite seulement par les Tc1

(non significativité de la comparaison entre les groupes Tc1 seuls et Tc1 + Th1). Sur la base

de cette analyse pondérale, nous ne pouvons donc pas révéler la coopération entre les deux

populations Tc1 et Th1.

En l’absence de signe neurologique déficitaire patent, j’ai analysé de façon fine les

performances motrices des souris receveuses de Tc1, Th1 ou Tc1 + Th1. Pour cela j’ai réalisé

des tests avec une ROTaRod qui permet de tester la résistance motrice et l’équilibre de chaque

A B ns

(p = 0,4775)ns

(p = 0,38)ns

(p = 0,07)

Tc1 Th1 Tc1 +Th175

80

85

90

95

100

105

Tc1 Th1 Tc1 +Th175

80

85

90

95

100

105

Var

iatio

n du

poi

ds (

%)

Tc1 Th1 Tc1 + Th185

90

95

100

105

110

115

Tc1 Th1 Tc1 + Th185

90

95

100

105

110

115**

(p = 0 ,019)***

(p = 0 ,0001)

ns(p = 0,974)

**(p = 0 ,019)

***(p = 0 ,0001)

ns(p = 0,974)

Page 176: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

176

souris. Les tests ont été réalisés comme précisé dans le Matériels et Méthodes

quotidiennement.

Figure 8 : Evolution de la résistance motrice des animaux après transfert adoptif de LT.

Chaque animal a été suivi individuellement tous les jours. Les courbes ci-dessus montrent l’évolution de la résistance motrice au cours du temps en faisant une moyenne de la résistance de chaque animal à chaque jour en tenant compte du groupe auquel il appartient. Il existe 3 groupes : les souris MOG-HA transférées avec 30.106 de Tc1 spécifiques de HA (courbe bleue, période 0-9 jours : n=11, période 9-18 jours : n=6, période 18-28 jours : n=2), les souris MOG-HA transférées avec 30.106 de Th1 spécifiques de HA (courbe rouge, période 0-9 jours : n=8, période 9--18 jours : n=4, période 18-28 jours : n=4) et les souris MOG-HA co-transféreés avec 30.106 de Tc1 spécifiques de HA et 30.106 de Th1 spécifiques de HA (courbe verte, période 0-9 jours : n=35, période 9-18 jours : n=12, période 18-28 jours : n=7). Les barres d’erreurs correspondent au SEM.

Les résultats présentés en figure 8, montrent que les LT, quels qu’ils soient, peuvent

induire une pathologie neurologique car chaque groupe de souris présente une période de

baisse des performances au test de ROTaRod alors que des souris contrôles non transgéniques

ne présentent, quant à elles, une stabilité de leur performance.

Comme pour la perte de poids, le groupe transféré avec les Th1 développe des troubles

plus tardifs. Il semblerait donc que les Th1 seuls induisent des lésions neurologiques de façon

retardée. Par contre pour les groupes Tc1 et Tc1+ Th1, la perte de coordination motrice est

similaire en intensité et dans le temps. Ceci pourrait signifier que les Tc1, comme l’équipe

l’avait montré précédemment, engendrent des dommages tissulaires au niveau du SNC ayant

ici pour traduction une faiblesse des souris au niveau moteur. Cet état est cependant réversible

puisque chaque groupe récupère sa motricité à partir du jour 18. Comme pour l’analyse

Evolution de la résistance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2840

60

80

100

120

140

160

180

200

220

240

Tc1

Th1

Tc1 + Th1

temps après transfert adoptif de LT (jours)

Evolution de la résistance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2840

Evolution de la résistance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2840

60

80

100

120

140

160

180

200

220

240

Tc1

Th1

Tc1 + Th1

temps après transfert adoptif de LT (jours)

Page 177: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

177

pondérale, j’ai affiné l’interprétation de ces résultats par une analyse comparant les baisses

maximales des performances motrices par rapport au jour 0 de chaque animal durant les

périodes 0-9 jours [figure 9-A] et 9-18 jours [figure 9-B]. Ces résultats montrent que les

différences observées ne sont pas significatives et ne permettent donc pas de conclure à un

effet synergique des populations Tc1 et Th1.

Figure 9 : Résistance motrice des différents groupes d’animaux après transfert adoptif de

LT.

Chaque animal a été suivi quotidiennement. Pour chaque groupe, le plus faible temps de résistance de chaque animal (en % de la valeur basale) durant la période 0-9 jours (A) ou la période 9-18 jours (B) a été représenté. Chaque point représente un animal. Pour la période 0-9 jours : n=11 pour le groupe Tc1, n=8 pour le groupe Th1, n=35 pour le groupe Tc1 + Th1. Pour la période 9-18 jours : n=6 pour le groupe Tc1, n=4 pour le groupe Th1, n=12 pour le groupe Tc1 + Th1. Les moyennes des groupes sont comparées statistiquement par un Student T test non apparié.

Outre ces observations de pertes pondérales et de pertes motrices en ROTaRod, les

animaux n’ont montré aucune des manifestations cliniques observées lors d’une EAE

classique. En effet, nous n’avons pas observé de paralysie des pattes, ni d’atonie de la queue,

ni d’ataxie franche.

Var

iatio

n de

la r

ésis

tanc

e (%

)

ns(p = 0,1979)

ns(p = 0,2944)

ns(p = 0,85)

Var

iatio

n de

la r

ésis

tanc

e (%

)

A B ns (p = 0,1027)

ns (p = 0,9774)

ns (p = 0,0954)

0

50

100

150

200

Tc1 Th1 Tc1 + Th1

250

Tc1 Th1 Tc1 + Th1 0

50

100

150

200

Page 178: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

178

d. Histologie

Au niveau histologique, les analyses ont été faites sur des coupes de cerveau, moelle

épinière et nerfs optiques. Pour réaliser ces coupes, deux techniques ont été utilisées : soit à

partir d’animaux fixés en PFA4% (après perfusion intra-cardiaque au PBS, les animaux sont

perfusés en PFA4% puis conservés pendant 24H dans de la PFA4% pour être ensuite

conservé dans de l’éthanol à 70%), soit à partir d’organes congelés (après perfusion intra-

cardiaque au PBS, les organes d’intérêts sont prélevés et congelés à -80°C dans de l’OCT). Le

tableau 1 montre les groupes analysés en fonction de la modalité de la technique et du temps

de sacrifice.

Ces résultats histologiques montrent une infiltration des cellules transférées dans le

SNC, quelles soient Tc1 ou Th1. Par contre, l’intensité de l’inflammation induite par ces

cellules est différente selon qu’il sagisse de Tc1 ou de Th1.

En effet, les Th1 provoque une faible inflammation du SNC sans apparition de

démyélinsation de la gaine de myéline [figures 10 et 11]. Cette inflammation est présente

dans la moelle épinière dès le 9ème jour après transfert de Th1 mais absente du cerveau. Au

18ème jour après transfert, l’inflammatoin disparaît au niveau du nerf optique mais est présente

chez 100% des animaux dans la moelle épinière et dans le cerveau. Cette inflmmation

disparaît totalement 28 jours après transfert.

L’inflammation induite par les Tc1 est plus importante et précoce. En effet, dès le J9,

100% des animaux ont des signes inflammatoires au niveau de la moelle épinière et la

majorité d’entre eux présentent également ces signes inflammatoires au niveau du cerveau et

du nerf optique. Au 18ème jour après transfert, 100% des animaux ont des infiltrats

inflammatoires que ce soit dans la moelle épinière, dans le cerveau ou dans le nerf optique.

Cette inflammation est totalement reversée au 28ème jour après transfert. On observe

également, suite à ce transfert, des zones de démyélinisation de la gaine de myéline dès le 9ème

jour au niveau du nerf optique [figures 10 et 11].

Suite au co-transfert de Tc1 et de Th1, l’inflammation est beaucoup plus sévère et plus

persistante. En effet, l’inflammation dès le 9ème jour touche la quasi-totalité des animaux. Au

niveau du cerveau alors que seulement 50% des animaux présentent des signes

inflammatoires au niveau du nerf optique. Au 18ème jour après transfert, 100% des animaux

montrent des signes inflammatoires au niveau du cerveau, de la moelle épinière et du nerf

optique avec des zones de démyélinisation au niveau de ces nerfs optiques. Les zones

Page 179: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

179

inflammées du cerveau sont également beaucoup plus nombreuses touchant non seulement les

méninges comme pour les simples transferts mais également le cortex, l’hypothalamus, le

cervelet et l’hyppocampe .Ces signes inflammatoires perdurent au 28ème jour après transfert

dans la majorité des animaux. Des zones de démyélinisation sont également présentes à ce

jour là avec cependant des phénomènes de réversion et de rémyélinisation [figures 10 et 11].

.

Ces observations qualitatives sont confirmées par des analyses quantitatives des

infiltrats de LT au niveau de la moelle épinière et du nerf optique où nous observons des

infiltrats cellulaires beaucoup plus nombreux lorsque les deux populations lymphocytaires

(Tc1 et Th1) sont co-transférés [figure 10B].

Figure 10 : récapitulatif des signes histologiques suite aux transferts de LT.

A. Le cerveau, la moelle épinière et les nerfs optiques ont été analysés à différent temps de sacrifice (9/11 jours, 18 jours et 28 jours. Dans ce tableau sont représentés les résultats selon l’inflammation induite par les LT dans le SNC en fonction des transferts effectués (Tc1 seuls, Th1 seuls ou co-transfert Tc1 + Th1). Pour le nerf optique des données supplémentaires concernant la démyélinisation aux différents temps ont également été mentionnées. Les fractions représentent le nombre de souris présentant des signes inflammatoires sur le nombre de souris total analysé. B. Analyse quantitative du nombre moyen de LT infiltrant le SNC au niveau de la moelle épinière et du nerf optique suite aux transferts de Tc1 seuls ou de Tc1 + Th1 à J18. Pour le transfert Tc1, n=4, pour le co-transfert Tc1+Th1, n=7. ND=non déterminé.

Jour de sacrifice Tc1 Th1 Tc1 + Th1 Tc1 Th1 Tc1 + Th1 Tc1 Th1 Tc1 + Th1 Tc1 Th1 Tc1 + Th19/11 2/3 0/2 10/12 3/3 2/2 9/12 1/3 1/2 6/12 1/1 1/2 3/818 3/4 2/2 8/8 4/4 2/2 8/8 3/3 0/2 7/8 ND 0/2 1/128 1/4 0/2 5/8 0/4 0/2 6/8 0/4 0/2 4/8 0/4 0/2 4/8

Cerveau Moelle Epinière Nerf Optiqueinflammation inflammation inflammation démyélinisation

A

B

Tc1 Tc1 + Th1

Moelle Epinière 2,76 ± 3,11 13,83 ± 17 Nerf Optique 32,95 ± 28 76,46 ± 69

Page 180: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

180

B

A

Figure 11 : coupes histologiques de moelle épinière, nerf optique et cerveau suite aux

différents transferts de LT.

A. Coupes histologiques de ME et du NO à J18 après transferts de Tc1 ou de Tc1+Th1. B. Coupes histologiques de ME et du NO à J28 après transferts de Tc1 ou de Th1 ou de Tc1+Th1. ME : Moelle Epinière ; NO : Nerf Optique ; CV : cerveau.

ME

NO

Infiltration de LT dans les méninges et le parenchyme

CD3+

Infiltration de LT dans le NO sans démyélinisation

CD3+

CD3+

CV

CD3+

(x5) (x5) (x20) (x20)

(x20) (x10)

(x20) (x10)

Infiltration massive de LT dans les méninges, l’hypothalamus et le thalamus

ME

NO

Th1 Tc1 + Th1

CD3

CD3

Tc1

CD3

CD3

CD3

CD3

(x5) (x5)

(x5)

(x20) (x20)

(x20)

(x10) (x10) (x10)

Tc1 Tc1 + Th1

Page 181: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

181

Ainsi, il semblerait que le co-transfert Tc1+Th1 aggrave l’inflammation du SNC que

ce soit au niveau du cerveau, de la moelle épinière ou du nerf optique suggérant une

coopération des deux populations lymphocytaires Tc1 et Th1.

e. Etude des cellules inflammatoires par cytométrie en flux.

Af in de comprendre le rôle de chaque population (Tc1 et Th1), des souris MOG-HA

ont été transférées comme précédemment avec soit 30.106 de Tc1 spécifiques de HA, soit

30.106 de Th1 spécifiques de HA, soit 30.106 de Tc1 spécifiques de HA + 30.106 de Th1

spécifiques de HA. Les souris ont ensuite été sacrifiées 9 jours après transfert. Les cellules

inflammatoires ont été purifiées des cerveaux et moelles épinières puis analysées en

cytométrie de flux. Cela a eu pour but de quantifier l’infiltration des LT transférés et des

cellules inflammatoires recrutées (macrophages, CD mais aussi cellules microgliales).

D’autres expériences ont donc été réalisées afin de mieux appréhender ce phénomène et

d’analyser l’infiltration des cellules T lors des différents transferts et leurs conséquences sur la

microglie, les macrophages et les cellules dendritiques au sein du SNC.

Figure 12 : caractérisation des cellules analysées.

Les LT sont les cellules exprimant les marqueurs Thy1.2+ et CD45hi(A). Les cellules macrophagiques et microgliales sont sélectionnées parmi des cellules totales n’exprimant pas le CD11c. Parmi cette population CD11c-, on distingue les macrophages -CD11bint-CD45hi

(B) et la microglie -CD11bint-CD45int (B). Les cellules dendritiques sont les cellules CD45hi-CD11c+ (C).

A B

C

Page 182: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

182

Les populations de cellules inflammatoires ont été analysées grâce à des marqueurs de

surface. La figure 12 montre un exemple représentatif des modalités retenues pour la

discrimination des différentes populations. Ainsi, les cellules T ont été identifiées comme

étant les cellules exprimant les molécules Thy1.2 et CD45hi. Les CD sont les cellules CD45hi-

CD11c+, les cellules macrophagiques sont les cellules CD11c--CD11bint-CD45hi et les cellules

microgliales sont les cellules CD11c--CD11bint-CD45int.

Figure 13 : cellules infiltrant le SNC après transferts adoptifs de LT.

Les souris MOG-HA ont été transférées soit avec 30.106 de Tc1 spécifiques de HA, soit avec 30.106 de Th1 spécifiques de HA, soit avec 30.106 de chaque population. Les animaux ont été sacrifiés à J9 puis leur SNC (cerveau + moelle épinière) a été analysé en cytométrie de flux. A. Nombre absolu de cellules T ( Thy1.2+-CD45hi) infiltrant le SNC par animal. B. Nombre absolu de CD (CD45hi-CD11c+) par animal. C. Nombre absolu de macrophages (CD11c--CD11bint-CD45hi)par animal. D. Nombre absolu de cellules microgliales (CD11c--CD11bint-CD45int) par animal. Le groupe Tc1 : n=4, le groupe Th1 : n=6, le groupe Tc1+Th1 : n=6, le groupe Balb/c : n=3. Nombre d’expérience indépendante : n=2. Les groupes sont comparés statistiquement par un Student T test non apparié. Les barres d’erreurs représentent les SEM.

Ces différentes populations ont donc été analysées après les différents transferts de LT

dans les souris MOG-HA [figure 13]. Comme le montre la figure 11-A, les cellules

Tc1 Th1 Tc1 + Th1 Balb/c0

50000

100000

150000

200000

250000

ns(p = 0,73)

*(p = 0,04)

*(p = 0,028)

Tc1 Th1 Tc1 + Th1 Balb/c0

100000

200000

300000ns

(p = 0,97)

ns(p = 0,43)

ns(p = 0,43)

Cellules dendritiques

Tc1 Th1 Tc1 + Th1 Balb/c0

100000

200000

300000

ns(p = 0,35)

ns(p = 0,17)

*(p = 0,02)

Tc1 Th1 Tc1 + Th1 Balb/c0

25000

50000

75000

100000ns

(p = 0,5)

ns(p = 0,35)

ns(p = 0,16)

Nom

bre

abso

lu d

e ce

llule

sT

hy1.

2+ C

D45

+ in

filtr

ant

le S

NC

par

sou

ris

Nom

bre

abso

lu d

e ce

llule

sT

hy1.

2+ C

D45

+ in

filtr

ant

le S

NC

par

sou

ris

No

mbr

e ab

solu

de

cellu

les

Mic

rogl

iale

sin

filtr

ant

Le S

NC

par

sou

ris

Nom

bre

abso

lu d

e ce

llule

sD

endr

itiqu

es in

filtr

ant

le S

NC

par

sou

ris

No

mbr

e ab

solu

de

Mac

roph

ages

infil

tran

tLe

SN

C p

ar s

ouris

A B

C D

Page 183: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

183

transférées, qu’elles soient Tc1 ou Th1 traversent la barrière hémato-encéphalique et

pénètrent dans le SNC. Aucune différence n’est notable quant à l’efficacité de pénétration de

chaque population T isolément au temps choisi de J9. Par contre, le co-transfert des deux

populations augmente significativement le nombre de LT infiltrant le SNC. Le nombre de LT

par animal dans le groupe ayant reçu les Tc1 + Th1 est supérieur à la somme arithmétique

des valeurs des groupes Th1 seuls et Tc1 seuls. Ceci suggère une coopération des deux

populations qui pourraient agir en synergie pour faciliter la transmigration des LT vers le

SNC.

En ce qui concerne la présence de cellule de l’immunité innée, aucune différence n’est

notée pour le nombre absolu de cellules microgliales présentes dans le SNC suite à un

transfert de Tc1, Th1 ou co-transfert Tc1 et Th1 (figure 13-C). La présence de ces populations

ne semble pas influencer celle de la microglie. Il en est de même pour les macrophages

présents ou infiltrants le SNC (figure 13-D). Leur nombre ne varie pas en fonction de la

présence des Tc1 ou Th1 ou des deux populations. Par contre, une différence significative

s’observe lors du co-transfert des Tc1 avec les Th1 sur le nombre absolu de CD infiltrant le

SNC (figure 13-B). En effet, ce nombre de CD est trois fois supérieur lorsque les souris ont

été transférées avec les Tc1 + Th1 comparé aux souris simplement transférées avec les Th1.

Par contre, cette différence est moindre pour la comparaison avec les simples transferts Tc1.

Cela suggère que la présence des Tc1 favorise le recrutement des CD au sein du SNC lors

d’une inflammation. Cela expliquerait pourquoi les animaux co-transférés perdent

significativement plus de poids que les animaux simplement transférés avec les Th1. La

présence des Tc1 aggraverait donc la maladie induite par les Th1 seuls. Cependant, il est

intéressant de noter que ces cellules infiltrant le SNC semblent avoir un phénotype activé. En

effet, les cellules de l’immunité innée présentes dans le SNC lors de ces transferts de LT

surexpriment les molécules de CMH de classe II. Ce microenvironnement est donc apte à

provoquer une inflammation (phagocytose par les macrophages, présentation antigénique par

les CD et microgliale) dont l’intensité varie en fonction des LT transférés [figure 14].

.

Page 184: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

184

Figure 14 : expression de molécules de CMH de classe II par les cellules du SNC après

transfert adoptif de LT.

f. conclusion

En conclusion de cette première partie sur notre modèle, les LT, soit Tc1 soit Th1,

sont capables de pénétrer dans le SNC et d’induire une inflammation. Les résultats combinés

des diverses analyses (cliniques, histologiques et fonctionnelles) permettent de conclure à une

action synergique des Tc1 et des Th1 induisant ainsi une maladie plus intense lorsqu’ils sont

présents simultanément. En effet, le nombre de LT infiltrant le SNC lors du double transfert

Tc1 + Th1 est significativement plus important que la somme arithmétique des LT infiltrant le

SNC lors des simples transferts Tc1 ou Th1 (figure 11-A). Chaque population Tc1 et Th1

agirait donc en synergie pour pénétrer dans le SNC et provoquer ainsi des lésions plus

importantes au niveau de la gaine de myéline induisant une aggravation de la maladie.

Cependant cette synergie n’a pas de conséquence significative sur la microglie environnante

ainsi que sur le recrutement de macrophages dans le SNC.

Page 185: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

185

2. Coopération des Tc1 et des anticorps ?

Afin d’analyser la coopération potentielle des Tc1 avec un anticorps démyélinisant

(l’anticorps Z2 reconnaissant un épitope conformationnel de MOG), des souris MOG-HA ont

été transférées avec 30.106 de Tc1 spécifiques de HA. Deux conditions ont alors été testées :

l’effet de l’Ac Z2 sur une période de 9 jours ou sur une période de 28 jours. Les animaux

ayant été sacrifié au 9ème jour ont reçu 3 doses d’Ac (=0,5mg) à 4, 6 et 8 jours après transferts

des Tc1. Les animaux ayant été sacrifiés au 28ème jour ont reçu 4 doses d’Ac à 5, 8, 12 et 16

jours après transfert. Pour toutes ces expériences, des groupes contrôles ont évidemment été

analysés suite à l’injection d’un anticorps témoin de même isotype, dans les mêmes

conditions. Durant toute la durée de l’expérience les animaux ont été suivis cliniquement

(poids et résistance motrice à l’effort). La figure 15 montre la répartition des animaux étudiés

selon leur sexe, la durée de l’expérience et l’Ac reçu.

Figure 15 : récapitulatif des animaux étudiés lors d’un transfert Tc1 et d’Ac

Les souris MOG-HA ont été transférées soit avec 30.106 de Tc1 spécifiques de HA puis avec soit un anticorps démyélinisant Z2 soit un anticorps contrôle de même isotype. Le nombre de souris analysées et les temps de sacrifices sont indiqués dans le tableau.

a. Suivi clinique

Les souris MOG-HA ont donc été suivies quotidiennement au niveau de leur évolution

pondérale.

La figure 16 confirme les résultats obtenus dans la première partie sur la coopération

Tc1/Th1 selon lesquels les souris MOG-HA perdent du poids entre 9 et 18 jours après un

transfert de Tc1. Dans ces expériences, nous pouvons observer que des injections

supplémentaires d’un anticorps démyélinisant semblent augmenter cette perte de poids, que ce

soit chez les males ou chez les femelles, à 28 jours.

Femelle Male Femelle MaleZ2 3 2 3 2

Isotype contrôle 2 2 3 2

J9 J28

Page 186: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

186

Figure 16 : Evolution pondérale des animaux après transferts adoptifs de LT et

co-injections d’Ac.

Chaque animal est suivi quotidiennement. Les courbes ci-dessus montrent l’évolution du poids au cours du temps en faisant une moyenne du poids des animaux de chaque groupe. Il existe 2 groupes : les souris MOG-HA transférées avec 30.106 de Tc1 spécifiques de HA ayant reçu 3 ou 4 doses d’Ac (courbe rouge) ou 3 ou 4 doses danticorps témoin de même isotype (courbe bleu). A. Souris sacrifieés à J9 ayant reçu 3 doses de Z2 (n = 5) ou d’anticorps témoin (n = 4). B. Souris sacrifiées à J28 ayant reçu 4 doses de Z2 (n = 5) ou d’anticorps témoin (n = 5). Les flèches noires représentent les injections de 0,5mg d’anticorps ou d’isotype. Les barres d’erreurs correspondent au SEM.

Af in d’interpréter statistiquement ces observations, j’ai analysé ces différences en

combinant les résultats des males et des femelles (puisque les tendances étaient les mêmes

quelque soit le sexe dans la figure 16) et en prenant pour chaque jour la valeur maximale de

variation de poids de chaque animal [figure 17].

Figure 17 : Différence pondérale des différents groupes d’animaux après transferts

adoptifs de LT et co-injections d’Ac.

Pour chaque groupe, le poids minimum de chaque animal (en % de la valeur basale) pour l’expérience à J9 (A) ou à J28 (B) a été representé. Chaque point représente un animal. Les moyennes des groupes sont comparées statistiquement par un Student T test non apparié.

A B

Tc1 + Z2 Tc1 + Ac témoin70

75

80

85

90

95

100

105

Tc1 + Z2 Tc1 + Ac témoin70

75

80

85

90

95

100

105

Tc1 + Z2 Tc1 + Ac témoin80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Tc1 + Z2 Tc1 + Ac témoin80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

B A

Tc1 + Z2Tc1 + anticorps témoin

Temps après transfert adoptif de LT (jours)

Poi

ds (

%)

Tc1 + Z2Tc1 + anticorps témoinTc1 + Z2Tc1 + anticorps témoin

Temps après transfert adoptif de LT (jours)

Poi

ds (

%)

Temps après transfert adoptif de LT (jours)

Poi

ds (

%)

Temps après transfert adoptif de LT (jours)

Poi

ds (

%)

ns p = 0,58

ns p = 0,58

Page 187: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

187

Par cette analyse, je confirme bien que sur une période de 28 jours, la présence de l’Ac

Z2 aggrave la perte de poids induite par les Tc1 dans les souris MOG-HA. Par ces résultats,

nous pouvons donc suggérer une coopération entre les Tc1 et les anticorps démyélinisants.

Cette coopération semble toutefois nécessiter du temps puisque à jour 9, aucune différence

n’est notable entre les deux groupes Tc1 + Z2 et Tc1 + Ac témoin.

Des tests de résistance motrice à l’effort ont également été réalisés par des analyses de

résultat en ROTaRod pour chaque souris. Les tests ont été réalisés quotidiennement comme

précisé dans le chapitre Matériels et Méthodes.

Les résultats présentés en figure 18 confirment que les Tc1 pénètrent bien dans le SNC

provoquant des désordres moteurs chez la souris MOG-HA ayant pour conséquence une

moindre résistance à l’effort physique. Par contre, ces conséquences motrices ne semblent pas

être aggravées suite aux injections de l’Ac démyélinisant Z2, que les souris soient males ou

femelles ou que la période de traitement soit de 9 ou 28 jours.

Figure 18 : Evolution de la résistance motrice des animaux après transferts adoptifs

de LT et co-injections d’Ac.

Chaque animal a été suivi quotidiennement. Les courbes ci-dessus montrent la résistance motrice au cours du temps en faisant une moyenne pour chaque animal de chaque groupe. Il existe 2 groupes : les souris MOG-HA transférées avec 30.106 de Tc1 spécifiques de HA ayant reçu 3 ou 4 doses de Z2 (courbe rouge) ou 3 ou 4 doses d’anticorps témoin de même isotype (courbe bleu). A. Souris sacrifiées à J9 ayant reçu 3 doses de Z2 (n = 5) ou d’Ac témoin (n = 4). B. Souris sacrifiées à J28 ayant reçu 4 doses de Z2 (n = 5) ou d’Ac témoin (n = 5). Les flèches noires représentent les injections de 0,5mg d’anticorps ou d’isotype. Les barres d’erreurs correspondent au SEM.

A B

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Temps après transfert adoptif de LT (jours)

Rés

ista

nce

(%)

Page 188: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

188

Comme précédemment pour le poids, afin d’affiner ces résultats, j’ai combiné les

résultats des males et des femelles en prenant pour chaque jour la valeur maximale de

variation de résistance de chaque animal [figure 19].

Si les résultats au niveau pondéral suggéraient une coopération entre les Ac et LT, les

résultats de résistance motrice ne révèlent pas de coopération entre les deux populations

puisque les différences entre les deux groupes quelques soient le temps de l’expérience ne

sont pas significatives.

Outre ces observations, les animaux n’ont montré aucune autre manifestation clinique

observée lors d’une EAE classique

Figure 19 : Résistance motrice des différents groupes d’animaux après transferts adoptifs

de LT et co-injections d’Ac.

Chaque groupe d’animaux a été suivi individuellement tous les jours. Pour chaque groupe, les valeurs maximales de variation de résistance de chaque animal durant la période 0-9 jours (A) ou la période 9-18 jours (B) ont été gardées. Chaque point représente un animal. Pour la période 0-9 jours : n=11 pour le groupe Tc1, n=8 pour le groupe Th1, n=35 pour le groupe Tc1 + Th1. Pour la période 9-18 jours : n=6 pour le groupe Tc1, n=48 pour le groupe Th1, n=12 pour le groupe Tc1 + Th1. Les moyennes des groupes sont comparées statistiquement par un Student T test non apparié.

A B

Tc1 + Z2 Tc1 + Ac témoin0

102030405060708090

100110120

Tc1 + Z2 Tc1 + Ac témoin0

102030405060708090

100110120

Tc1 + Z2 Tc1 + Ac témoin0

102030405060708090

100110120

Tc1 + Z2 Tc1 + Ac témoin0

102030405060708090

100110120

nsp = 0,4875

nsp = 0,4875

nsp = 0,2326

nsp = 0,2326p = 0,48 p = 0,23

Page 189: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

189

b. Histologie

Au niveau histologique, les analyses ont été faites sur des coupes de cerveau, moelle

épinière et nerfs optiques à partir d’animaux fixés en PFA4% (après perfusion intra-cardiaque

au PBS, les animaux sont perfusés en PFA4% puis conservés pendant 24H dans de la PFA4%

pour être ensuite conservé dans de l’éthanol à 70%). La figure 15 montre les groupes analysés

en fonction du temps de sacrifice (9 ou 28 jours).

Ces résultats histologiques montrent, comme présenté en figure 20, que les Tc1

induisent, comme attendu, une inflammation et une démyélinisation au niveau de la moelle

épinière dès le jour 9. Cette inflammation est largement diminuée au 28ème jour après transfert

de ces Tc1. Malgrè cette inflammation et un marquage Ig présent seulement au jour 9 au

niveau de la moelle épinière, du cerveau et parfois du nerf optique, aucun dépôt de

complément (molécule C9) n’est visible au niveau de ces organes. Ces observations sont

potentialisées par l’injection de l’Ac Z2 qui provoque une plus grande inflammation avec des

dépots d’Ig plus nombreux. La démyélinisation est également plus importante et peut être la

conséquence d’un dépôt du complément au niveau de la moelle épinière et du cerveau,

seulement au jour 9. Cette démyélinisation est plus persistante en présence de l’Ac tant au

niveau de la moelle épinière que du nerf optique. Il est à noter également que le marquage Ig

est visible au niveau de la microglie en présence ou non de l’Ac Z2 mais par contre la

présence de ce dernier induit un marquage spécifique au niveau de la myéline.

J9 J28

Tc1 + Z2 Tc1 + Ac

Témoin Tc1 + Z2 Tc1 + Ac

Témoin

Index d'inflammation 3,73 ± 1,5 3,1 ± 0,4 0,6 ± 0,4 0,15 ± 0,07

Démyélinisation de la ME 3/3 2/2 1/2 0/2

Démyélinisation du NO 12,3% ± 9,3% 2,5% ± 3,5% 48,5% ± 30% 38,5% ± 37% Dépôt Ig 3/3 0/2 2/2 0/2

Dépôt C9 3/3 0/2 0/2 0/2 Figure 20 : récapitulatif des signes histologiques suite aux transferts de LT et d’Ac.

Le cerveau, la moelle épinière et les nefs optiques ont été analysés à différent temps de sacrifice (9 jours et 28 jours). Dans ce tableau sont représentés les résultats selon l’inflammation induite par les LT +/- l’anticorps démyélinisant Z2 dans le SNC. Les fractions représentent le nombre de souris présentant des signes inflammatoires sur le nombre de souris total analysé.

Page 190: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

190

Ces résultats montrent ainsi une aggravation des signes cliniques lorsque les animaux

sont transférés avec des Tc1 et coinjectés avec un Ac démyélinisant. Ceci suggère donc une

collaboration de ces deux populations dans l’aggravation de la pathologie.

Figure 21 : coupes histologiques de moelle épinière, nerf optique et cerveau suite aux différents transferts de LT et d’Ac.

A. Coupes de moelle épinière d’animaux traités avec des Tc1 et l’Ac témoin (à gauche) ou avec des Tc1 et l’Ac Z2 (à droite). Le marquage CD3 représente l’infiltration des LT 9 jours après transfert de Tc1. B. Coupes histologiques de nerf optique, moelle épinière et cervelet, analysées 9 jours après transfert de Tc1. Les marquages représentés ici sont le dépôt d’Ig et de C9néo dans les différentes sections.

Ac Témoin + Tc1 Z2 + Tc1Ac Témoin + Tc1 Z2 + Tc1Z2 + Tc1

Nerf Optique Cervelet Moelle épinière

IgC9néo

Nerf Optique Cervelet Moelle épinière

IgC9néo

A

B

Page 191: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

191

DISCUSSIONDISCUSSIONDISCUSSIONDISCUSSION

ET ET ET ET

PERPERPERPERSSSSPECTIVESPECTIVESPECTIVESPECTIVES

Page 192: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

192

DISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVESDISCUSSION ET PERSPECTIVES

Les premières données de la littérature sur l’implication du système immunitaire dans

la pathologie de la SEP suggéraient un rôle majeur des LT-CD4+. Les premières expériences

montrant le rôle des LT dans l’EAE ont été apportées dans les années 1970 où des rats

déplétés en LT par thymectomie et irradiation devenaient résistants à l’EAE (Gonatas and

Howard 1974; Ortiz-Ortiz and Weigle 1976). Plusieurs données de la littérature suggéraient

ainsi un rôle important de ces LT dans le déclenchement de la pathologie. Plus

particulièrement, les cellules effectrices impliquées dans la SEP et l’EAE ont été longtemps

décrites comme de type Th1. En effet, chez des patients atteints de SEP, les LT auto-réactifs

présentent une différenciation Th1 (Bielekova, Sung et al. 2004) et la production de cytokines

comme le TNF-α, l’IFN-γ et l’IL-2 est très largement augmenté dans le CNS et LCR (Gutcher

and Becher 2007). Mais durant la dernière décennie, une autre population de LT, les LT-

CD8+, a été mise en cause dans la SEP. Ce postulat a été bâti sur l’observation qu’une

déplétion en LT-CD4+ chez des patients atteints de SEP n’améliorait pas la maladie alors que

la déplétion des populations CD4 et CD8 semblait être bénéfique. Plusieurs études ont ensuite

renforcé le rôle des LT-CD8+ dans la pathologie de la SEP et de l’EAE (Liblau, Wong et al.

2002; Neumann, Medana et al. 2002; Friese and Fugger 2005; Goverman, Perchellet et al.

2005).

Dans ce contexte, nous nous sommes donc interrogés sur la possible coopération de

ces deux populations lymphocytaires, LT-CD8+ et LT-CD4+, plus particulièrement Tc1 et

Th1, et le rôle de chaque population isolément ou en synergie dans l’induction et le maintient

de la pathologie. Pour cela, j’ai utilisé un modèle murin de SEP préalablement validé au

laboratoire : les souris MOG-HA. Ces souris permettent une expression conditionnelle de HA

dans un type cellulaire spécifique, les oligodendrocytes.

1. Implication des Tc1

a. Dans la SEP et l’EAE

Des expériences de croisement entre ces souris MOG-HA et des souris transgéniques

pour un TCR spécifique de HA (souris CL4-TCR transgénique pour un TCR spécifique de

Page 193: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

193

HA512-520 restreint par la molécule de CMH de classe I, Kd ) ont montré des résultats

immunologiques intéressants mais non exploitables pour répondre à notre question. En effet,

les souris issues de ces croisements n’ont développé aucun signe clinique neurologique (pas

de perte de poids, pas de baisse de performance au test ROTaRod) et leur profil thymique

n’était pas modifié par rapport aux souris parents TCR transgéniques (même pourcentage et

nombre absolu de cellules DN, DP et SP). Cette absence de phénotype immunologique a

également été retrouvée en périphérie (rate et ganglions drainants). De ces expériences, nous

en avons déduits une ignorance de l’antigène HA par ces LT spécifiques de HA. Ceci peut

s’expliquer par la faible expression de HA dans le SNC. En effet des études ont montré qu’en

dessous d’un certaine dose d’antigène, les LT ne pouvaient pas répondre à l’auto-antigène

tissulaire (Kurts, Sutherland et al. 1999). Cet argument est renforcé par le fait que les LT-

CD8+ naïfs issus des souris CL4-TCR transgéniques marqués au CFSE ne prolifèrent pas

après transfert adoptif aux souris MOG-HA. Néanmoins, ce système pourrait être exploité par

des expériences d’infection par le virus Influenza des souris MOG-HA afin de réactiver en

périphérie les LT qui pourraient migrer alors dans le SNC. Cette absence de réponse des LT-

CD8+ en présence de l’auto-antigène pourrait aussi être expliqué par une faible avidité

fonctionnelle de ces LT-CD8+ spécifiques. En effet, l’équipe de Hengartner (Gallimore,

Hengartner et al. 1998) avait démontré que les LT-CD8+ auto-réactifs spécifiques de MOG

répondaient à leur antigène à une concentration beaucoup plus élevée comparés aux LT-CD8+

répondant à un peptide étranger. Ceci est une caractéristique des cellules auto-réactives

pathogènes qui échappent à la sélection négative dans le thymus (Zehn and Bevan 2006).

Enfin, cette absence de réponse des LT auto-réactifs peut s’expliquer par une instabilité du

complexe CMH/peptide qui permet également un échappement à la tolérance centrale des LT

auto-réactifs (Liu and Wraith 1995) résultant à une ignorance de l’antigène par ces LT-CD8+.

Les LT-CD8+ présents dans ces souris transgéniques ne peuvent donc pas s’activer et créer de

dommages dans le SNC malgré la présence de l’antigène, résultant à une absence totale de

signe clinique neurologique.

Une question restait donc en suspend sur la possibilité réelle de ces lymphocytes à

passer la barrière hémato-encéphalique dans ce modèle murin. Cependant, une étude en 2003

avait montré que des LT-CD8+ spécifiques de HA, activés in vitro, pouvaient traverser la

barrière hémato-encéphalique après transfert adoptif dans des souris GFAP-HA (souris

transgéniques exprimant HA dans les astrocytes) (Cabarrocas, Bauer et al. 2003). Une étude

plus récente a montré que ces LT-CD8+ spécifiques de HA, activés in vitro, pouvaient induire

Page 194: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

194

une démyélinisation chez des souris receveuses MOG-HA (Saxena, Bauer et al. 2008). Le

rôle des LT-CD8+ est donc bien établi dans ces modèles murins : ils peuvent passer la

barrière hémato-encéphalique après transfert adoptif et induire une démyélinisation de la

gaine de myéline par interaction directe avec les oligodendrocytes.

b. Dans d’autres maladies auto-immunes

Tout comme la SEP, le diabète auto-immun de type 1 a longtemps été considéré

comme une maladie auto-immune spécifique d’organe causé exclusivement par les LT-CD4+.

En effet, pendant très longtemps, des équipes ont montré l’importance des LT-CD4+ dans la

pathogenèse de la maladie : présence en abondance de ces LT dans les îlots pancréatiques

d’animaux malades, implication de la région génétique du CMH de classe II, défaut de

sélection positive des LT-CD4+ auto-réactifs.

Cependant, depuis quelques années, l’implication de ces LT-CD8+ dans les maladies

auto-immune n’a cessé de croître. Plusieurs études ont ainsi démontré les rôles délétères ou

protecteurs des LT-CD8+ dans le diabète de type 1 (Mallone and van Endert 2008;

Santamaria 2008) ; (Mallone, Martinuzzi et al. 2007; Severe, Gauvrit et al. 2007) ; (Karges,

Rajasalu et al. 2007), dans la néphrite intestinale (Meyers and Kelly 1991), dans l’arthrite

rhumatoïde(Hatachi, Kunitomi et al.; Zhou, Xiao et al. 2006)

2. Implication des Th1

a. Dans la SEP et l’EAE

Suite à ces postulats, nous nous sommes donc intéressés en premier lieu au rôle que

pouvaient avoir les LT-CD4+ dans ce modèle murin de SEP. Nous avons tout d’abord, comme

pour les LT-CD8+, croisé les souris MOG-HA avec des souris transgéniques pour un TCR

spécifique de HA (souris 6.5-TCR transgénique pour un TCR spécifique de HA110-119 restreint

par la molécule de CMH de classe II, I-Ed). Les résultats ont été les mêmes que pour les

croisement des MOG-HA avec les souris CL4-TCR transgéniques, à savoir une ignorance de

l’antigène par les LT-CD4+ (aucun signe clinique neurologique et profils thymique et

périphérique similaires aux souris parentales TCR transgéniques).

Page 195: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

195

La question restait donc de savoir, pour notre modèle, si cette absence de réponse des

LT-CD4+ envers leur antigène auto-réactif était dû à une ignorance et donc une inactivation

de ces LT auto-réactifs ou si cette population de LT ne pouvait pas pénétrer dans le SNC des

ces souris MOG-HA. Pour répondre à cela, nous avons procédé à des transferts adoptifs de

LT-CD4+ activés in vitro puis analysé à différents temps les souris receveuses. Nos résultats

histologiques ont montré une faible inflammation au niveau du SNC démontrant de fait que

ces LT-CD4+ pouvaient pénétrer dans le SNC. Cependant ces cellules ne sont pas capables

seules d’induire des dommages tissulaires au niveau de la gaine de myéline. Ces résultats ont

été retrouvés également lors des analyses de caractérisation en cytométrie de flux où nous

observons une réelle infiltration de LT-CD4+ dans le SNC, infiltration similaire en terme de

nombre absolu à celle obtenue lors d’un transfert de LT-CD8+. De plus, comme les LT-CD8+,

la présence de ces LT-CD4+ dans le SNC a pour conséquence une activation de la microglie et

un recrutement de macrophages et CD montrant un rôle activateur des Th1 sur ces cellules.

Des observations cliniques de ces souris ont permis également d’analyser une

cinétique d’action de ces Th1 et de la comparer à ce qui était déjà connu sur le transfert de

Tc1 dans ce même modèle. En effet, après un transfert adoptif de Tc1 dans les souris MOG-

HA, les souris perdent du poids dans 30% des cas vers le 8ème jour après transfert puis le

regagnent après le 18ème jour. Nous avons démontré ici que les Th1 seuls induisaient une

perte de poids des souris MOG-HA mais que cette perte était plus tardive (à partir du jour 18).

Ce délai a été confirmé lors de test évaluant les performances motrices et l’équilibre des

souris sur une ROTaRod. En effet, alors que les souris ayant reçu les Tc1 commencent à

montrer des faiblesses motrices au jour 5 après transfert, les souris ayant reçu les Th1

montrent ces faiblesses qu’à partir du jour 10. Ainsi on pourrait suggérer que les Th1 peuvent

agir seuls en créant des dommages dans le SNC responsables des pertes de poids et des

baisses de performances physiques mais qu’ils ont cependant un effet moins rapide que les

Tc1 seuls mais ces Th1 semblent également moins délétères aux vues des résultats

histologiques comparés à ceux des souris ayant reçu des Tc1. En effet, il a été montré que

l’inflammation du SNC des souris MOG-HA transférées avec des Tc1 commençait au jour 5.

La démyélinisation apparaissait quant à elle au jour 8 au niveau du nerf optique et au jour 18

au niveau de la moelle épinière. Cette inflammation et démyélinisation était maintenue

jusqu’au jour 28. Par contre, 56 jours après le transfert de Tc1, tous les signes inflammatoires

avaient disparu et des signes de remyélinisation apparaissaient. Les analyses histologiques des

souris MOG-HA transférées avec les Th1 ont révélé une faible infiltration des Th1 dans le

Page 196: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

196

SNC ainsi qu’une faible inflammation sans toutefois provoquer de démyélinisation de la gaine

de myéline.

Nous pouvons donc conclure que les Th1 sont capables de pénétrer dans le SNC des

souris MOG-HA après avoir été activés in vitro, de recruter des cellules de l’immunité innée

(macrophages et CD), d’activer les cellules résidantes du SNC comme la microglie et

d’induire ainsi à elles seules une inflammation de ce SNC, sans toutefois provoquer des

dommages tissulaires neurologiques responsables de la maladie. Ces données confirment donc

les pensées actuelles sur le rôle des LT dans la SEP et l’EAE. En effet, longtemps considéré

comme seuls responsables de la maladie, les LT-CD4+ se voient ici attribuer un rôle non

exclusif dans la pathogenèse de la maladie puisque dans notre modèle, ils ne permettent pas à

eux seuls de déclencher la maladie.

b. Dans d’autres maladies auto-immunes

De la même manière, l’équipe de Vignali a récemment bousculé les connaissances sur

le diabète de type 1 en démontrant via l’utilisation de souris rétrogéniques que les LT-CD4+

auto-réactifs s’accumulaient bien dans les îlots pancréatiques mais ne causaient pas à eux

seuls la maladie(Lennon, Bettini et al. 2009). Par contre, il a été récemment montré un rôle

crucial des LT-CD4+ (Th1) dans les phases précoces de l’arthrite rhumatoïde alors que

d’autres LT-CD4+ (Th17) joueraient un rôle plus tardif dans la maladie (van den Berg 2009).

Les conditions de l’exposition antigénique (incluant la qualité et la quantité de TCR stimulés)

détermineraient le phénotype effecteur dominant (Luger, Silver et al. 2008).

3. Une possible collaboration Tc1/Th1 ?

a. Dans la SEP et l’EAE

Il est aujourd’hui admis que les LT-CD8+ et les LT-CD4+ effecteurs jouent un rôle

important dans la pathologie de la SEP. Cependant, très peu d’études se sont intéressées à leur

coopération et possible synergie d’action dans la maladie. Une première suggestion de

coopération avait été mise en évidence suite à des expériences sur un modèle animal

humanisé où il a été démontré que l’initiation de la maladie était due aux LT-CD8+ alors que

le devenir de cette maladie dépendait principalement des LT-CD4+. Il a également été montré

Page 197: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

197

que des LT-CD8+ spécifiques d’un peptide myélinique (PLP) pouvaient jouer un rôle dans el

recrutement et le maintien des LT-CD4+spécifiques de ce peptide (Turner 1998). Un autre

groupe a démontré cette coopération mais dans des conditions particulières de lymphopénie

où l’action des deux populations s’alliait pour rompre la tolérance périphérique et induire une

auto-immunité (Le Saout, Mennechet et al. 2008). D’autres études ont montré également que

ces deux populations CD4 et CD8 étaient respectivement présentes à différents stades de la

maladie. En effet des changements chronologiques de ces deux populations sont observés

durant l’évolution de la maladie (Tohoku 2007). De plus, il a été montré que les LT-CD8+

avaient besoin des LT-CD4+ pour soutenir l’inflammation du SNC au cours d’une EAE

chronique (Bettini, Rosenthal et al. 2009).

Sur ces bases expérimentales, je me suis donc intéressée, dans le modèle MOG-HA,

au rôle des LT-CD4+ spécifiques de HA, activés in vitro (Th1) en coopération avec les LT-

CD8+ spécifiques de HA, activés in vitro (Tc1).

Pour cela, 30.106 de Tc1 spécifiques de HA ou 30.106 de Th1 spécifiques de HA ou

30.106 de Tc1 spécifiques de HA + 30.106 de Th1 spécifiques de HA ont été transférés aux

souris MOG-HA. Ces dernières ont été analysées selon trois critères : l’analyse clinique,

l’analyse histologique et la caractérisation des cellules infiltrant leur SNC.

Au niveau clinique, ces animaux perdent du poids plus précocement que lorsque

chaque population est transférée isolément (entre jour 5 et 11) et de façon plus importante.

Cependant les différences de poids entre les différents groupes ne permettent pas de révéler

une différence significative induite par le double transfert, n’impliquant donc pas une

coopération, à ce niveau là, entre les deux populations Tc1 et Th1. Ces résultats sont

confirmés par les tests de ROTaRod qui ne révèlent aucune amplification des conséquences

motrices sur les souris doublement transférées.

Au niveau histologique par contre, les analyses montrent une forte inflammation du

SNC lorsque les souris reçoivent les deux types de populations ainsi qu’une démyélinisation

de certaines zones. Ainsi le co-transfert Tc1 + Th1 aggrave les signes neurologiques de la

maladie révélant une coopération entre les deux populations.

Cette coopération est confirmée avec l’étude en cytométrie de flux des cellules

inflammatoires des souris MOG-HA transférées. En effet, les lymphocytes sont en nombre

absolu beaucoup plus nombreuses lorsque la souris a reçu les deux populations comparé aux

souris ayant reçu les Tc1 seuls ou les Th1 seuls. Par contre, la présence de ces populations ne

semble pas influencer les cellules de la microglie ou les cellules macrophagiques qui se

Page 198: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

198

retrouvent en quantité similaire dans le SNC quelque soit le transfert effectué. Néanmoins, il

semble que ce co-transfert ait un effet sur les CD en favorisant leur recrutement au sein du

SNC. En effet, lors de ce co-transfert, le nombre absolu de CD a triplé comparé au nombre de

CD infiltrant le SNC lors des simples transferts. La présence des deux populations favoriserait

donc la présentation antigénique au sein du SNC par les CD et ceci expliquerait pourquoi les

conséquences cliniques et histologiques sont plus importantes dans les souris doublement

transférées par rapport aux souris ayant reçu qu’une des deux populations.

Cependant, au cours de ces travaux, l’analyse a été réalisée sur des LT discriminés sur

la base de l’expression des molécules CD45 et Thy1.2, molécules de surface exprimées tant

sur les LT-CD4+ que sur les LT-CD8+. Ainsi nous ne pouvons pas conclure sur l’effet réel de

synergie des deux populations. Est –ce par un contact direct que les LT-CD8+ et les LT-CD4+

agissent en synergie (contact CD40/CD40L, expression de récepteur particuliers) ? Est–ce par

aide réciproque sur l’environnement (sécrétion de cytokine, recrutement de différentes

cellules de l’immunité) que ces LT infiltrent le SNC ? Est-ce une population particulière qui

pénètre majoritairement dans le SNC, l’autre aidant à la rupture de la barrière hémato-

encéphalique ?

Nous pourrions répondre à ces questions en discriminant chaque population isolément

afin de connaître l’implication de chacune d’elles dans les différentes étapes de la maladie. Il

serait ainsi intéressant de pouvoir tracer in vivo le devenir de chaque population. Pour cela,

l’idée serait de marquer par deux protéines fluorescentes différentes les Tc1 et les Th1 durant

leur culture et de les transférer aux souris MOG-HA. Des expériences préliminaires ont déjà

été réalisées pour les Tc1. Pour cela, les cultures cellulaires de LT sont mises en présence de

cellules qui contiennent un rétrovirus contenant la GFP permettant ainsi de transduire les LT

en culture. Ainsi, à la fin de la culture, 90% des Tc1 sont marqués à la GFP. Ce marquage est

retrouvé 9 jours après transfert dans le SNC des souris receveuses et permet une analyse

précise des LT transférés. L’élaboration des cellules contenant un virus exprimant le DsRed

est en cours de réalisation. Grâce à ces deux nouveaux outils, les Tc1 et Th1 pourront être

ainsi différenciés par leur marquage fluorescent et être étudiés plus précisément. L’utilisation

de souris congéniques pourrait également faciliter l’interprétation des résultats. Une technique

récente pourrait également améliorer l’analyse des résultats : l’utilisation du microscope bi-

photonique. Cela permettrait ainsi non seulement de tracer les populations lymphocytaires

transférées mais également de faire une cinétique d’action de ces populations au cours de la

maladie. En effet, l’utilisation du bi-photon nous permettrait d’analyser en temps réel sur une

Page 199: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

199

souris vivante le trajet des différentes populations CD4 et CD8 ainsi que leur interaction entre

elles ou avec le milieu environnant et ceci sur plusieurs temps (ce qu’il est impossible de faire

au niveau histologique puisque les souris étaient sacrifiées au jour d’analyse).

Une fois ces populations identifiées, il sera intéressant de comprendre comment

agissent ces cellules. Nous pourrons alors envisager des expériences de prolifération de ces

populations pour savoir si ce sont les LT qui prolifèrent suite à leur activation et pénétration

dans le SNC ou si l’infiltration abondante de LT dans le SNC observée est du à un

recrutement beaucoup plus important de LT qui peuvent davantage passer la barrière hémato-

encéphalique. Il serait donc intéressant de marquer les Tc1 avec du CFSE et les Th1 avec du

CMTMR par exemple afin d’analyser leur prolifération in vivo. Des tests in vitro pourront

également venir compléter ces données par des cultures de Tc1 ou Th1 ou Tc1+Th1 marquées

en thymidine tritiée.

Afin de mieux caractériser ces cellules infiltrantes, des analyses fonctionnelles

pourraient être envisagées pour connaître les chimiokines nécessaires à leur recrutement dans

les SNC, l’expression des récepteurs qu’elles expriment à leur surface ainsi que le milieu

cytokinique dans lequel elles évoluent dans ce contexte inflammatoire. Cela permettrait de

savoir si les LT agissent par interaction directe ou via une action indirecte (cytokine,

changement de récepteurs à leur surface…) d’une population sur l’autre. L’équipe de

Hernandez avait déjà démontré que l’aide apportée par les LT-CD4+ permettait la conversion

d’un signal tolérogène en un signal d’activation pour le LT-CD8+, induisant non seulement

une augmentation de la prolifération mais également une différenciation en cellules effectrices

(Le Saout, Mennechet et al. 2008). Ceci suggérant fortement une implication de la

présentation croisée par les CPA. Pour vérifier dans notre modèle cette hypothèse, nous

pourrions tester l’effet d’un anticorps dirigé contre le CD40 ou le CD40L qui empêcherait

ainsi le contact entre les LT-CD8+ et les LT-CD4+. Ainsi on pourrait envisager dans ce

modèle des souris MOG-HA transférées avec les LT-CD8+ naïfs et des Th1 et traité les

animaux receveurs avec cet anticorps bloquant le CD40 ou le CD40L où le LT-CD4+ activé

ne pourrait plus activer le LT-CD8+ et induirait donc chez ces souris une maladie moins

sévère, si la synergie d’action de ces deux populations passent par une voie directe.

Des études avec des anticorps bloquant différentes molécules impliquées dans le

recrutement et la passage de ces deux populations à travers la barrière hémato-encéphalique

pourraient également être intéressante pour savoir si une population joue un rôle précoce et

l’autre tardif ou si une population est impliquée dans l’initiation de la maladie et l’autre dans

Page 200: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

200

l’entretien de la pathologie comme l’avait montré l’équipe d’Evavold dans leur modèle

(Bettini, Rosenthal et al. 2009).

De plus, les analyses de caractérisation ont été réalisées au jour 9 après transfert des

LT, en accord avec les résultats précédemment obtenus par l’équipe pour les Tc1. Des

analyses au jour 5 ont été également réalisées mais elles ne révélaient que trop peu de cellules

infiltrant le SNC pour être interprétables. Il serait par la suite intéressant de refaire ces

expériences à des jours ultérieurs comme jour 18 pour mesurer dans ce contexte d’analyse les

différences notables en histologie. Des cinétiques pourraient également être envisagées pour

analyser la production de cytokine et le profil d’expression génique des différents LT isolés

du SNC des souris MOG-HA transférées soit qu’avec Tc1 soit qu’avec Th1 soit avec les

deux. Ainsi à différent temps, les LT isolés du SNC de ces souris pourraient être discriminé

selon l’expression de leur CD4 ou CD8 et chaque population pourrait être analysée en Elisa

ou en luminex pour leur production cytokinique ou en multiplex pour l’expression génique de

ces différentes populations.

Précedemment en introduction, nous avons vu que le système immunitaire est capable

de discerner avec une grande exactitude les molécules du Soi et du non-Soi. Une défaillance

dans cette discrimination conduit à une susceptibilité accrue aux réactions auto-immune. Cette

hypothèse est très largement discutée aujourd’hui pour la SEP où il semble que l’infection

virale soit un déterminant très important dans le déclenchement de la maladie, en combinaison

bien évidemment avec d’autres facteurs environnementaux et génétiques. De plus, chez les

patients atteints de SEP, une dérégulation de la réponse immune contre le virus Epstein-Barr a

été identifiée, impliquant une fois de plus l’infection virale dans la physiopathologie de la

maladie (Munz, Lunemann et al. 2009). Des modèles murins ont permis de montrer que

l’inflammation auto-immune dans le SNC pouvait être déclenchée par l’infection avec le virus

de Theiler.

Plusieurs mécanismes sont aujourd’hui suggérés pour expliquer cette influence virale

comme le mimétisme moléculaire, la diversification épitopique et l’activation bystander

(Munz, Lunemann et al. 2009). Mais il a été montré récemment que d’autres mécanismes

émergents pouvaient être impliqué dans les maladies auto-immunes comme la persistance du

virus de Theiler au niveau de la microglie des animaux infectés qui permettait une

surexpression des molécules de CMH de classe II au niveau de ces cellules et qui par

conséquent augmentait la capacité de ces cellules à présenter des antigènes, notamment des

Page 201: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

201

auto-antigènes. Ainsi les agents infectieux pourraient jouer le rôle d’adjuvant pour l’activation

et la potentialisation de la maladie.

Dans notre contexte il serait donc intéressant de procéder à des infections virales par

le virus influenza à des animaux ayant reçu soit des transferts Tc1, soit des transfert Th1 soit

des co-transferts afin d’analyser les différentes populations T infiltrants le SNC suite à ces

infections. Ainsi l’on pourrait savoir si l’infection favorise une réponse Tc1 ou Th1, si les

deux populations sont réactivées de la même manière suite à cette infection et qu’elle est la

synergie d’action des différentes cellules immunes intervenants dans la physiopathologie de la

maladie.

b. Dans d’autres maladies auto-immunes

Les hypothèses sur l’origine des maladies auto-immunes impliquaient, comme nous

l’avons vu dans les paragraphes précédents, principalement les LT-CD4+. Mais les avancés

technologiques et scientifiques ont permis de montrer un rôle tout aussi important des LT-

CD8+. Ce n’est donc pas surprenant que plusieurs équipes se soient intéressées à une

collaboration potentielle des populations CD4 et CD8 dans des maladies auto-immunes

spécifiques d’organe autres que la SEP. Ainsi une synergie ou collaboration directe de ces

deux populations ont pu être démontrées pour le diabète de type 1 après transfert de CD4 et de

CD8 dans des souris NOD. En effet, les deux populations sont nécessaires pour l’induction de

la maladie. De plus, l’équipe de Xiang a démontré dans le diabète de type 1 que la population

lymphocytaire T-CD4+ auxiliaire pouvait directement stimuler les LT-CD8+ cytotoxiques en

acquiérant à leur surface des molécules spécifiques des CD (notamment le CD80) et jouant

ainsi le rôle de Th-CPA pour activer les CTL. Le LT-CD4+ ne joue plus son rôle de LT

producteur de cytokines pro-inflammatoires mais un rôle de CPA nécessaire à l’activation des

LT-CD8+ cytotoxiques (Ye, Ahmed et al. 2008). Beaucoup d’autres études sur le diabète de

type 1 ont cependant montré le rôle indépendant des deux populations, les impliquant dans la

pathogenèse de la maladie (Duffy 2007; James and Kwok 2007; Hedman, Faresjo et al. 2008).

Des études ont également été faite sur l’arthrite rhumatoïde où la collaboration des deux

populations n’ a pu être démontrée mais comme pour le diabètes de type 1, ces études ont

montré l’importance des deux populations dans la pathogénèse de la maladie (Haworth,

Hardie et al. 2008; Hussein, Fathi et al. 2008).

Page 202: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

202

4. Une hypothétique synergie d’action entre Tc1 et anticorps ?

Comme pour les LT, le rôle des anticorps dans la SEP est actuellement bien démontré

tant pour la maladie murine qu’humaine. Il est en effet suggéré que suite à l’infiltration de LT

spécifiques d’antigènes myéliniques dans le SNC et initiation de l’inflammation, les auto-

anticorps dirigés contre les protéines myéliniques peuvent traverser la BHE endommagée et

créer une démyélinisation. Différents mécanismes ont été impliqués pour expliquer cette

démyélinisation. Certains auteurs ont démontré le rôle du complément dans ce phénomène

(Linington and Lassmann 1987; Linington, Morgan et al. 1989; Piddlesden, Lassmann et al.

1993), ce qui permettrait une attraction des macrophages à effet cytopathique direct. D’autres

auteurs ont montré que les LB pouvaient agir comme source d’anticorps reconnaissant les

composants de la myéline ou des axones ou des neurones, contribuant ainsi à la

démyélinisation. Néanmoins, certaines équipes ont au contraire démontré un rôle protecteur

de ces anticorps (Saoudi, Simmonds et al. 1995). Chez les patients atteints de SEP, il est

incontestable que la présence oligoclonale d’IgG dans le LCR ou au niveau des lésions

demeure une caractéristique de cette pathologie (Owens, Ritchie et al. 2003; Dalakas 2008;

Dalakas 2008), faisant de ces Ac des marqueurs de diagnostic de la maladie.

Dans ce contexte là, il a été interessant de s’interesser aux rôles potentiellement

synergiques des Tc1 et de ces anticorps démyélinisants dans la maladie. Pour cela, au cours de

ma thèse, j’ai pu, par des expériences de transfert adoptif de LT et d’injection d’Ac, aborder

cette problématique. Les résultats ont confirmé les données de Prinéas et Graham montrant un

dépôt de d’Ac et de complément au niveau des lésions sur la gaine de myéline. Plus

particulièrement, il a été retrouvé au niveau des lésions actives des dépots du complexe

terminal du complément C9néo contenant des IgG. Ainsi ces données vont dans le sens d’une

coopération Tc1/Ac puisque les lésions et l’inflammation sont plus importantes lorsque les

deux acteurs sont en jeu. Le dépôt du complément, l’action lytique des Tc1, ainsi que la

production de cytokines pourraient ainsi jouer un rôle dans l’aggration de la maladie comparé

aux simples transferts Tc1. Dans un modèle hypothétique, l’on pourrait imaginer que les LT

pénétrent la BHE, induisent une inflammation conduisant à une démyélinisation via la

production de cytokine ou une lyse directe. Cet environnement nouvellement inflammatoire

activerait la microglie présente et permettrait un recrutement massif de cellules de

l’immunnité innée comme les cellules dendritiques et permettrait également le passage des

Page 203: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

203

LB producteurs d’Ac qui aggraveraient ainsi les conséquences physiques sur la gaine de

myéline en recrutant entre autre les molécules du complément.

Récemment, il a été démontré que la persistance virale de l’EBV au sein du SNC de

patients atteints de SEP permettait l’activation de cellules B (Aloisi, Serafini et al.). De plus,

plusieurs équipes (Sargsyan, Shearer et al.; Willis, Stadelmann et al. 2009) proposent qu’un

mécanisme impliqué dans la pathologie de la SEP puisse être lié à une infection par l’EBV. Il

est ainsi suggéré que l’infection dans le SNC par l’EBV peut contribuer tant aux phases

précoces que tardives de la SEP. Basée sur ces observations, l’équipe de F. Aloisi a détecté

que les LB infectés par l’EBV pouvaient être détectés dans le cerveau des patients atteints de

SEP. De plus, ces LB infectés semblent être la cible de LT-CD8+ cytotoxiques (Serafini,

Rosicarelli et al. 2007). Ces données ont été soutenues par des études récentes montrant en

effet une accumulation de LT-CD8+ cytotoxiques et du virus dans le LCR de patients atteints

de SEP (Serafini, Rosicarelli et al. 2007).

Dans ce contexte, il serait intéressant de poursuivre les expériences de co-transfert

Ac/Tc1 chez des souris préalablement infectées par le virus Influenza. Ainsi, une

collaboration plus étroite pourrait être envisagée entre les différents facteurs de la réponse

immune au cours de la maladie.

Page 204: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

204

BIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIE

Page 205: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

205

BIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIEBIBLIOGRAPHIE

Abi-Hanna, D., D. Wakefield, et al. (1988). "HLA antigens in ocular tissues. I. In vivo expression in human eyes." Transplantation 45(3): 610-3.

Ackerman, A. L. and P. Cresswell (2004). "Cellular mechanisms governing cross-presentation of exogenous antigens." Nat Immunol 5(7): 678-84.

Adelmann, M., J. Wood, et al. (1995). "The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat." J Neuroimmunol 63(1): 17-27.

Akbari, O., G. J. Freeman, et al. (2002). "Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity." Nat Med 8(9): 1024-32.

Alarcon, R., C. Fuenzalida, et al. (2005). "Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid." J Biol Chem 280(34): 30406-15.

Albert, L. J. and R. D. Inman (1999). "Molecular mimicry and autoimmunity." N Engl J Med 341(27): 2068-74.

Alegre, M. L., K. A. Frauwirth, et al. (2001). "T-cell regulation by CD28 and CTLA-4." Nat Rev Immunol 1(3): 220-8.

Allavena, R., S. Noy, et al. "CNS elevation of vascular and not mucosal addressin cell adhesion molecules in patients with multiple sclerosis." Am J Pathol 176(2): 556-62.

Aloisi, F., F. Ria, et al. (2000). "Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes." Immunol Today 21(3): 141-7.

Aloisi, F., B. Serafini, et al. "Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look." Brain.

Anderson, A. C., L. B. Nicholson, et al. (2000). "High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire." J Exp Med 191(5): 761-70.

Anderson, A. C., J. Reddy, et al. (2004). "IL-10 plays an important role in the homeostatic regulation of the autoreactive repertoire in naive mice." J Immunol 173(2): 828-34.

Anderson, A. C., H. Waldner, et al. (2000). "Autoantigen-responsive T cell clones demonstrate unfocused TCR cross-reactivity toward multiple related ligands: implications for autoimmunity." Cell Immunol 202(2): 88-96.

Anderson, G. and E. J. Jenkinson (2001). "Lymphostromal interactions in thymic development and function." Nat Rev Immunol 1(1): 31-40.

Andersson, J., D. Q. Tran, et al. (2008). "CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner." J Exp Med 205(9): 1975-81.

Anderton, S. M. and D. C. Wraith (2002). "Selection and fine-tuning of the autoimmune T-cell repertoire." Nat Rev Immunol 2(7): 487-98.

Apostolou, I., A. Sarukhan, et al. (2002). "Origin of regulatory T cells with known specificity for antigen." Nat Immunol 3(8): 756-63.

Archelos, J. J. and H. P. Hartung (2000). "Pathogenetic role of autoantibodies in neurological diseases." Trends Neurosci 23(7): 317-27.

Ascherio, A. and K. L. Munger (2007). "Environmental risk factors for multiple sclerosis. Part I: the role of infection." Ann Neurol 61(4): 288-99.

Ashton-Rickardt, P. G. (1993). "The role of peptide in the positive selection of CD8+ T cells in the thymus." Thymus 22(2): 111-5.

Page 206: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

206

Ashton-Rickardt, P. G., L. Van Kaer, et al. (1993). "Repertoire-determining role of peptide in the positive selection of CD8+ T cells." Immunol Rev 135: 157-82.

Asseman, C., S. Mauze, et al. (1999). "An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation." J Exp Med 190(7): 995-1004.

Azuma, M., D. Ito, et al. (1993). "B70 antigen is a second ligand for CTLA-4 and CD28." Nature 366(6450): 76-9.

Azuma, T., T. Takahashi, et al. (2003). "Human CD4+ CD25+ regulatory T cells suppress NKT cell functions." Cancer Res 63(15): 4516-20.

Baas, D., K. Prufer, et al. (2000). "Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3)." Glia 31(1): 59-68.

Babbe, H., A. Roers, et al. (2000). "Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction." J Exp Med 192(3): 393-404.

Bachmaier, K., C. Krawczyk, et al. (2000). "Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b." Nature 403(6766): 211-6.

Baecher-Allan, C., J. A. Brown, et al. (2001). "CD4+CD25high regulatory cells in human peripheral blood." J Immunol 167(3): 1245-53.

Baghdassarian, D., D. Toru-Delbauffe, et al. (1993). "Effects of transforming growth factor-beta 1 on the extracellular matrix and cytoskeleton of cultured astrocytes." Glia 7(3): 193-202.

Bailey, S. L., B. Schreiner, et al. (2007). "CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE." Nat Immunol 8(2): 172-80.

Bain, P. and J. E. Toublanc (2002). "Adult height in congenital hypothyroidism: prognostic factors and the importance of compliance with treatment." Horm Res 58(3): 136-42.

Baker, D., O. A. Rosenwasser, et al. (1995). "Genetic analysis of experimental allergic encephalomyelitis in mice." J Immunol 155(8): 4046-51.

Ban, M., A. Goris, et al. (2009). "Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor." Eur J Hum Genet 17(10): 1309-13.

Banchereau, J. and R. M. Steinman (1998). "Dendritic cells and the control of immunity." Nature 392(6673): 245-52.

Barker, C. F. and R. E. Billingham (1977). "Immunologically privileged sites." Adv Immunol 25: 1-54.

Barnett, M. H., A. P. Henderson, et al. (2006). "The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion." Mult Scler 12(2): 121-32.

Baron, J. L., J. A. Madri, et al. (1993). "Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma." J Exp Med 177(1): 57-68.

Barouki, R. (2006). "[Ageing free radicals and cellular stress]." Med Sci (Paris) 22(3): 266-72.

Battistini, L., L. Piccio, et al. (2003). "CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1." Blood 101(12): 4775-82.

Bauer, M., C. Brakebusch, et al. (2009). "Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity." Proc Natl Acad Sci U S A 106(6): 1920-5.

Baumeister, W., J. Walz, et al. (1998). "The proteasome: paradigm of a self-compartmentalizing protease." Cell 92(3): 367-80.

Beauvillain, C., S. Donnou, et al. (2008). "Neonatal and adult microglia cross-present exogenous antigens." Glia 56(1): 69-77.

Page 207: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

207

Becher, B., A. Prat, et al. (2000). "Brain-immune connection: immuno-regulatory properties of CNS-resident cells." Glia 29(4): 293-304.

Bechmann, I., G. Mor, et al. (1999). "FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier." Glia 27(1): 62-74.

Bechmann, I., J. Priller, et al. (2001). "Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages." Eur J Neurosci 14(10): 1651-8.

Beck, S. and J. Trowsdale (1999). "Sequence organisation of the class II region of the human MHC." Immunol Rev 167: 201-10.

Begolka, W. S. and S. D. Miller (1998). "Cytokines as intrinsic and exogenous regulators of pathogenesis in experimental autoimmune encephalomyelitis." Res Immunol 149(9): 771-81; discussion 843-4, 855-60.

Belkaid, Y., C. A. Piccirillo, et al. (2002). "CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity." Nature 420(6915): 502-7.

Ben-Nun, A. and I. R. Cohen (1982). "Experimental autoimmune encephalomyelitis (EAE) mediated by T cell lines: process of selection of lines and characterization of the cells." J Immunol 129(1): 303-8.

Bensinger, S. J., A. Bandeira, et al. (2001). "Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells." J Exp Med 194(4): 427-38.

Beresford, P. J., D. Zhang, et al. (2001). "Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks." J Biol Chem 276(46): 43285-93.

Berger, T., P. Rubner, et al. (2003). "Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event." N Engl J Med 349(2): 139-45.

Bergmann, C., L. Strauss, et al. (2007). "Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment." Cancer Immunol Immunother 56(9): 1429-42.

Bettelli, E., Y. Carrier, et al. (2006). "Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells." Nature 441(7090): 235-8.

Bettelli, E., M. P. Das, et al. (1998). "IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice." J Immunol 161(7): 3299-306.

Bettelli, E., M. Pagany, et al. (2003). "Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis." J Exp Med 197(9): 1073-81.

Bettini, M., K. Rosenthal, et al. (2009). "Pathogenic MOG-reactive CD8+ T cells require MOG-reactive CD4+ T cells for sustained CNS inflammation during chronic EAE." J Neuroimmunol 213(1-2): 60-8.

Bielekova, B., M. H. Sung, et al. (2004). "Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis." J Immunol 172(6): 3893-904.

Billiau, A., H. Heremans, et al. (1988). "Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma." J Immunol 140(5): 1506-10.

Bitsch, A., T. Kuhlmann, et al. (2001). "A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions." Ann Neurol 49(6): 793-6.

Bitsch, A., J. Schuchardt, et al. (2000). "Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation." Brain 123 (Pt 6): 1174-83.

Bixel, G., S. Kloep, et al. (2004). "Mouse CD99 participates in T-cell recruitment into inflamed skin." Blood 104(10): 3205-13.

Page 208: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

208

Blink, S. E. and S. D. Miller (2009). "The contribution of gammadelta T cells to the pathogenesis of EAE and MS." Curr Mol Med 9(1): 15-22.

Bluestone, J. A. and Q. Tang (2005). "How do CD4+CD25+ regulatory T cells control autoimmunity?" Curr Opin Immunol 17(6): 638-42.

Boismenu, R. and W. L. Havran (1994). "Modulation of epithelial cell growth by intraepithelial gamma delta T cells." Science 266(5188): 1253-5.

Boissonnas, A., L. Fetler, et al. (2007). "In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor." J Exp Med 204(2): 345-56.

Boissonnas, A., A. Scholer-Dahirel, et al. "Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes." Immunity 32(2): 266-78.

Bopp, T., C. Becker, et al. (2007). "Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression." J Exp Med 204(6): 1303-10.

Borsellino, G., M. Kleinewietfeld, et al. (2007). "Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression." Blood 110(4): 1225-32.

Bourgeois, C., B. Rocha, et al. (2002). "A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory." Science 297(5589): 2060-3.

Brabb, T., A. W. Goldrath, et al. (1997). "Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis." J Immunol 159(1): 497-507.

Brabb, T., P. von Dassow, et al. (2000). "In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity." J Exp Med 192(6): 871-80.

Brady, R. L. and A. N. Barclay (1996). "The structure of CD4." Curr Top Microbiol Immunol 205: 1-18.

Breithaupt, C., A. Schubart, et al. (2003). "Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein." Proc Natl Acad Sci U S A 100(16): 9446-51.

Brenner, T., D. Soffer, et al. (1994). "Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides." J Neurol Sci 122(2): 210-3.

Brigl, M., L. Bry, et al. (2003). "Mechanism of CD1d-restricted natural killer T cell activation during microbial infection." Nat Immunol 4(12): 1230-7.

Brodsky, F. M. and L. E. Guagliardi (1991). "The cell biology of antigen processing and presentation." Annu Rev Immunol 9: 707-44.

Brostoff, S. W. and D. W. Mason (1984). "Experimental allergic encephalomyelitis: successful treatment in vivo with a monoclonal antibody that recognizes T helper cells." J Immunol 133(4): 1938-42.

Brunet, J. F., F. Denizot, et al. (1987). "A new member of the immunoglobulin superfamily--CTLA-4." Nature 328(6127): 267-70.

Brunner, C., H. Lassmann, et al. (1989). "Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase in the CNS of adult rats." J Neurochem 52(1): 296-304.

Brunner, T., R. J. Mogil, et al. (1995). "Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas." Nature 373(6513): 441-4.

Bruno, R., L. Sabater, et al. (2002). "Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus." Eur J Immunol 32(10): 2737-47.

Brynedal, B., K. Duvefelt, et al. (2007). "HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis." PLoS One 2(7): e664.

Page 209: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

209

Bullock, T. N. and H. Yagita (2005). "Induction of CD70 on dendritic cells through CD40 or TLR stimulation contributes to the development of CD8+ T cell responses in the absence of CD4+ T cells." J Immunol 174(2): 710-7.

Bunt, S. K., P. Sinha, et al. (2006). "Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression." J Immunol 176(1): 284-90.

Burfoot, R. K., C. J. Jensen, et al. (2008). "SNP mapping and candidate gene sequencing in the class I region of the HLA complex: searching for multiple sclerosis susceptibility genes in Tasmanians." Tissue Antigens 71(1): 42-50.

Burkhart, C., G. Y. Liu, et al. (1999). "Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10." Int Immunol 11(10): 1625-34.

Butterfield, R. J., E. P. Blankenhorn, et al. (1999). "Genetic analysis of disease subtypes and sexual dimorphisms in mouse experimental allergic encephalomyelitis (EAE): relapsing/remitting and monophasic remitting/nonrelapsing EAE are immunogenetically distinct." J Immunol 162(5): 3096-102.

Cabarrocas, J., J. Bauer, et al. (2003). "Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes." Eur J Immunol 33(5): 1174-82.

Cabarrocas, J., C. Cassan, et al. (2006). "Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage." Proc Natl Acad Sci U S A 103(22): 8453-8.

Cabarrocas, J., T. C. Savidge, et al. (2003). "Role of enteric glial cells in inflammatory bowel disease." Glia 41(1): 81-93.

Cai, Z. and J. Sprent (1994). "Resting and activated T cells display different requirements for CD8 molecules." J Exp Med 179(6): 2005-15.

Calzascia, T., M. Pellegrini, et al. (2008). "CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity." Proc Natl Acad Sci U S A 105(8): 2999-3004.

Campbell, R. D. and C. M. Milner (1993). "MHC genes in autoimmunity." Curr Opin Immunol 5(6): 887-93.

Cannella, B. and C. S. Raine (1995). "The adhesion molecule and cytokine profile of multiple sclerosis lesions." Ann Neurol 37(4): 424-35.

Cantorna, M. T., C. E. Hayes, et al. (1996). "1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis." Proc Natl Acad Sci U S A 93(15): 7861-4.

Carrizosa, A. M., L. B. Nicholson, et al. (1998). "Expansion by self antigen is necessary for the induction of experimental autoimmune encephalomyelitis by T cells primed with a cross-reactive environmental antigen." J Immunol 161(7): 3307-14.

Carson, M. J. (2002). "Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis." Glia 40(2): 218-31.

Carson, M. J., J. M. Doose, et al. (2006). "CNS immune privilege: hiding in plain sight." Immunol Rev 213: 48-65.

Cayrol, R., K. Wosik, et al. (2008). "Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system." Nat Immunol 9(2): 137-45.

Cederbom, L., H. Hall, et al. (2000). "CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells." Eur J Immunol 30(6): 1538-43.

Celie, J. W., R. H. Beelen, et al. (2009). "Heparan sulfate proteoglycans in extravasation: assisting leukocyte guidance." Front Biosci 14: 4932-49.

Ceredig, R., H. R. MacDonald, et al. (1983). "Flow microfluorometric analysis of mouse thymus development in vivo and in vitro." Eur J Immunol 13(3): 185-90.

Page 210: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

210

Chambers, C. A., M. S. Kuhns, et al. (2001). "CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy." Annu Rev Immunol 19: 565-94.

Chang, S. C., F. Momburg, et al. (2005). "The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism." Proc Natl Acad Sci U S A 102(47): 17107-12.

Chao, C. C., S. Hu, et al. (1995). "Tumor necrosis factor-alpha mediates the release of bioactive transforming growth factor-beta in murine microglial cell cultures." Clin Immunol Immunopathol 77(3): 358-65.

Chen, Y., C. L. Langrish, et al. (2006). "Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis." J Clin Invest 116(5): 1317-26.

Chiba, A., S. Oki, et al. (2004). "Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of alpha-galactosylceramide." Arthritis Rheum 50(1): 305-13.

Chien, Y. H. and M. M. Davis (1993). "How alpha beta T-cell receptors 'see' peptide/MHC complexes." Immunol Today 14(12): 597-602.

Chikuma, S. and J. A. Bluestone (2003). "CTLA-4 and tolerance: the biochemical point of view." Immunol Res 28(3): 241-53.

Chitnis, T. (2007). "The role of CD4 T cells in the pathogenesis of multiple sclerosis." Int Rev Neurobiol 79: 43-72.

Chowdhury, D. and J. Lieberman (2008). "Death by a thousand cuts: granzyme pathways of programmed cell death." Annu Rev Immunol 26: 389-420.

Collawn, J. F. and E. N. Benveniste (1999). "Regulation of MHC class II expression in the central nervous system." Microbes Infect 1(11): 893-902.

Collison, L. W., C. J. Workman, et al. (2007). "The inhibitory cytokine IL-35 contributes to regulatory T-cell function." Nature 450(7169): 566-9.

Compston, A. and A. Coles (2008). "Multiple sclerosis." Lancet 372(9648): 1502-17. Constam, D. B., J. Philipp, et al. (1992). "Differential expression of transforming growth

factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia." J Immunol 148(5): 1404-10.

Constant, S. L. and K. Bottomly (1997). "Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches." Annu Rev Immunol 15: 297-322.

Corbella, P., D. Moskophidis, et al. (1994). "Functional commitment to helper T cell lineage precedes positive selection and is independent of T cell receptor MHC specificity." Immunity 1(4): 269-76.

Correale, J., M. C. Ysrraelit, et al. (2009). "Immunomodulatory effects of Vitamin D in multiple sclerosis." Brain 132(Pt 5): 1146-60.

Cose, S., C. Brammer, et al. (2006). "Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway." Eur J Immunol 36(6): 1423-33.

Cosgrove, D., S. H. Chan, et al. (1992). "The thymic compartment responsible for positive selection of CD4+ T cells." Int Immunol 4(6): 707-10.

Coutinho, A., I. Caramalho, et al. (2005). "Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection." Curr Top Microbiol Immunol 293: 43-71.

Crabtree, G. R. (1989). "Contingent genetic regulatory events in T lymphocyte activation." Science 243(4889): 355-61.

Page 211: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

211

Crawford, M. P., S. X. Yan, et al. (2004). "High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay." Blood 103(11): 4222-31.

Cresswell, P., N. Bangia, et al. (1999). "The nature of the MHC class I peptide loading complex." Immunol Rev 172: 21-8.

Crome, S. Q., A. Y. Wang, et al. "Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease." Clin Exp Immunol 159(2): 109-19.

Croxford, J. L., J. K. O'Neill, et al. (1997). "Polygenic control of experimental allergic encephalomyelitis in Biozzi ABH and BALB/c mice." J Neuroimmunol 74(1-2): 205-11.

Cua, D. J., H. Groux, et al. (1999). "Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis." J Exp Med 189(6): 1005-10.

Cua, D. J., J. Sherlock, et al. (2003). "Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain." Nature 421(6924): 744-8.

Dalakas, M. C. (2008). "B cells as therapeutic targets in autoimmune neurological disorders." Nat Clin Pract Neurol 4(10): 557-67.

Dalakas, M. C. (2008). "Invited article: inhibition of B cell functions: implications for neurology." Neurology 70(23): 2252-60.

Danton, G. H. and W. D. Dietrich (2003). "Inflammatory mechanisms after ischemia and stroke." J Neuropathol Exp Neurol 62(2): 127-36.

Dariavach, P., M. G. Mattei, et al. (1988). "Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains." Eur J Immunol 18(12): 1901-5.

Davidson, A. and C. Aranow (2006). "Pathogenesis and treatment of systemic lupus erythematosus nephritis." Curr Opin Rheumatol 18(5): 468-75.

Davignon, D., E. Martz, et al. (1981). "Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing." Proc Natl Acad Sci U S A 78(7): 4535-9.

Davignon, D., E. Martz, et al. (1981). "Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blockade of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions." J Immunol 127(2): 590-5.

Davis, M. M. and P. J. Bjorkman (1988). "T-cell antigen receptor genes and T-cell recognition." Nature 334(6181): 395-402.

Davis, M. M., J. J. Boniface, et al. (1998). "Ligand recognition by alpha beta T cell receptors." Annu Rev Immunol 16: 523-44.

De Becker, G., V. Moulin, et al. (1998). "Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells." Eur J Immunol 28(10): 3161-71.

De Jager, P. L., C. Baecher-Allan, et al. (2009). "The role of the CD58 locus in multiple sclerosis." Proc Natl Acad Sci U S A 106(13): 5264-9.

de Saint-Vis, B., J. Vincent, et al. (1998). "A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment." Immunity 9(3): 325-36.

De Smedt, T., M. Van Mechelen, et al. (1997). "Effect of interleukin-10 on dendritic cell maturation and function." Eur J Immunol 27(5): 1229-35.

Deaglio, S., K. M. Dwyer, et al. (2007). "Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression." J Exp Med 204(6): 1257-65.

Page 212: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

212

Delarasse, C., P. Daubas, et al. (2003). "Myelin/oligodendrocyte glycoprotein-deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice." J Clin Invest 112(4): 544-53.

Delgado, M., C. Abad, et al. (2002). "Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases." J Mol Med 80(1): 16-24.

Delgado, M. and D. Ganea (2003). "Vasoactive intestinal peptide inhibits IL-8 production in human monocytes by downregulating nuclear factor kappaB-dependent transcriptional activity." Biochem Biophys Res Commun 302(2): 275-83.

Dembic, Z., W. Haas, et al. (1986). "Transfer of specificity by murine alpha and beta T-cell receptor genes." Nature 320(6059): 232-8.

Derbinski, J., J. Gabler, et al. (2005). "Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels." J Exp Med 202(1): 33-45.

Derbinski, J., A. Schulte, et al. (2001). "Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self." Nat Immunol 2(11): 1032-9.

Dhein, J., H. Walczak, et al. (1995). "Autocrine T-cell suicide mediated by APO-1/(Fas/CD95)." Nature 373(6513): 438-41.

Diehl, L., G. J. van Mierlo, et al. (2002). "In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway." J Immunol 168(8): 3755-62.

Dobbertin, A., P. Schmid, et al. (1997). "Neurons promote macrophage proliferation by producing transforming growth factor-beta2." J Neurosci 17(14): 5305-15.

Dore-Duffy, P., R. Balabanov, et al. (1996). "Recovery phase of acute experimental autoimmune encephalomyelitis in rats corresponds to development of endothelial cell unresponsiveness to interferon gamma activation." J Neurosci Res 44(3): 223-34.

Dorner, T. and P. E. Lipsky (2004). "Correlation of circulating CD27high plasma cells and disease activity in systemic lupus erythematosus." Lupus 13(5): 283-9.

Duddy, M., M. Niino, et al. (2007). "Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis." J Immunol 178(10): 6092-9.

Duffy, D. L. (2007). "Genetic determinants of diabetes are similarly associated with other immune-mediated diseases." Curr Opin Allergy Clin Immunol 7(6): 468-74.

Duhen, T., R. Geiger, et al. (2009). "Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells." Nat Immunol 10(8): 857-63.

Dunon, D. and B. A. Imhof (2000). "The role of cell traffic in the emergence of the T lymphoid system." Semin Immunol 12(5): 429-33.

Duong, T. T., F. D. Finkelman, et al. (1994). "Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains." J Neuroimmunol 53(1): 101-7.

Duong, T. T., J. St Louis, et al. (1992). "Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse." J Neuroimmunol 36(2-3): 105-15.

Dustin, M. L. (2009). "Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse." Curr Top Microbiol Immunol 334: 47-70.

Dustin, M. L. and T. A. Springer (1989). "T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1." Nature 341(6243): 619-24.

Dyment, D. A., G. C. Ebers, et al. (2004). "Genetics of multiple sclerosis." Lancet Neurol 3(2): 104-10.

Page 213: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

213

Earle, K. E., Q. Tang, et al. (2005). "In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation." Clin Immunol 115(1): 3-9.

Ebers, G. C., I. M. Yee, et al. (2000). "Conjugal multiple sclerosis: population-based prevalence and recurrence risks in offspring. Canadian Collaborative Study Group." Ann Neurol 48(6): 927-31.

Eikelenboom, M. J., J. Killestein, et al. (2002). "Chemokine receptor expression on T cells is related to new lesion development in multiple sclerosis." J Neuroimmunol 133(1-2): 225-32.

Einstein, E. R., D. M. Robertson, et al. (1962). "The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity." J Neurochem 9: 353-61.

Elson, C. J. and R. N. Barker (2000). "Helper T cells in antibody-mediated, organ-specific autoimmunity." Curr Opin Immunol 12(6): 664-9.

Encinas, J. A. and V. K. Kuchroo (1999). "Genetics of experimental autoimmune encephalomyelitis." Curr Dir Autoimmun 1: 247-72.

Encinas, J. A., M. B. Lees, et al. (1996). "Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice." J Immunol 157(5): 2186-92.

Engelhardt, B. (2008). "Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines." J Neurol Sci 274(1-2): 23-6.

Engelhardt, B. and L. Sorokin (2009). "The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction." Semin Immunopathol.

Epplen, C., S. Jackel, et al. (1997). "Genetic predisposition to multiple sclerosis as revealed by immunoprinting." Ann Neurol 41(3): 341-52.

Ercolini, A. M. and S. D. Miller (2006). "Mechanisms of immunopathology in murine models of central nervous system demyelinating disease." J Immunol 176(6): 3293-8.

Erhardt, A., M. Biburger, et al. (2007). "IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice." Hepatology 45(2): 475-85.

Espevik, T., I. S. Figari, et al. (1987). "Inhibition of cytokine production by cyclosporin A and transforming growth factor beta." J Exp Med 166(2): 571-6.

Ezernitchi, A. V., I. Vaknin, et al. (2006). "TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs." J Immunol 177(7): 4763-72.

Fallarino, F., U. Grohmann, et al. (2003). "Modulation of tryptophan catabolism by regulatory T cells." Nat Immunol 4(12): 1206-12.

Fan, Z., P. J. Beresford, et al. (2002). "HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A." Mol Cell Biol 22(8): 2810-20.

Faroudi, M., C. Utzny, et al. (2003). "Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold." Proc Natl Acad Sci U S A 100(24): 14145-50.

Fazilleau, N., C. Delarasse, et al. (2007). "T cell repertoire diversity is required for relapses in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis." J Immunol 178(8): 4865-75.

Feger, U., C. Luther, et al. (2007). "Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients." Clin Exp Immunol 147(3): 412-8.

Fehervari, Z. and S. Sakaguchi (2004). "CD4+ Tregs and immune control." J Clin Invest 114(9): 1209-17.

Page 214: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

214

Feng, J. M., I. M. Givogri, et al. (2000). "Thymocytes express the golli products of the myelin basic protein gene and levels of expression are stage dependent." J Immunol 165(10): 5443-50.

Ferber, I. A., S. Brocke, et al. (1996). "Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE)." J Immunol 156(1): 5-7.

Ferrone, C. R., M. A. Perales, et al. (2006). "Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains." Clin Cancer Res 12(18): 5511-9.

Filaci, G., M. Fravega, et al. (2004). "Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+CD28- T cells and inhibit both T-cell proliferation and CTL function." Hum Immunol 65(2): 142-56.

Fillatreau, S., C. H. Sweenie, et al. (2002). "B cells regulate autoimmunity by provision of IL-10." Nat Immunol 3(10): 944-50.

Fischer, H. G. and G. Reichmann (2001). "Brain dendritic cells and macrophages/microglia in central nervous system inflammation." J Immunol 166(4): 2717-26.

Flanders, K. C., G. Ludecke, et al. (1991). "Localization and actions of transforming growth factor-beta s in the embryonic nervous system." Development 113(1): 183-91.

Folch, J. and M. Lees (1951). "Proteolipides, a new type of tissue lipoproteins; their isolation from brain." J Biol Chem 191(2): 807-17.

Fontenot, J. D., M. A. Gavin, et al. (2003). "Foxp3 programs the development and function of CD4+CD25+ regulatory T cells." Nat Immunol 4(4): 330-6.

Ford, A. L., E. Foulcher, et al. (1996). "Microglia induce CD4 T lymphocyte final effector function and death." J Exp Med 184(5): 1737-45.

Freedman, A. S., G. J. Freeman, et al. (1991). "Selective induction of B7/BB-1 on interferon-gamma stimulated monocytes: a potential mechanism for amplification of T cell activation through the CD28 pathway." Cell Immunol 137(2): 429-37.

Freeman, G. J., F. Borriello, et al. (1993). "Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production." J Exp Med 178(6): 2185-92.

Freeman, G. J., A. S. Freedman, et al. (1989). "B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells." J Immunol 143(8): 2714-22.

Fremont, D. H., M. Matsumura, et al. (1992). "Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb." Science 257(5072): 919-27.

Friese, M. A. and L. Fugger (2005). "Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy?" Brain 128(Pt 8): 1747-63.

Friese, M. A., K. B. Jakobsen, et al. (2008). "Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis." Nat Med 14(11): 1227-35.

Fritz, R. B. and M. L. Zhao (1996). "Thymic expression of myelin basic protein (MBP). Activation of MBP-specific T cells by thymic cells in the absence of exogenous MBP." J Immunol 157(12): 5249-53.

Fu, G., S. Vallee, et al. (2009). "Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling." Nat Immunol 10(8): 848-56.

Fugger, L., M. A. Friese, et al. (2009). "From genes to function: the next challenge to understanding multiple sclerosis." Nat Rev Immunol.

Furlan, R., A. Bergami, et al. (2003). "Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma." Eur J Immunol 33(7): 1830-8.

Gallimore, A., H. Hengartner, et al. (1998). "Hierarchies of antigen-specific cytotoxic T-cell responses." Immunol Rev 164: 29-36.

Page 215: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

215

Garcion, E., L. Sindji, et al. (2003). "Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system." Acta Neuropathol 105(5): 438-48.

Garin, M. I., C. C. Chu, et al. (2007). "Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells." Blood 109(5): 2058-65.

Gartner, D., H. Hoff, et al. (2006). "CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression." J Neuroimmunol 172(1-2): 73-84.

Gasser, D. L., C. M. Newlin, et al. (1973). "Genetic control of susceptibility to experimental allergic encephalomyelitis in rats." Science 181(102): 872-3.

Gasser, D. L., J. Palm, et al. (1975). "Genetic control of susceptibility to experimental allergic encephalomyelitis and the Ag-B locus of rats." J Immunol 115(2): 431-3.

Gavanescu, I., C. Benoist, et al. (2008). "B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: A therapeutic approach for APECED patients." Proc Natl Acad Sci U S A 105(35): 13009-14.

Gay, D., P. Maddon, et al. (1987). "Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen." Nature 328(6131): 626-9.

Genain, C. P., B. Cannella, et al. (1999). "Identification of autoantibodies associated with myelin damage in multiple sclerosis." Nat Med 5(2): 170-5.

Germain, R. N. and D. H. Margulies (1993). "The biochemistry and cell biology of antigen processing and presentation." Annu Rev Immunol 11: 403-50.

gHafler, D. A., A. Compston, et al. (2007). "Risk alleles for multiple sclerosis identified by a genomewide study." N Engl J Med 357(9): 851-62.

Ghiringhelli, F., C. Menard, et al. (2005). "CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner." J Exp Med 202(8): 1075-85.

Gimenez, M. A., J. Sim, et al. (2006). "A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord." Am J Pathol 168(4): 1200-9.

Glinka, Y. and G. J. Prud'homme (2008). "Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity." J Leukoc Biol 84(1): 302-10.

Gobel, K., N. Melzer, et al. "Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack." Glia 58(4): 469-80.

Gomes, F. C., O. Sousa Vde, et al. (2005). "Emerging roles for TGF-beta1 in nervous system development." Int J Dev Neurosci 23(5): 413-24.

Gonatas, N. K. and J. C. Howard (1974). "Inhibition of experimental allergic encephalomyelitis in rats severely depleted of T cells." Science 186(4166): 839-41.

Gonnella, P. A., H. P. Waldner, et al. (2001). "B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance." J Immunol 166(7): 4456-64.

Gordon, S. (2003). "Alternative activation of macrophages." Nat Rev Immunol 3(1): 23-35. Gotter, J., B. Brors, et al. (2004). "Medullary epithelial cells of the human thymus express a

highly diverse selection of tissue-specific genes colocalized in chromosomal clusters." J Exp Med 199(2): 155-66.

Goverman, J. (2009). "Autoimmune T cell responses in the central nervous system." Nat Rev Immunol 9(6): 393-407.

Page 216: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

216

Goverman, J., A. Perchellet, et al. (2005). "The role of CD8(+) T cells in multiple sclerosis and its animal models." Curr Drug Targets Inflamm Allergy 4(2): 239-45.

Goverman, J., A. Woods, et al. (1993). "Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity." Cell 72(4): 551-60.

Grakoui, A., S. K. Bromley, et al. (1999). "The immunological synapse: a molecular machine controlling T cell activation." Science 285(5425): 221-7.

Gray, H. L., E. L. Sorensen, et al. (2001). "Three polymorphisms in the 3' UTR of the TRAIL (TNF-related apoptosis-inducing ligand) gene." Genes Immun 2(8): 469-70.

Greter, M., F. L. Heppner, et al. (2005). "Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis." Nat Med 11(3): 328-34.

Gross, J. A., E. Callas, et al. (1992). "Identification and distribution of the costimulatory receptor CD28 in the mouse." J Immunol 149(2): 380-8.

Gross, J. A., J. Johnston, et al. (2000). "TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease." Nature 404(6781): 995-9.

Guidos, C. J., J. S. Danska, et al. (1990). "T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages." J Exp Med 172(3): 835-45.

Gutcher, I. and B. Becher (2007). "APC-derived cytokines and T cell polarization in autoimmune inflammation." J Clin Invest 117(5): 1119-27.

Haas, J., A. Hug, et al. (2005). "Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis." Eur J Immunol 35(11): 3343-52.

Habu, S., M. Kimura, et al. (1987). "Correlation of T cell receptor gene rearrangements to T cell surface antigen expression and to serum immunoglobulin level in scid mice." Eur J Immunol 17(10): 1467-71.

Hahn, M., M. J. Nicholson, et al. (2005). "Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor." Nat Immunol 6(5): 490-6.

Hamerman, J. A., K. Ogasawara, et al. (2005). "NK cells in innate immunity." Curr Opin Immunol 17(1): 29-35.

Hansen, T. H. and M. Bouvier (2009). "MHC class I antigen presentation: learning from viral evasion strategies." Nat Rev Immunol 9(7): 503-13.

Happ, M. P., P. Wettstein, et al. (1988). "Genetic control of the development of experimental allergic encephalomyelitis in rats. Separation of MHC and non-MHC gene effects." J Immunol 141(5): 1489-94.

Hardy, R. R. and K. Hayakawa (2001). "B cell development pathways." Annu Rev Immunol 19: 595-621.

Harkiolaki, M., S. L. Holmes, et al. (2009). "T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides." Immunity 30(3): 348-57.

Harris, D. P., L. Haynes, et al. (2000). "Reciprocal regulation of polarized cytokine production by effector B and T cells." Nat Immunol 1(6): 475-82.

Hatachi, S., A. Kunitomi, et al. "CD8(+) T-cell lymphoproliferative disorder associated with Epstein-Barr virus in a patient with rheumatoid arthritis during methotrexate therapy." Mod Rheumatol.

Hatterer, E., M. Touret, et al. (2008). "Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions." PLoS One 3(10): e3321.

Hauser, S. L., E. Waubant, et al. (2008). "B-cell depletion with rituximab in relapsing-remitting multiple sclerosis." N Engl J Med 358(7): 676-88.

Page 217: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

217

Havenith, C. E., D. Askew, et al. (1998). "Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells." Glia 22(4): 348-59.

Haworth, O., D. L. Hardie, et al. (2008). "A role for the integrin alpha6beta1 in the differential distribution of CD4 and CD8 T-cell subsets within the rheumatoid synovium." Rheumatology (Oxford) 47(9): 1329-34.

Heath, V. L., N. C. Moore, et al. (1998). "Intrathymic expression of genes involved in organ specific autoimmune disease." J Autoimmun 11(4): 309-18.

Hedman, M., M. Faresjo, et al. (2008). "Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children." Clin Exp Immunol 153(3): 360-8.

Heissmeyer, V. and A. Rao (2004). "E3 ligases in T cell anergy--turning immune responses into tolerance." Sci STKE 2004(241): pe29.

Helander, T. S., O. Carpen, et al. (1996). "ICAM-2 redistributed by ezrin as a target for killer cells." Nature 382(6588): 265-8.

Hemmer, B., J. J. Archelos, et al. (2002). "New concepts in the immunopathogenesis of multiple sclerosis." Nat Rev Neurosci 3(4): 291-301.

Hemmer, B., S. Cepok, et al. (2002). "Pathogenesis of multiple sclerosis: an update on immunology." Curr Opin Neurol 15(3): 227-31.

Heppner, F. L., M. Greter, et al. (2005). "Experimental autoimmune encephalomyelitis repressed by microglial paralysis." Nat Med 11(2): 146-52.

Hernandez, M. G., L. Shen, et al. (2008). "CD40 on APCs is needed for optimal programming, maintenance, and recall of CD8+ T cell memory even in the absence of CD4+ T cell help." J Immunol 180(7): 4382-90.

Heydtmann, M. and D. H. Adams (2002). "Understanding selective trafficking of lymphocyte subsets." Gut 50(2): 150-2.

Hochmeister, S., R. Grundtner, et al. (2006). "Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis." J Neuropathol Exp Neurol 65(9): 855-65.

Hofstetter, H. H., S. M. Ibrahim, et al. (2005). "Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis." Cell Immunol 237(2): 123-30.

Hori, S., T. L. Carvalho, et al. (2002). "CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice." Eur J Immunol 32(5): 1282-91.

Hori, S., T. Nomura, et al. (2003). "Control of regulatory T cell development by the transcription factor Foxp3." Science 299(5609): 1057-61.

Houot, R., I. Perrot, et al. (2006). "Human CD4+CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation." J Immunol 176(9): 5293-8.

Hovelmeyer, N., Z. Hao, et al. (2005). "Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis." J Immunol 175(9): 5875-84.

Howard, T. A., J. M. Rochelle, et al. (1991). "Cd28 and Ctla-4, two related members of the Ig supergene family, are tightly linked on proximal mouse chromosome 1." Immunogenetics 33(1): 74-6.

Hsieh, C. S., Y. Liang, et al. (2004). "Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors." Immunity 21(2): 267-77.

Huan, J., N. Culbertson, et al. (2005). "Decreased FOXP3 levels in multiple sclerosis patients." J Neurosci Res 81(1): 45-52.

Huang, Y., F. Rezzoug, et al. (2004). "Matching at the MHC class I K locus is essential for long-term engraftment of purified hematopoietic stem cells: a role for host NK cells in regulating HSC engraftment." Blood 104(3): 873-80.

Page 218: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

218

Huseby, E. S., D. Liggitt, et al. (2001). "A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis." J Exp Med 194(5): 669-76.

Huseby, E. S., C. Ohlen, et al. (1999). "Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice." J Immunol 163(3): 1115-8.

Huseby, E. S., J. White, et al. (2005). "How the T cell repertoire becomes peptide and MHC specific." Cell 122(2): 247-60.

Husemann, J., J. D. Loike, et al. (2002). "Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system." Glia 40(2): 195-205.

Hussein, M. R., N. A. Fathi, et al. (2008). "Alterations of the CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule-1 in rheumatoid arthritis and osteoarthritis: preliminary observations." Pathol Oncol Res 14(3): 321-8.

Inaba, K., M. Witmer-Pack, et al. (1994). "The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro." J Exp Med 180(5): 1849-60.

Irvine, K. A. and W. F. Blakemore (2008). "Remyelination protects axons from demyelination-associated axon degeneration." Brain 131(Pt 6): 1464-77.

Issazadeh, S., A. Ljungdahl, et al. (1995). "Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta." J Neuroimmunol 61(2): 205-12.

Issazadeh, S., V. Navikas, et al. (1998). "Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo." J Immunol 161(3): 1104-12.

Itoh, M., T. Takahashi, et al. (1999). "Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance." J Immunol 162(9): 5317-26.

Jack, C. S., N. Arbour, et al. (2005). "TLR signaling tailors innate immune responses in human microglia and astrocytes." J Immunol 175(7): 4320-30.

James, E. A. and W. W. Kwok (2007). "CD8+ suppressor-mediated regulation of human CD4+ T cell responses to glutamic acid decarboxylase 65." Eur J Immunol 37(1): 78-86.

Jiang, H., N. S. Braunstein, et al. (2001). "CD8+ T cells control the TH phenotype of MBP-reactive CD4+ T cells in EAE mice." Proc Natl Acad Sci U S A 98(11): 6301-6.

Jiang, H., S. I. Zhang, et al. (1992). "Role of CD8+ T cells in murine experimental allergic encephalomyelitis." Science 256(5060): 1213-5.

Jiang, W., M. S. Anderson, et al. (2005). "Modifier loci condition autoimmunity provoked by Aire deficiency." J Exp Med 202(6): 805-15.

Joffre, O., N. Gorsse, et al. (2004). "Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes." Blood 103(11): 4216-21.

Johnson, A. L., L. Aravind, et al. (2009). "Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection." Nat Immunol 10(8): 831-9.

Jolicoeur, C., D. Hanahan, et al. (1994). "T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus." Proc Natl Acad Sci U S A 91(14): 6707-11.

Joly, E., L. Mucke, et al. (1991). "Viral persistence in neurons explained by lack of major histocompatibility class I expression." Science 253(5025): 1283-5.

Page 219: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

219

Jones, E., M. Dahm-Vicker, et al. (2002). "Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice." Cancer Immun 2: 1.

Jordan, M. S., A. Boesteanu, et al. (2001). "Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide." Nat Immunol 2(4): 301-6.

Juedes, A. E. and N. H. Ruddle (2001). "Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis." J Immunol 166(8): 5168-75.

Jurewicz, A., W. E. Biddison, et al. (1998). "MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes." J Immunol 160(6): 3056-9.

Kabat, H. (1947). "Studies on neuromuscular dysfunction; new principles of neuromuscular reeducation." Perm Found Med Bull 5(3): 111-23.

Kalinski, P. and M. Moser (2005). "Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses." Nat Rev Immunol 5(3): 251-60.

Kanner, S. B., L. S. Grosmaire, et al. (1993). "Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation." Proc Natl Acad Sci U S A 90(15): 7099-103.

Karandikar, N. J., C. L. Vanderlugt, et al. (1998). "Tissue-specific up-regulation of B7-1 expression and function during the course of murine relapsing experimental autoimmune encephalomyelitis." J Immunol 161(1): 192-9.

Karges, W., T. Rajasalu, et al. (2007). "The diabetogenic, insulin-specific CD8 T cell response primed in the experimental autoimmune diabetes model in RIP-B7.1 mice." Eur J Immunol 37(8): 2097-103.

Katz, J. D., B. Wang, et al. (1993). "Following a diabetogenic T cell from genesis through pathogenesis." Cell 74(6): 1089-100.

Kaufmann, S. H., C. Blum, et al. (1993). "Crosstalk between alpha/beta T cells and gamma/delta T cells in vivo: activation of alpha/beta T-cell responses after gamma/delta T-cell modulation with the monoclonal antibody GL3." Proc Natl Acad Sci U S A 90(20): 9620-4.

Kearney, E. R., K. A. Pape, et al. (1994). "Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo." Immunity 1(4): 327-39.

Kebir, H., K. Kreymborg, et al. (2007). "Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation." Nat Med 13(10): 1173-5.

Kehrl, J. H., A. B. Roberts, et al. (1986). "Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes." J Immunol 137(12): 3855-60.

Kehrl, J. H., L. M. Wakefield, et al. (1986). "Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth." J Exp Med 163(5): 1037-50.

Keir, M. E. and A. H. Sharpe (2005). "The B7/CD28 costimulatory family in autoimmunity." Immunol Rev 204: 128-43.

Kennedy, M. K., D. S. Torrance, et al. (1992). "Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery." J Immunol 149(7): 2496-505.

Kerfoot, S. M., M. U. Norman, et al. (2006). "Reevaluation of P-selectin and alpha 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis." J Immunol 176(10): 6225-34.

Khanna, K. M., R. H. Bonneau, et al. (2003). "Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia." Immunity 18(5): 593-603.

Page 220: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

220

Khoury, S. J., W. W. Hancock, et al. (1992). "Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain." J Exp Med 176(5): 1355-64.

Kimura, A., T. Naka, et al. (2007). "IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells." Proc Natl Acad Sci U S A 104(29): 12099-104.

King, C. L., R. J. Stupi, et al. (1995). "CD28 activation promotes Th2 subset differentiation by human CD4+ cells." Eur J Immunol 25(2): 587-95.

Kingston, R., E. J. Jenkinson, et al. (1985). "A single stem cell can recolonize an embryonic thymus, producing phenotypically distinct T-cell populations." Nature 317(6040): 811-3.

Kirberg, J., A. Baron, et al. (1994). "Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor." J Exp Med 180(1): 25-34.

Kirk, J., J. Plumb, et al. (2003). "Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination." J Pathol 201(2): 319-27.

Kisielow, P., H. Bluthmann, et al. (1988). "Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes." Nature 333(6175): 742-6.

Kivisakk, P., J. Imitola, et al. (2009). "Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis." Ann Neurol 65(4): 457-69.

Klein, L., M. Klugmann, et al. (2000). "Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells." Nat Med 6(1): 56-61.

Klein, L. and B. Kyewski (2000). ""Promiscuous" expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity?" J Mol Med 78(9): 483-94.

Kobie, J. J., P. R. Shah, et al. (2006). "T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine." J Immunol 177(10): 6780-6.

Koh, D. R., W. P. Fung-Leung, et al. (1992). "Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice." Science 256(5060): 1210-3.

Kohn, L. D. and N. Harii (2003). "Thyrotropin receptor autoantibodies (TSHRAbs): epitopes, origins and clinical significance." Autoimmunity 36(6-7): 331-7.

Kojima, K., M. Reindl, et al. (1997). "The thymus and self-tolerance: co-existence of encephalitogenic S100 beta-specific T cells and their nominal autoantigen in the normal adult rat thymus." Int Immunol 9(6): 897-904.

Komiyama, Y., S. Nakae, et al. (2006). "IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis." J Immunol 177(1): 566-73.

Kont, V., M. Laan, et al. (2008). "Modulation of Aire regulates the expression of tissue-restricted antigens." Mol Immunol 45(1): 25-33.

Koopman, G., Y. van Kooyk, et al. (1990). "Triggering of the CD44 antigen on T lymphocytes promotes T cell adhesion through the LFA-1 pathway." J Immunol 145(11): 3589-93.

Korn, T., J. Reddy, et al. (2007). "Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation." Nat Med 13(4): 423-31.

Koulova, L., E. A. Clark, et al. (1991). "The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells." J Exp Med 173(3): 759-62.

Page 221: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

221

Kovats, S., E. K. Main, et al. (1990). "A class I antigen, HLA-G, expressed in human trophoblasts." Science 248(4952): 220-3.

Koyama, Y., Y. Tanaka, et al. (1996). "Cross-linking of intercellular adhesion molecule 1 (CD54) induces AP-1 activation and IL-1beta transcription." J Immunol 157(11): 5097-103.

Krakowski, M. and T. Owens (1996). "Interferon-gamma confers resistance to experimental allergic encephalomyelitis." Eur J Immunol 26(7): 1641-6.

Krishnamoorthy, G., H. Lassmann, et al. (2006). "Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation." J Clin Invest 116(9): 2385-92.

Kuchroo, V. K., A. C. Anderson, et al. (2002). "T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire." Annu Rev Immunol 20: 101-23.

Kuchroo, V. K., R. A. Sobel, et al. (1992). "Experimental allergic encephalomyelitis mediated by cloned T cells specific for a synthetic peptide of myelin proteolipid protein. Fine specificity and T cell receptor V beta usage." J Immunol 148(12): 3776-82.

Kuhle, J., R. L. Lindberg, et al. (2007). "Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF." J Neurol 254(2): 160-8.

Kuhlmann, T., G. Lingfeld, et al. (2002). "Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time." Brain 125(Pt 10): 2202-12.

Kuroda, N., T. Mitani, et al. (2005). "Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice." J Immunol 174(4): 1862-70.

Kurts, C., F. R. Carbone, et al. (1997). "CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity." J Exp Med 186(12): 2057-62.

Kurts, C., F. R. Carbone, et al. (1999). "Signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells." Nature 398(6725): 341-4.

Kurts, C., W. R. Heath, et al. (1996). "Constitutive class I-restricted exogenous presentation of self antigens in vivo." J Exp Med 184(3): 923-30.

Kurts, C., R. M. Sutherland, et al. (1999). "CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose." Proc Natl Acad Sci U S A 96(22): 12703-7.

Kuruvilla, A. P., R. Shah, et al. (1991). "Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice." Proc Natl Acad Sci U S A 88(7): 2918-21.

Kurzinger, K., T. Reynolds, et al. (1981). "A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure." J Immunol 127(2): 596-602.

Kyewski, B. and J. Derbinski (2004). "Self-representation in the thymus: an extended view." Nat Rev Immunol 4(9): 688-98.

Ladel, C. H., C. Blum, et al. (1996). "Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by gamma/delta T lymphocytes." Infect Immun 64(5): 1744-9.

Lafaille, J. J., F. V. Keere, et al. (1997). "Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease." J Exp Med 186(2): 307-12.

Lafaille, J. J., K. Nagashima, et al. (1994). "High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice." Cell 78(3): 399-408.

Page 222: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

222

Lal, G., M. S. Shaila, et al. (2005). "Activated mouse T-cells synthesize MHC class II, process, and present morbillivirus nucleocapsid protein to primed T-cells." Cell Immunol 234(2): 133-45.

Lamhamedi-Cherradi, S. E., S. J. Zheng, et al. (2003). "Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice." Nat Immunol 4(3): 255-60.

Lampson, L. A. and C. A. Fisher (1984). "Weak HLA and beta 2-microglobulin expression of neuronal cell lines can be modulated by interferon." Proc Natl Acad Sci U S A 81(20): 6476-80.

Lang, H. L., H. Jacobsen, et al. (2002). "A functional and structural basis for TCR cross-reactivity in multiple sclerosis." Nat Immunol 3(10): 940-3.

Langrish, C. L., Y. Chen, et al. (2005). "IL-23 drives a pathogenic T cell population that induces autoimmune inflammation." J Exp Med 201(2): 233-40.

Lanzavecchia, A. (1990). "Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes." Annu Rev Immunol 8: 773-93.

Lassmann, H., C. Brunner, et al. (1988). "Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions." Acta Neuropathol 75(6): 566-76.

Laufer, T. M., J. DeKoning, et al. (1996). "Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex." Nature 383(6595): 81-5.

Le Saout, C., S. Mennechet, et al. (2008). "Memory-like CD8+ and CD4+ T cells cooperate to break peripheral tolerance under lymphopenic conditions." Proc Natl Acad Sci U S A 105(49): 19414-9.

Lee, B. O., L. Hartson, et al. (2003). "CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment." J Exp Med 198(11): 1759-64.

Lehar, S. M. and M. J. Bevan (2004). "Immunology: polarizing a T-cell response." Nature 430(6996): 150-1.

Lehrmann, E., R. Kiefer, et al. (1998). "Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats." Glia 24(4): 437-48.

Lemire, J. (2000). "1,25-Dihydroxyvitamin D3--a hormone with immunomodulatory properties." Z Rheumatol 59 Suppl 1: 24-7.

Lennon, G. P., M. Bettini, et al. (2009). "T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event." Immunity 31(4): 643-53.

Leonard, J. P., K. E. Waldburger, et al. (1995). "Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12." J Exp Med 181(1): 381-6.

Lesourne, R., S. Uehara, et al. (2009). "Themis, a T cell-specific protein important for late thymocyte development." Nat Immunol 10(8): 840-7.

Letourneau, R., J. J. Rozniecki, et al. (2003). "Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis." J Neuroimmunol 145(1-2): 18-26.

Levin, M. C., S. M. Lee, et al. (2002). "Autoimmunity due to molecular mimicry as a cause of neurological disease." Nat Med 8(5): 509-13.

Levin, M. C., S. M. Lee, et al. (2002). "Cross-reactivity between immunodominant human T lymphotropic virus type I tax and neurons: implications for molecular mimicry." J Infect Dis 186(10): 1514-7.

Levine, S. and R. Sowinski (1973). "Experimental allergic encephalomyelitis in inbred and outbred mice." J Immunol 110(1): 139-43.

Page 223: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

223

Levings, M. K., S. Gregori, et al. (2005). "Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells." Blood 105(3): 1162-9.

Lewkowich, I. P., N. S. Herman, et al. (2005). "CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function." J Exp Med 202(11): 1549-61.

Li, M. O., Y. Y. Wan, et al. (2006). "Transforming growth factor-beta regulation of immune responses." Annu Rev Immunol 24: 99-146.

Li, Y., Y. Huang, et al. (2005). "Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule." Embo J 24(17): 2968-79.

Liblau, R., L. Steinman, et al. (1997). "Experimental autoimmune encephalomyelitis in IL-4-deficient mice." Int Immunol 9(5): 799-803.

Liblau, R. S., F. S. Wong, et al. (2002). "Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention." Immunity 17(1): 1-6.

Lin, J. and A. Weiss (2001). "T cell receptor signalling." J Cell Sci 114(Pt 2): 243-4. Linares, D., P. Mana, et al. (2003). "The magnitude and encephalogenic potential of

autoimmune response to MOG is enhanced in MOG deficient mice." J Autoimmun 21(4): 339-51.

Ling, C., M. Sandor, et al. (2003). "In situ processing and distribution of intracerebrally injected OVA in the CNS." J Neuroimmunol 141(1-2): 90-8.

Linington, C. (1998). "Experimental animal models." immunotherapy in neuroimmunologic disease: 11-28.

Linington, C., M. Bradl, et al. (1988). "Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein." Am J Pathol 130(3): 443-54.

Linington, C., S. Izumo, et al. (1984). "A permanent rat T cell line that mediates experimental allergic neuritis in the Lewis rat in vivo." J Immunol 133(4): 1946-50.

Linington, C. and H. Lassmann (1987). "Antibody responses in chronic relapsing experimental allergic encephalomyelitis: correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG)." J Neuroimmunol 17(1): 61-9.

Linington, C., B. P. Morgan, et al. (1989). "The role of complement in the pathogenesis of experimental allergic encephalomyelitis." Brain 112 (Pt 4): 895-911.

Linsley, P. S., J. Bradshaw, et al. (1993). "CD28 engagement by B7/BB-1 induces transient down-regulation of CD28 synthesis and prolonged unresponsiveness to CD28 signaling." J Immunol 150(8 Pt 1): 3161-9.

Linsley, P. S., J. L. Greene, et al. (1992). "Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes." J Exp Med 176(6): 1595-604.

Linsley, P. S. and J. A. Ledbetter (1993). "The role of the CD28 receptor during T cell responses to antigen." Annu Rev Immunol 11: 191-212.

Linthicum, D. S., J. J. Munoz, et al. (1982). "Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system." Cell Immunol 73(2): 299-310.

Litzenburger, T., R. Fassler, et al. (1998). "B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice." J Exp Med 188(1): 169-80.

Liu, G. Y. and D. C. Wraith (1995). "Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice--implications for autoimmunity." Int Immunol 7(8): 1255-63.

Page 224: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

224

Liu, H., A. J. MacKenzie-Graham, et al. (2001). "Mice resistant to experimental autoimmune encephalomyelitis have increased thymic expression of myelin basic protein and increased MBP specific T cell tolerance." J Neuroimmunol 115(1-2): 118-26.

Liu, J., M. W. Marino, et al. (1998). "TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination." Nat Med 4(1): 78-83.

Liu, T., K. M. Khanna, et al. (2000). "CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons." J Exp Med 191(9): 1459-66.

Lock, C., G. Hermans, et al. (2002). "Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis." Nat Med 8(5): 500-8.

Losy, J., P. D. Mehta, et al. (1990). "Identification of IgG subclasses' oligoclonal bands in multiple sclerosis CSF." Acta Neurol Scand 82(1): 4-8.

Lu, L., H. J. Kim, et al. (2008). "Regulation of CD8+ regulatory T cells: Interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease." Proc Natl Acad Sci U S A 105(49): 19420-5.

Lublin, F. D., R. L. Knobler, et al. (1993). "Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis." Autoimmunity 16(4): 267-74.

Lucchinetti, C., W. Bruck, et al. (2000). "Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination." Ann Neurol 47(6): 707-17.

Luger, D., P. B. Silver, et al. (2008). "Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category." J Exp Med 205(4): 799-810.

Luo, C., E. Burgeon, et al. (1996). "Mechanisms of transactivation by nuclear factor of activated T cells-1." J Exp Med 184(1): 141-7.

Lyons, J. A., M. San, et al. (1999). "B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide." Eur J Immunol 29(11): 3432-9.

Macian, F., F. Garcia-Cozar, et al. (2002). "Transcriptional mechanisms underlying lymphocyte tolerance." Cell 109(6): 719-31.

Mack, C. L., C. L. Vanderlugt-Castaneda, et al. (2003). "Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis." J Neuroimmunol 144(1-2): 68-79.

Magliozzi, R., O. Howell, et al. (2007). "Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology." Brain 130(Pt 4): 1089-104.

Mallone, R., E. Martinuzzi, et al. (2007). "CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes." Diabetes 56(3): 613-21.

Mallone, R. and P. van Endert (2008). "T cells in the pathogenesis of type 1 diabetes." Curr Diab Rep 8(2): 101-6.

Mannie, M. D., K. D. Prevost, et al. (1995). "Prostaglandin E2 promotes the induction of anergy during T helper cell recognition of myelin basic protein." Cell Immunol 160(1): 132-8.

Mao, Y., D. Brigham, et al. (2004). "Overexpression of a mutant CTLA4 inhibits T-cell activation and homeostasis-driven expansion." Exp Hematol 32(8): 735-47.

Markovic-Plese, S., B. Hemmer, et al. (2005). "High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: implications for the initiation of autoimmune response in multiple sclerosis." J Neuroimmunol 169(1-2): 31-8.

Marrack, P., K. Rubtsova, et al. (2008). "T cell receptor specificity for major histocompatibility complex proteins." Curr Opin Immunol 20(2): 203-7.

Mars, L. T., L. Araujo, et al. (2009). "Invariant NKT cells inhibit development of the Th17 lineage." Proc Natl Acad Sci U S A 106(15): 6238-43.

Page 225: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

225

Mars, L. T., V. Laloux, et al. (2002). "Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice." J Immunol 168(12): 6007-11.

Mars, L. T., J. Novak, et al. (2004). "Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks." Trends Immunol 25(9): 471-6.

Martin, B. K., K. C. Chin, et al. (1997). "Induction of MHC class I expression by the MHC class II transactivator CIITA." Immunity 6(5): 591-600.

Mathey, E. K., T. Derfuss, et al. (2007). "Neurofascin as a novel target for autoantibody-mediated axonal injury." J Exp Med 204(10): 2363-72.

Matsumura, M., D. H. Fremont, et al. (1992). "Emerging principles for the recognition of peptide antigens by MHC class I molecules." Science 257(5072): 927-34.

Matyszak, M. K., S. Denis-Donini, et al. (1999). "Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation." Eur J Immunol 29(10): 3063-76.

Matyszak, M. K. and V. H. Perry (1996). "The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system." Neuroscience 74(2): 599-608.

Matzinger, P., R. Zamoyska, et al. (1984). "Self tolerance is H-2-restricted." Nature 308(5961): 738-41.

Maynard, J., K. Petersson, et al. (2005). "Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity." Immunity 22(1): 81-92.

McGeachy, M. J., Y. Chen, et al. (2009). "The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo." Nat Immunol 10(3): 314-24.

McGeachy, M. J., L. A. Stephens, et al. (2005). "Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system." J Immunol 175(5): 3025-32.

McGuinness, D. H., P. K. Dehal, et al. (2003). "Pattern recognition molecules and innate immunity to parasites." Trends Parasitol 19(7): 312-9.

McMahon, E. J., S. L. Bailey, et al. (2005). "Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis." Nat Med 11(3): 335-9.

McMenamin, C., M. McKersey, et al. (1995). "Gamma delta T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens." J Immunol 154(9): 4390-4.

Meinl, E., M. Krumbholz, et al. (2006). "B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation." Ann Neurol 59(6): 880-92.

Mellor, A. L. and D. H. Munn (2004). "IDO expression by dendritic cells: tolerance and tryptophan catabolism." Nat Rev Immunol 4(10): 762-74.

Menager-Marcq, I., C. Pomie, et al. (2006). "CD8+CD28- regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice." Gastroenterology 131(6): 1775-85.

Mendel, I., N. Kerlero de Rosbo, et al. (1995). "A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells." Eur J Immunol 25(7): 1951-9.

Mendel, I., K. Natarajan, et al. (2004). "A novel protective model against experimental allergic encephalomyelitis in mice expressing a transgenic TCR-specific for myelin oligodendrocyte glycoprotein." J Neuroimmunol 149(1-2): 10-21.

Page 226: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

226

Meuer, S. C., O. Acuto, et al. (1984). "The human T-cell receptor." Annu Rev Immunol 2: 23-50.

Meyers, C. M. and C. J. Kelly (1991). "Effector mechanisms in organ-specific autoimmunity. I. Characterization of a CD8+ T cell line that mediates murine interstitial nephritis." J Clin Invest 88(2): 408-16.

Miellot, A., R. Zhu, et al. (2005). "Activation of invariant NK T cells protects against experimental rheumatoid arthritis by an IL-10-dependent pathway." Eur J Immunol 35(12): 3704-13.

Miosge, L. A. and C. C. Goodnow (2005). "Genes, pathways and checkpoints in lymphocyte development and homeostasis." Immunol Cell Biol 83(4): 318-35.

Mishra, B. B., U. M. Gundra, et al. (2008). "Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis." J Neuroinflammation 5: 53.

Misra, N., J. Bayry, et al. (2004). "Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells." J Immunol 172(8): 4676-80.

Mizoguchi, A., E. Mizoguchi, et al. (2002). "Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation." Immunity 16(2): 219-30.

Mombaerts, P., J. Arnoldi, et al. (1993). "Different roles of alpha beta and gamma delta T cells in immunity against an intracellular bacterial pathogen." Nature 365(6441): 53-6.

Montero, E., G. Nussbaum, et al. (2004). "Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies." J Autoimmun 23(1): 1-7.

Montgomery, I. N. and H. C. Rauch (1982). "Experimental allergic encephalomyelitis (EAE) in mice: primary control of EAE susceptibility is outside the H-2 complex." J Immunol 128(1): 421-5.

Moore, T. A., U. von Freeden-Jeffry, et al. (1996). "Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice." J Immunol 157(6): 2366-73.

Morandi, B., P. Bramanti, et al. (2008). "Role of natural killer cells in the pathogenesis and progression of multiple sclerosis." Pharmacol Res 57(1): 1-5.

Morgan, D. J., H. T. Kreuwel, et al. (1999). "Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens." J Immunol 163(2): 723-7.

Morgan, D. J., C. Kurts, et al. (1999). "Ontogeny of T cell tolerance to peripherally expressed antigens." Proc Natl Acad Sci U S A 96(7): 3854-8.

Morgan, D. J., R. Liblau, et al. (1996). "CD8(+) T cell-mediated spontaneous diabetes in neonatal mice." J Immunol 157(3): 978-83.

Moser, M. and K. M. Murphy (2000). "Dendritic cell regulation of TH1-TH2 development." Nat Immunol 1(3): 199-205.

Mosmann, T. R. (1994). "Properties and functions of interleukin-10." Adv Immunol 56: 1-26. Mosmann, T. R., H. Cherwinski, et al. (2005). "Two types of murine helper T cell clone. I.

Definition according to profiles of lymphokine activities and secreted proteins. 1986." J Immunol 175(1): 5-14.

Mowat, A. M. (2003). "Anatomical basis of tolerance and immunity to intestinal antigens." Nat Rev Immunol 3(4): 331-41.

Munz, C., J. D. Lunemann, et al. (2009). "Antiviral immune responses: triggers of or triggered by autoimmunity?" Nat Rev Immunol 9(4): 246-58.

Muraro, P. A., M. Vergelli, et al. (1997). "Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in

Page 227: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

227

HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire." J Clin Invest 100(2): 339-49.

Murray, R., T. Suda, et al. (1989). "IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets." Int Immunol 1(5): 526-31.

Nagarajan, U. M., P. Louis-Plence, et al. (1999). "RFX-B is the gene responsible for the most common cause of the bare lymphocyte syndrome, an MHC class II immunodeficiency." Immunity 10(2): 153-62.

Najafian, N., T. Chitnis, et al. (2003). "Regulatory functions of CD8+CD28- T cells in an autoimmune disease model." J Clin Invest 112(7): 1037-48.

Nakamura, K., A. Kitani, et al. (2001). "Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta." J Exp Med 194(5): 629-44.

Nakamura, T., K. H. Sonoda, et al. (2003). "CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site." J Immunol 171(3): 1266-71.

Nakanishi, Y., B. Lu, et al. (2009). "CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help." Nature 462(7272): 510-3.

Naluai, A. T., S. Nilsson, et al. (2000). "The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders." Tissue Antigens 56(4): 350-5.

Nataf, S., N. Strazielle, et al. (2006). "Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes." Glia 54(3): 160-71.

Nave, K. A., C. Lai, et al. (1987). "Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin." Proc Natl Acad Sci U S A 84(16): 5665-9.

Nepom, G. T. and H. Erlich (1991). "MHC class-II molecules and autoimmunity." Annu Rev Immunol 9: 493-525.

Netea, M. G., R. Sutmuller, et al. (2004). "Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells." J Immunol 172(6): 3712-8.

Neumann, H., A. Cavalie, et al. (1995). "Induction of MHC class I genes in neurons." Science 269(5223): 549-52.

Neumann, H., I. M. Medana, et al. (2002). "Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases." Trends Neurosci 25(6): 313-9.

Neveu, I., P. Naveilhan, et al. (1994). "1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells." Brain Res Mol Brain Res 24(1-4): 70-6.

Newman, T. A., I. Galea, et al. (2005). "Blood-derived dendritic cells in an acute brain injury." J Neuroimmunol 166(1-2): 167-72.

Nicholson, M. J., M. Hahn, et al. (2005). "Unusual features of self-peptide/MHC binding by autoimmune T cell receptors." Immunity 23(4): 351-60.

Niederkorn, J. Y. (2006). "See no evil, hear no evil, do no evil: the lessons of immune privilege." Nat Immunol 7(4): 354-9.

Niederkorn, J. Y., E. Y. Chiang, et al. (1999). "Expression of a nonclassical MHC class Ib molecule in the eye." Transplantation 68(11): 1790-9.

Niki, S., K. Oshikawa, et al. (2006). "Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice." J Clin Invest 116(5): 1292-301.

Oberle, N., N. Eberhardt, et al. (2007). "Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2

Page 228: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

228

consumption, TGF-beta, and various inhibitors of TCR signaling." J Immunol 179(6): 3578-87.

Oderup, C., L. Cederbom, et al. (2006). "Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression." Immunology 118(2): 240-9.

Oh, S., L. P. Perera, et al. (2008). "IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis." Proc Natl Acad Sci U S A 105(13): 5201-6.

Ohashi, P. S., S. Oehen, et al. (1991). "Ablation of "tolerance" and induction of diabetes by virus infection in viral antigen transgenic mice." Cell 65(2): 305-17.

Oldstone, M. B. (1998). "Molecular mimicry and immune-mediated diseases." Faseb J 12(13): 1255-65.

Olson, J. K., A. M. Ercolini, et al. (2005). "A virus-induced molecular mimicry model of multiple sclerosis." Curr Top Microbiol Immunol 296: 39-53.

Olsson, T. (1992). "Immunology of multiple sclerosis." Curr Opin Neurol Neurosurg 5(2): 195-202.

Olsson, T., J. Sun, et al. (1992). "Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis." Eur J Immunol 22(4): 1083-7.

Ortiz-Ortiz, L. and W. O. Weigle (1976). "Cellular events in the induction of experimental allergic encephalomyelitis in rats." J Exp Med 144(3): 604-16.

Orton, S. M., A. P. Morris, et al. (2008). "Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis." Am J Clin Nutr 88(2): 441-7.

Ostergaard, H. L., K. P. Kane, et al. (1987). "Cytotoxic T lymphocyte mediated lysis without release of serine esterase." Nature 330(6143): 71-2.

Owens, G. P., A. M. Ritchie, et al. (2003). "Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid." J Immunol 171(5): 2725-33.

Owyang, A. M., C. Zaph, et al. (2006). "Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract." J Exp Med 203(4): 843-9.

Paglinawan, R., U. Malipiero, et al. (2003). "TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes." Glia 44(3): 219-31.

Parekh, V. V., D. V. Prasad, et al. (2003). "B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1." J Immunol 170(12): 5897-911.

Pashenkov, M., Y. M. Huang, et al. (2001). "Two subsets of dendritic cells are present in human cerebrospinal fluid." Brain 124(Pt 3): 480-92.

paterson, P. Y. (1976). "Experimental autoimmune encephalomyelitis: induction, pathogenesis and suppression." textbook in immunopathology, P.A.M. à H.S.M.- Eberhard, ed (Nex York: Grune and Stratton): 179-213.

Pawson, T. and J. D. Scott (1997). "Signaling through scaffold, anchoring, and adaptor proteins." Science 278(5346): 2075-80.

Pedotti, R., J. J. DeVoss, et al. (2003). "Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination." Proc Natl Acad Sci U S A 100(4): 1867-72.

Pelayo, R., M. Tintore, et al. (2007). "Antimyelin antibodies with no progression to multiple sclerosis." N Engl J Med 356(4): 426-8.

Perchellet, A., I. Stromnes, et al. (2004). "CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'." Nat Immunol 5(6): 606-14.

Page 229: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

229

Perry, V. H. (1998). "A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation." J Neuroimmunol 90(2): 113-21.

Pettinelli, C. B. and D. E. McFarlin (1981). "Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes." J Immunol 127(4): 1420-3.

Piazza, F., J. C. DiFrancesco, et al. "Cerebrospinal fluid levels of BAFF and APRIL in untreated multiple sclerosis." J Neuroimmunol 220(1-2): 104-7.

Piccirillo, C. A. and E. M. Shevach (2001). "Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells." J Immunol 167(3): 1137-40.

Piddlesden, S. J., H. Lassmann, et al. (1993). "The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement." Am J Pathol 143(2): 555-64.

Pieters, J. (2000). "MHC class II-restricted antigen processing and presentation." Adv Immunol 75: 159-208.

Pinkoski, M. J. and D. R. Green (2002). "Lymphocyte apoptosis: refining the paths to perdition." Curr Opin Hematol 9(1): 43-9.

Piskurich, J. F., Y. Wang, et al. (1998). "Identification of distinct regions of 5' flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene." J Immunol 160(1): 233-40.

Polfliet, M. M., F. van de Veerdonk, et al. (2002). "The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis." J Neuroimmunol 122(1-2): 1-8.

Polfliet, M. M., P. J. Zwijnenburg, et al. (2001). "Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis." J Immunol 167(8): 4644-50.

Ponomarev, E. D. and B. N. Dittel (2005). "Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism." J Immunol 174(8): 4678-87.

Ponomarev, E. D., L. P. Shriver, et al. (2006). "CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation." J Immunol 176(3): 1402-10.

Ponomarev, E. D., L. P. Shriver, et al. (2005). "Microglial cell activation and proliferation precedes the onset of CNS autoimmunity." J Neurosci Res 81(3): 374-89.

Pratt, B. M. and J. M. McPherson (1997). "TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases." Cytokine Growth Factor Rev 8(4): 267-92.

Prehaud, C., F. Megret, et al. (2005). "Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon." J Virol 79(20): 12893-904.

Pribyl, T. M., C. Campagnoni, et al. (1996). "The major myelin protein genes are expressed in the human thymus." J Neurosci Res 45(6): 812-9.

Pribyl, T. M., C. W. Campagnoni, et al. (1993). "The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems." Proc Natl Acad Sci U S A 90(22): 10695-9.

Pribyl, T. M., C. W. Campagnoni, et al. (1996). "Expression of the myelin proteolipid protein gene in the human fetal thymus." J Neuroimmunol 67(2): 125-30.

Prilliman, K. R., E. E. Lemmens, et al. (2002). "Cutting edge: a crucial role for B7-CD28 in transmitting T help from APC to CTL." J Immunol 169(8): 4094-7.

Page 230: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

230

Prineas, J. W. and J. S. Graham (1981). "Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown." Ann Neurol 10(2): 149-58.

Prufer, K., T. D. Veenstra, et al. (1999). "Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord." J Chem Neuroanat 16(2): 135-45.

Puel, A., R. Doffinger, et al. "Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I." J Exp Med 207(2): 291-7.

Putheti, P., A. Pettersson, et al. (2004). "Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs." J Clin Immunol 24(2): 155-61.

Quandt, J. A., M. Baig, et al. (2004). "Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111-129-specific humanized TCR transgenic mice." J Exp Med 200(2): 223-34.

Racke, M. K., A. Bonomo, et al. (1994). "Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease." J Exp Med 180(5): 1961-6.

Racke, M. K., B. Cannella, et al. (1992). "Evidence of endogenous regulatory function of transforming growth factor-beta 1 in experimental allergic encephalomyelitis." Int Immunol 4(5): 615-20.

Racke, M. K., S. Dhib-Jalbut, et al. (1991). "Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1." J Immunol 146(9): 3012-7.

Raghavan, M., N. Del Cid, et al. (2008). "MHC class I assembly: out and about." Trends Immunol 29(9): 436-43.

Rahman, A. and D. A. Isenberg (2008). "Systemic lupus erythematosus." N Engl J Med 358(9): 929-39.

Ramagopalan, S. V., C. Anderson, et al. (2007). "Genomewide study of multiple sclerosis." N Engl J Med 357(21): 2199-200; author reply 2200-1.

Rammensee, H. G. and M. J. Bevan (1984). "Evidence from in vitro studies that tolerance to self antigens is MHC-restricted." Nature 308(5961): 741-4.

Ramsey, C., O. Winqvist, et al. (2002). "Aire deficient mice develop multiple features of APECED phenotype and show altered immune response." Hum Mol Genet 11(4): 397-409.

Ransohoff, R. M., P. Kivisakk, et al. (2003). "Three or more routes for leukocyte migration into the central nervous system." Nat Rev Immunol 3(7): 569-81.

Re, F. and J. L. Strominger (2001). "Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells." J Biol Chem 276(40): 37692-9.

Read, S., R. Greenwald, et al. (2006). "Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo." J Immunol 177(7): 4376-83.

Reboldi, A., C. Coisne, et al. (2009). "C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE." Nat Immunol 10(5): 514-23.

Reboul, J., C. Mertens, et al. (2000). "Cytokines in genetic susceptibility to multiple sclerosis: a candidate gene approach. French Multiple Sclerosis Genetics Group." J Neuroimmunol 102(1): 107-12.

Redmond, W. L., M. J. Gough, et al. (2009). "Ligation of the OX40 co-stimulatory receptor reverses self-Ag and tumor-induced CD8 T-cell anergy in vivo." Eur J Immunol 39(8): 2184-2194.

Page 231: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

231

Redmond, W. L., J. Hernandez, et al. (2003). "Deletion of naive CD8 T cells requires persistent antigen and is not programmed by an initial signal from the tolerogenic APC." J Immunol 171(12): 6349-54.

Redmond, W. L. and L. A. Sherman (2005). "Peripheral tolerance of CD8 T lymphocytes." Immunity 22(3): 275-84.

Reich, A., C. Spering, et al. (2008). "Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity?" Trends Neurosci 31(9): 478-86.

Reinke, E. and Z. Fabry (2006). "Breaking or making immunological privilege in the central nervous system: the regulation of immunity by neuropeptides." Immunol Lett 104(1-2): 102-9.

Reith, W. and B. Mach (2001). "The bare lymphocyte syndrome and the regulation of MHC expression." Annu Rev Immunol 19: 331-73.

Remlinger, J. (1905). "accidents paralytiques au cours du traitement anti-rabique." ann. Inst. Pasteur 19(625-646).

Ren, X., F. Ye, et al. (2007). "Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells." Cell Death Differ 14(12): 2076-84.

Rifa'i, M., Z. Shi, et al. (2008). "CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells." Int Immunol 20(7): 937-47.

Rock, K. L., I. A. York, et al. (2004). "Post-proteasomal antigen processing for major histocompatibility complex class I presentation." Nat Immunol 5(7): 670-7.

Roelofs-Haarhuis, K., X. Wu, et al. (2004). "Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells." J Immunol 173(2): 1043-50.

Rohn, W. M., Y. J. Lee, et al. (1996). "Regulation of class II MHC expression." Crit Rev Immunol 16(3): 311-30.

Rojo, J. M., R. Bello, et al. (2008). "T-cell receptor." Adv Exp Med Biol 640: 1-11. Romagnoli, P., D. Hudrisier, et al. (2002). "Preferential recognition of self antigens despite

normal thymic deletion of CD4(+)CD25(+) regulatory T cells." J Immunol 168(4): 1644-8.

Roncarolo, M. G., S. Gregori, et al. (2006). "Interleukin-10-secreting type 1 regulatory T cells in rodents and humans." Immunol Rev 212: 28-50.

Rosmalen, J. G., W. van Ewijk, et al. (2002). "T-cell education in autoimmune diabetes: teachers and students." Trends Immunol 23(1): 40-6.

Rothlein, R., M. L. Dustin, et al. (1986). "A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1." J Immunol 137(4): 1270-4.

Rott, O., B. Fleischer, et al. (1994). "Interleukin-10 prevents experimental allergic encephalomyelitis in rats." Eur J Immunol 24(6): 1434-40.

Rudd, C. E., M. Martin, et al. (2002). "CTLA-4 negative signaling via lipid rafts: A new perspective." Sci STKE 2002(128): pe18.

Ruddle, N. H., C. M. Bergman, et al. (1990). "An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis." J Exp Med 172(4): 1193-200.

Safford, M., S. Collins, et al. (2005). "Egr-2 and Egr-3 are negative regulators of T cell activation." Nat Immunol 6(5): 472-80.

Sakuishi, K., S. Miyake, et al. (2009). "Role of NK Cells and Invariant NKT Cells in Multiple Sclerosis." Results Probl Cell Differ.

Santamaria, P. (2008). "Genetic and therapeutic control of diabetogenic CD8+ T cells." Novartis Found Symp 292: 130-6; discussion 136-45, 202-3.

Page 232: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

232

Saoudi, A., S. Simmonds, et al. (1995). "Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells." J Exp Med 182(2): 335-44.

Sargsyan, S. A., A. J. Shearer, et al. "Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis." Neurology 74(14): 1127-35.

Saveanu, L., O. Carroll, et al. (2005). "Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum." Nat Immunol 6(7): 689-97.

Saveanu, L. and P. van Endert (2005). "Dendritic cells: open for presentation business." Nat Immunol 6(1): 7-8.

Saxena, A., J. Bauer, et al. (2008). "Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes." J Immunol 181(3): 1617-21.

Scaffidi, C., S. Fulda, et al. (1998). "Two CD95 (APO-1/Fas) signaling pathways." Embo J 17(6): 1675-87.

Schenkel, A. R., Z. Mamdouh, et al. (2002). "CD99 plays a major role in the migration of monocytes through endothelial junctions." Nat Immunol 3(2): 143-50.

Schluesener, H. J., R. A. Sobel, et al. (1987). "A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease." J Immunol 139(12): 4016-21.

Schreuder, G. M., C. K. Hurley, et al. (2001). "The HLA dictionary 2001: a summary of HLA-A, -B, -C, -DRB1/3/4/5, -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens." Hum Immunol 62(8): 826-49.

Schroeter, M., G. Stoll, et al. (2003). "CD8+ phagocyte recruitment in rat experimental autoimmune encephalomyelitis: association with inflammatory tissue destruction." Am J Pathol 163(4): 1517-24.

Scollay, R., P. Bartlett, et al. (1984). "T cell development in the adult murine thymus: changes in the expression of the surface antigens Ly2, L3T4 and B2A2 during development from early precursor cells to emigrants." Immunol Rev 82: 79-103.

Scott, B., H. Bluthmann, et al. (1989). "The generation of mature T cells requires interaction of the alpha beta T-cell receptor with major histocompatibility antigens." Nature 338(6216): 591-3.

Seamons, A., A. Perchellet, et al. (2003). "Immune tolerance to myelin proteins." Immunol Res 28(3): 201-21.

Sebzda, E., S. Mariathasan, et al. (1999). "Selection of the T cell repertoire." Annu Rev Immunol 17: 829-74.

Seder, R. A., W. E. Paul, et al. (1992). "The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice." J Exp Med 176(4): 1091-8.

Selmaj, K., C. S. Raine, et al. (1991). "Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions." J Clin Invest 87(3): 949-54.

Sepulcre, J., A. Sanchez-Ibarrola, et al. (2005). "Association between peripheral IFN-gamma producing CD8+ T-cells and disability score in relapsing-remitting multiple sclerosis." Cytokine 32(2): 111-6.

Serafini, B., B. Rosicarelli, et al. (2007). "Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain." J Exp Med 204(12): 2899-912.

Serafini, B., B. Rosicarelli, et al. (2006). "Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells." J Neuropathol Exp Neurol 65(2): 124-41.

Page 233: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

233

Serafini, P., R. Carbley, et al. (2004). "High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells." Cancer Res 64(17): 6337-43.

Seroogy, C. M., L. Soares, et al. (2004). "The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells." J Immunol 173(1): 79-85.

Serra, P., A. Amrani, et al. (2003). "CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells." Immunity 19(6): 877-89.

Seth, P. and N. Koul (2008). "Astrocyte, the star avatar: redefined." J Biosci 33(3): 405-21. Severe, S., A. Gauvrit, et al. (2007). "CD8+ T lymphocytes specific for glutamic acid

decarboxylase 90-98 epitope mediate diabetes in NOD SCID mouse." Mol Immunol 44(11): 2950-60.

Shimizu, Y., G. A. van Seventer, et al. (1992). "Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion." J Exp Med 175(2): 577-82.

Shrikant, P., S. J. Lee, et al. (1996). "Stimulus-specific inhibition of intracellular adhesion molecule-1 gene expression by TGF-beta." J Immunol 157(2): 892-900.

Shumacher, H. R. (2002). "A surprise on joint fluid aspiration." J Clin Rheumatol 8(2): 117. Sigaux, F. (1994). "The V(D)J recombination in acute lymphoid leukemias: a short review."

Leuk Lymphoma 13 Suppl 1: 53-7. Silva, G. C., P. R. Nagib, et al. (2004). "Peripheral macrophage depletion reduces central

nervous system parasitism and damage in Trypanosoma cruzi-infected suckling rats." J Neuroimmunol 149(1-2): 50-8.

Singer, A., S. Adoro, et al. (2008). "Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice." Nat Rev Immunol 8(10): 788-801.

Singer, A. and R. Bosselut (2004). "CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision." Adv Immunol 83: 91-131.

Singh, A. K., M. T. Wilson, et al. (2001). "Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis." J Exp Med 194(12): 1801-11.

Sobel, E. S., V. N. Kakkanaiah, et al. (1993). "Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene." Int Immunol 5(10): 1275-8.

Sonobe, Y., H. Takeuchi, et al. (2009). "Interleukin-25 expressed by brain capillary endothelial cells maintains blood-brain barrier function in a protein kinase C{epsilon}-dependent manner." J Biol Chem.

Sonoda, K. H., D. E. Faunce, et al. (2001). "NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance." J Immunol 166(1): 42-50.

Sospedra, M., X. Ferrer-Francesch, et al. (1998). "Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens." J Immunol 161(11): 5918-29.

Sospedra, M. and R. Martin (2005). "Immunology of multiple sclerosis." Annu Rev Immunol 23: 683-747.

Soulet, D. and S. Rivest (2008). "Bone-marrow-derived microglia: myth or reality?" Curr Opin Pharmacol 8(4): 508-18.

Spach, K. M., F. E. Nashold, et al. (2006). "IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis." J Immunol 177(9): 6030-7.

Springer, T. A. (1990). "Adhesion receptors of the immune system." Nature 346(6283): 425-34.

Page 234: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

234

Springer, T. A. (1990). "The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors." Annu Rev Cell Biol 6: 359-402.

Srinivas, S., T. Watanabe, et al. (2001). "Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus." BMC Dev Biol 1: 4.

Srivastava, P. K., H. Udono, et al. (1994). "Heat shock proteins transfer peptides during antigen processing and CTL priming." Immunogenetics 39(2): 93-8.

Stanton, T. H., C. E. Calkins, et al. (1978). "The Qa-1 antigenic system. Relation of Qa-1 phenotypes to lymphocyte sets, mitogen responses, and immune functions." J Exp Med 148(4): 963-73.

Staunton, D. E., M. L. Dustin, et al. (1989). "Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1." Nature 339(6219): 61-4.

Steinman, L. (1999). "Assessment of animal models for MS and demyelinating disease in the design of rational therapy." Neuron 24(3): 511-4.

Steinmetz, M. and Z. Dembic (1986). "Organization, rearrangement, and diversification of mouse T-cell receptor genes." Curr Top Microbiol Immunol 126: 45-51.

Stern, L. J., J. H. Brown, et al. (1994). "Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide." Nature 368(6468): 215-21.

Storch, M. K., S. Piddlesden, et al. (1998). "Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination." Ann Neurol 43(4): 465-71.

Streit, W. J. (2002). "Microglia as neuroprotective, immunocompetent cells of the CNS." Glia 40(2): 133-9.

Stuart, G., and Krikorian, K. S. (1928). "the neuro-paralytic accidents of anti-rabies treatment." ann. Trop. Med. Parasitol 22: 327-377.

Stura, E. A., P. Chen, et al. (1992). "Crystallization studies of glycosylated and unglycosylated human recombinant interleukin-2." Proteins 12(1): 24-30.

Suda, T., T. Takahashi, et al. (1993). "Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family." Cell 75(6): 1169-78.

Suen, W. E., C. M. Bergman, et al. (1997). "A critical role for lymphotoxin in experimental allergic encephalomyelitis." J Exp Med 186(8): 1233-40.

Sun, D., J. N. Whitaker, et al. (2001). "Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice." J Immunol 166(12): 7579-87.

Sun, J., H. Link, et al. (1991). "T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis." J Immunol 146(5): 1490-5.

Sundvall, M., J. Jirholt, et al. (1995). "Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis." Nat Genet 10(3): 313-7.

Suri-Payer, E., A. Z. Amar, et al. (1998). "CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells." J Immunol 160(3): 1212-8.

Suvannavejh, G. C., M. C. Dal Canto, et al. (2000). "Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis." J Clin Invest 105(2): 223-31.

Suzuki, A., M. T. Yamaguchi, et al. (2001). "T cell-specific loss of Pten leads to defects in central and peripheral tolerance." Immunity 14(5): 523-34.

Suzumura, A., M. Sawada, et al. (1993). "Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro." J Immunol 151(4): 2150-8.

Swain, S. L. (1983). "T cell subsets and the recognition of MHC class." Immunol Rev 74: 129-42.

Page 235: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

235

Swain, S. L., A. D. Weinberg, et al. (1990). "IL-4 directs the development of Th2-like helper effectors." J Immunol 145(11): 3796-806.

Tadokoro, C. E., G. Shakhar, et al. (2006). "Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo." J Exp Med 203(3): 505-11.

Takahashi, T., Y. Kuniyasu, et al. (1998). "Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state." Int Immunol 10(12): 1969-80.

Tan, L., K. B. Gordon, et al. (1998). "Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes." J Immunol 160(9): 4271-9.

Tang, Q. and J. A. Bluestone (2006). "Regulatory T-cell physiology and application to treat autoimmunity." Immunol Rev 212: 217-37.

Tang, Q., E. K. Boden, et al. (2004). "Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function." Eur J Immunol 34(11): 2996-3005.

Tanuma, N., T. Kojima, et al. (1997). "Competitive PCR quantification of pro- and anti-inflammatory cytokine mRNA in the central nervous system during autoimmune encephalomyelitis." J Neuroimmunol 73(1-2): 197-206.

Tanzola, M. B., M. Robbie-Ryan, et al. (2003). "Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course." J Immunol 171(8): 4385-91.

Tarbell, K. V., S. Yamazaki, et al. (2004). "CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes." J Exp Med 199(11): 1467-77.

Tato, C. M., A. Laurence, et al. (2006). "Helper T cell differentiation enters a new era: le roi est mort; vive le roi!" J Exp Med 203(4): 809-12.

Taylor, P. A., C. J. Lees, et al. (2004). "B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions [corrections]." J Immunol 172(1): 34-9.

Teleshova, N., M. Pashenkov, et al. (2002). "Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid." J Neurol 249(6): 723-9.

Terabe, M., S. Matsui, et al. (2003). "Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence." J Exp Med 198(11): 1741-52.

Testi, R., J. H. Phillips, et al. (1989). "T cell activation via Leu-23 (CD69)." J Immunol 143(4): 1123-8.

Thebault-Baumont, K., D. Dubois-Laforgue, et al. (2003). "Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice." J Clin Invest 111(6): 851-7.

Thomas, W. E. (1999). "Brain macrophages: on the role of pericytes and perivascular cells." Brain Res Brain Res Rev 31(1): 42-57.

Thornton, A. M. and E. M. Shevach (1998). "CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production." J Exp Med 188(2): 287-96.

Thornton, A. M. and E. M. Shevach (2000). "Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific." J Immunol 164(1): 183-90.

Tienari, P., A. Bonetti, et al. (2006). "Multiple sclerosis in G: genes and geography." Clin Neurol Neurosurg 108(3): 223-6.

Page 236: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

236

Tierney, J. B., M. Kharkrang, et al. (2009). "Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis." Immunol Cell Biol 87(3): 235-40.

Ting, J. P. and A. S. Baldwin (1993). "Regulation of MHC gene expression." Curr Opin Immunol 5(1): 8-16.

Toft-Hansen, H., A. A. Babcock, et al. (2007). "Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system." J Neuroinflammation 4: 24.

Toft-Hansen, H., R. K. Nuttall, et al. (2004). "Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis." J Immunol 173(8): 5209-18.

Tough, D. F. and J. Sprent (1994). "Turnover of naive- and memory-phenotype T cells." J Exp Med 179(4): 1127-35.

Trapp, B. D., J. Peterson, et al. (1998). "Axonal transection in the lesions of multiple sclerosis." N Engl J Med 338(5): 278-85.

Trifari, S., C. D. Kaplan, et al. (2009). "Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells." Nat Immunol 10(8): 864-71.

Tsai, S., A. Shameli, et al. (2008). "CD8+ T cells in type 1 diabetes." Adv Immunol 100: 79-124.

Tsitoura, D. C., V. P. Yeung, et al. (2002). "Critical role of B cells in the development of T cell tolerance to aeroallergens." Int Immunol 14(6): 659-67.

Tsunawaki, S., M. Sporn, et al. (1988). "Deactivation of macrophages by transforming growth factor-beta." Nature 334(6179): 260-2.

Tuohy, V. K., Z. Lu, et al. (1989). "Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice." J Immunol 142(5): 1523-7.

Tzartos, J. S., M. A. Friese, et al. (2008). "Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis." Am J Pathol 172(1): 146-55.

Vaknin-Dembinsky, A., K. Balashov, et al. (2006). "IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production." J Immunol 176(12): 7768-74.

van den Berg, W. B. (2009). "Lessons from animal models of arthritis over the past decade." Arthritis Res Ther 11(5): 250.

van der Laan, L. J., S. R. Ruuls, et al. (1996). "Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide." J Neuroimmunol 70(2): 145-52.

van Endert, P. M., L. Saveanu, et al. (2002). "Powering the peptide pump: TAP crosstalk with energetic nucleotides." Trends Biochem Sci 27(9): 454-61.

Venken, K., N. Hellings, et al. (2006). "Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression." J Neurosci Res 83(8): 1432-46.

Viglietta, V., C. Baecher-Allan, et al. (2004). "Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis." J Exp Med 199(7): 971-9.

Vogt, T. C., J. A. Killian, et al. (1994). "Structure and dynamics of the acyl chain of a transmembrane polypeptide." Biochemistry 33(8): 2063-70.

Wadachi, R. and K. M. Hargreaves (2006). "Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection." J Dent Res 85(1): 49-53.

Page 237: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

237

Waldner, H., M. J. Whitters, et al. (2000). "Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor." Proc Natl Acad Sci U S A 97(7): 3412-7.

Waldor, M. K., S. Sriram, et al. (1985). "Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker." Science 227(4685): 415-7.

Walker, L. S., L. J. Ausubel, et al. (2002). "CTLA-4 differentially regulates T cell responses to endogenous tissue protein versus exogenous immunogen." J Immunol 169(11): 6202-9.

Walker, P. R., T. Calzascia, et al. (2003). "T-cell immune responses in the brain and their relevance for cerebral malignancies." Brain Res Brain Res Rev 42(2): 97-122.

Walsh, M. J. and W. W. Tourtellotte (1986). "Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis." J Exp Med 163(1): 41-53.

Wang, L. and R. Bosselut (2009). "CD4-CD8 lineage differentiation: Thpok-ing into the nucleus." J Immunol 183(5): 2903-10.

Warren, K. G. and I. Catz (1993). "Autoantibodies to myelin basic protein within multiple sclerosis central nervous system tissue." J Neurol Sci 115(2): 169-76.

Weber, F., B. Fontaine, et al. (2008). "IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations." Genes Immun 9(3): 259-63.

Wei, R. and G. M. Jonakait (1999). "Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia." J Neuroimmunol 95(1-2): 8-18.

Wekerle, H. and R. Hohlfeld "Molecular oracles for multiple sclerosis therapy." Nat Med 16(4): 376-7.

Weller, R. O., B. Engelhardt, et al. (1996). "Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways." Brain Pathol 6(3): 275-88.

Wiedemann, A., D. Depoil, et al. (2006). "Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses." Proc Natl Acad Sci U S A 103(29): 10985-90.

Willer, C. J., D. A. Dyment, et al. (2003). "Twin concordance and sibling recurrence rates in multiple sclerosis." Proc Natl Acad Sci U S A 100(22): 12877-82.

Williams, A. F. and A. N. Barclay (1988). "The immunoglobulin superfamily--domains for cell surface recognition." Annu Rev Immunol 6: 381-405.

Williams, G. T., R. Kingston, et al. (1986). "A single micromanipulated stem cell gives rise to multiple T-cell receptor gene rearrangements in the thymus in vitro." Nature 324(6092): 63-4.

Williams, O. and H. J. Brady (2001). "The role of molecules that mediate apoptosis in T-cell selection." Trends Immunol 22(2): 107-11.

Williamson, F. (1973). "Microbes. 5. Elie Metchnikoff: advocate for phagocytes." Nurs Times 69(50): 1702-3.

Willis, S. N., C. Stadelmann, et al. (2009). "Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain." Brain 132(Pt 12): 3318-28.

Wolf, S. D., B. N. Dittel, et al. (1996). "Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice." J Exp Med 184(6): 2271-8.

Wong, G. H., P. F. Bartlett, et al. (1984). "Inducible expression of H-2 and Ia antigens on brain cells." Nature 310(5979): 688-91.

Page 238: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

238

Wucherpfennig, K. W., I. Catz, et al. (1997). "Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes." J Clin Invest 100(5): 1114-22.

Wucherpfennig, K. W. and J. L. Strominger (1995). "Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein." Cell 80(5): 695-705.

Xystrakis, E., A. S. Dejean, et al. (2004). "Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation." Blood 104(10): 3294-301.

Xystrakis, E., S. Kusumakar, et al. (2006). "Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients." J Clin Invest 116(1): 146-55.

Yamamura, T., K. Miyamoto, et al. (2004). "NKT cell-stimulating synthetic glycolipids as potential therapeutics for autoimmune disease." Curr Top Med Chem 4(5): 561-7.

Yannelli, J. R., J. A. Sullivan, et al. (1986). "Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography." J Immunol 136(2): 377-82.

Ye, Z., K. A. Ahmed, et al. (2008). "Active CD4+ helper T cells directly stimulate CD8+ cytotoxic T lymphocyte responses in wild-type and MHC II gene knockout C57BL/6 mice and transgenic RIP-mOVA mice expressing islet beta-cell ovalbumin antigen leading to diabetes." Autoimmunity 41(7): 501-11.

Yin, G. Q., S. Y. Zhao, et al. (2006). "[Galectin-7 is associated with bronchial epithelial cell apoptosis in asthmatic children]." Zhonghua Er Ke Za Zhi 44(7): 523-6.

Yu, Q., J. H. Park, et al. (2006). "Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection." J Exp Med 203(1): 165-75.

Zamvil, S., P. Nelson, et al. (1985). "T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination." Nature 317(6035): 355-8.

Zamvil, S. S., D. J. Mitchell, et al. (1986). "T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis." Nature 324(6094): 258-60.

Zang, Y. C., S. Li, et al. (2004). "Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis." J Immunol 172(8): 5120-7.

Zappulla, J. P., M. Arock, et al. (2002). "Mast cells: new targets for multiple sclerosis therapy?" J Neuroimmunol 131(1-2): 5-20.

Zarek, P. E., C. T. Huang, et al. (2008). "A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells." Blood 111(1): 251-9.

Zehn, D. and M. J. Bevan (2006). "T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity." Immunity 25(2): 261-70.

Zhang, B., T. Yamamura, et al. (1997). "Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells." J Exp Med 186(10): 1677-87.

Zhang, X., D. N. Koldzic, et al. (2004). "IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells." Int Immunol 16(2): 249-56.

Zhang, X., Y. Tang, et al. (2008). "Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis." Eur J Immunol 38(5): 1297-309.

Zhao, D. M., A. M. Thornton, et al. (2006). "Activated CD4+CD25+ T cells selectively kill B lymphocytes." Blood 107(10): 3925-32.

Page 239: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

239

Zhao, Y., A. Balato, et al. (2009). "Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis." Br J Dermatol 161(6): 1301-6.

Zhou, J., C. Xiao, et al. (2006). "The effect of triptolide on CD4+ and CD8+ cells in Peyer's patch of SD rats with collagen induced arthritis." Int Immunopharmacol 6(2): 198-203.

Zhu, C., A. C. Anderson, et al. (2005). "The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity." Nat Immunol 6(12): 1245-52.

Zhu, Y., S. Roth-Eichhorn, et al. (2000). "The expression of transforming growth factor-beta1 (TGF-beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat." Brain Res 866(1-2): 286-98.

Zinkernagel, R. M., G. N. Callahan, et al. (1978). "On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition?" J Exp Med 147(3): 882-96.

Zitvogel, L., A. Tesniere, et al. (2006). "Cancer despite immunosurveillance: immunoselection and immunosubversion." Nat Rev Immunol 6(10): 715-27.

Zozulya, A. L. and H. Wiendl (2008). "The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation." Hum Immunol 69(11): 797-804.

Page 240: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

240

ANNEXEANNEXEANNEXEANNEXE

Page 241: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

Multimerized T cell epitopes protect fromexperimental autoimmune diabetesby inducing dominant toleranceEliane Piaggio*†, Lennart T. Mars*†, Cecile Cassan*†, Julie Cabarrocas*†, Maria Hofstatter‡, Sabine Desbois*†,Emilie Bergereau*†, Olaf Rotzschke‡, Kirsten Falk‡§, and Roland S. Liblau*†§

*Unite 563, Centre de Physiopathologie de Toulouse Purpan, Institut National de la Sante et de la Recherche Medicale, F-31300 Toulouse, France;†Universite Paul-Sabatier, F-31400 Toulouse, France; and ‡Max-Delbruck Center for Molecular Medicine, 13125 Berlin, Germany

Edited by Jack L. Strominger, Harvard University, Cambridge, MA, and approved April 12, 2007 (received for review November 24, 2006)

Immunotherapy by using multimerized self-peptides has demon-strated a clear protective effect on experimental models of auto-immune diseases. However, the mechanisms involved remain ill-defined. Here we have evaluated the therapeutic efficacy ofmultimerized self-peptides at the effector phase of autoimmunediabetes and examined their mechanisms of action. Diabetes wasinduced in rat insulin promoter-hemagglutinin (HA) mice express-ing HA in pancreatic �-cells by adoptive transfer of HA110–119-specific T helper 1 cells. Complete protection was provided by lowdoses of the HA 4-mer consisting of four covalently linked linearHA107–119 peptides. In vivo, the 4-mer appeared to act directly onthe pathogenic HA-specific T helper 1 cells and indirectly byactivation/recruitment of lymphocytes with regulatory propertiesso that mice became resistant to a second transfer of diabetogenicT cells. This effect was associated with a recruitment of Foxp3� CD4T cells around islets. Moreover, we show that dominant protectionfrom autoimmunity was transferable by spleen cells, and thatdevelopment of this regulatory population was crucially depen-dent on the lymphocytes from treated rat insulin promoter-HAmice. Thus, immunotherapy using multimerized epitopes emergesas a promising strategy in view of the current identification ofself-epitopes that are major targets of the pathogenic CD4 T cellresponse in autoimmune diseases.

autoimmunity immune tolerance � immunotherapy � regulatory T cells �Foxp3

The treatment of human autoimmune diseases is particularlychallenging. Indeed, diseases such as rheumatoid arthritis,

multiple sclerosis, and type 1 diabetes (T1D) are mainly chronicand impact quality of life more than life expectancy. Moreover,treatments are often started long after the onset of the patho-genic process, at a time when the autoimmune recognition hasspread to multiple self-antigens (1). In this context, conventionalimmunosuppression offers only partial benefit at the price offrequent and sometimes serious adverse events. More recently,targeted immunotherapies using antiinflammatory cytokines,antibodies against lymphocyte surface molecules, or neutraliza-tion of proinflammatory cytokines or homing receptors haveachieved great clinical success. However, by affecting indiscrim-inately the pathogenic autoimmune process, together with ben-eficial immune responses, they too can be saddled with seriousside effects. An attractive alternative is to use antigen-specificapproaches to selectively silence autoreactive T cells (2–5). Inanimal models, prevention of autoimmune disease can beachieved by i.v., mucosal, or s.c. administration of solubleself-antigen or by vaccination with DNA-encoding self-antigens(3, 5). However, therapeutic results were often inconsistent (2,3) possibly due to the selective targeting of T cells specific for theinjected self-antigen.

Peptides bind MHC class II molecules with both ends extrud-ing from the peptide-binding groove (6). This structural featureprovides the opportunity to design linear multimeric peptides

that consist of multiple copies of a CD4 T cell epitope connectedby spacer sequences (7). This unique structure is designed toform multivalent arrays of peptide:MHC complexes on thesurface of the antigen-presenting cells (APCs). The cross-linkingof MHC class II molecules and the resulting clustering ofpeptide:MHC/T cell receptor (TCR) greatly enhance both APCand T cell activation. Therefore, multimerized T cell epitopesincrease the immunological potency of soluble peptides and canpromote either antigen-specific T cell activation or tolerancethrough activation-induced cell death in vitro at much lowerconcentrations than the monomeric peptide (7, 8). Similarly, invivo immunization with multimerized myelin peptides led to anexacerbated experimental autoimmune disease, whereas thesame multimer injected i.v. resulted in inactivation of pathogenicCD4 T cells and dramatic suppression of disease (9, 10). How-ever, despite their great therapeutic potential, little is knownabout the mechanisms of action of multimerized epitopes in vivo.In the present study, we have evaluated the therapeutic efficacyof multimerized epitopes at the effector phase of a T1D modeland assessed their mechanisms of action.

ResultsComparison of the Effects of the 4-Mer and the HA107–119 Peptide onT Cell Recognition. The hemagglutinin (HA) 4-mer used in thisstudy was produced by recombinant techniques and consists offour covalently linked HA107–119 peptides. We first compared thein vitro activity of the 4-mer and the monomeric HA107–119peptide on HA-specific CD4 T cells from 6.5-TCR transgenicanimals. These cells can be specifically labeled with the 6.5anticlonotypic mAb (11). 6.5� CD4 T cells exhibited an en-hanced TCR down-regulation after in vitro incubation with the4-mer compared with monomeric HA107–119 peptide (Fig. 1A).Moreover, the half-maximal proliferative response of naıve (Fig.1B Left) or TH1-differentiated (Fig. 1B Right) 6.5-TCR CD4 Tcells was consistently induced by a 10- to 100-fold lower con-centration of the 4-mer compared with the monomeric HA107–119peptide. Furthermore, the 4-mer induced a bell-shaped prolif-eration curve, suggesting that high concentrations of the multi-mer favored death and/or anergy of the specific T cells in vitro,

Author contributions: E.P., L.T.M., O.R., K.F., and R.S.L. designed research; E.P., L.T.M., C.C.,J.C., M.H., S.D., and E.B. performed research; M.H., O.R., and K.F. contributed new reagents/analytic tools; E.P., L.T.M., C.C., J.C., E.B., O.R., K.F., and R.S.L. analyzed data; and E.P., O.R.,K.F., and R.S.L. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviations: APC, antigen-presenting cell; GA, glatiramer acetate; RIP, rat insulin pro-motor; T1D, type 1 diabetes; TCR, T cell receptor; TH1, T helper 1.

§To whom correspondence may be addressed. E-mail: [email protected] [email protected].

This article contains supporting information online at www.pnas.org/cgi/content/full/0610423104/DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0610423104 PNAS � May 29, 2007 � vol. 104 � no. 22 � 9393–9398

IMM

UN

OLO

GY

Page 242: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

as previously documented in other systems (8, 9). An oligomerconsisting of 16 copies of the HA107–119 peptide also acted as asuperagonist in vitro. Presumably due to aggregation the longeroligomer proved slightly less potent than the 4-mer (data notshown) so that further in vivo investigations were performed byusing the 4-mer.

We next compared the in vivo half-life of the 4-mer and theHA107–119 peptide on APCs. To this end, BALB/c mice receivedPBS or 2.5 �g of either 4-mer or HA107–119 peptide, and theirsplenocytes, harvested at different times postinjection, wereused to stimulate purified CD4 T cells from 6.5-TCR mice.Splenocytes from mice injected with the peptide induced min-imal proliferation, preventing accurate assessment of the in vivohalf-life. In contrast, a strong response was elicited by spleno-cytes from 4-mer-injected mice, revealing an in vivo half-life ofthe 4-mer of 4.8 h (Fig. 1C).

Injection of 4-Mer Polypeptide Blocks Autoimmune Diabetes Inducedby Effector TH1 Cells. We then tested the ability of the HA 4-mer toinduce tolerance to a pancreatic neo-self-antigen in a new T1Dmodel. The model consists of the adoptive transfer of 6.5-TCR TH1cells into nonirradiated immunocompetent rat insulin promoter(RIP)-HA mice (12). Transfer of 2.5 � 106 TH1 cells or moreinvariably resulted in diabetes, which proved rapidly fatal (Fig. 2A).To compare the ability of the 4-mer and the HA107–119 peptide toblock the effector phase of autoimmune diabetes, increasing doses(0.01–2.5 �g) of either molecule were injected after the adoptivetransfer of diabetogenic TH1 cells. Treatment with the HA107–119peptide resulted in incomplete protection from diabetes only at thehighest dose tested (2.5 �g) (P � 0.086). In sharp contrast,treatment with the 4-mer completely protected RIP-HA mice fromdisease development at the 2.5-�g (P � 0.0001) or 0.63-�g (P �0.0001) doses (Fig. 2B). Moreover, a partial but significant (P �0.01) protection from diabetes was observed with as little as 0.04 �gof the 4-mer. The histological analysis of the pancreas showed thatthe severity of insulitis correlated with the development of disease(Fig. 2C). However, despite full protection from diabetes, pancre-atic islets from 4-mer-treated mice still exhibited mononuclear cellinfiltration.

Fig. 1. Influence of epitope multimerization on T cell responses in vitro andon half-life in vivo. (A) Effect on TCR down-regulation. 6.5 expression on gatedCD4 cells from 6.5-TCR mice was analyzed by FACS after 12 h of stimulationwith medium alone, monomeric HA107–119 peptide (10 �g/ml), 4-mer (10�g/ml), or anti-CD3� mAb (0.5 �g/ml). The decrease in 6.5� CD4� T cellscompared with the unstimulated cells is shown in parentheses. (B) Effect onthe proliferative response of HA-specific CD4 T cells. (Left) Spleen and lymphnodes of 6.5-TCR mice were incubated with the indicated concentrations ofthe HA107–119 peptide or 4-mer, and [3H]thymidine incorporation was mea-sured after 72 h of stimulation. Similar results were obtained with shorter (12,24, and 48 h) stimulation periods (data not shown). (Right) TH1-differentiated6.5-TCR CD4 T cells were incubated for 24 h with the indicated concentrationsof the HA107–119 peptide or 4-mer and irradiated APCs, and [3H]thymidineuptake was evaluated. Results are from one of two similar experiments. (C) Invivo half-life on splenic APCs of the HA107–119 peptide or 4-mer. Splenocytesfrom BALB/c mice, injected i.v. with 2.5 �g of the HA107–119 peptide or 4-mer,were harvested at the indicated time points to induce proliferation of purified6.5-TCR CD4 T cells. Maximum [3H]thymidine uptake (62,885 � 11,655 cpm)was defined as the stimulation induced by splenocytes from BALB/c miceinjected 0.5 h earlier with 4-mer. Results from three experiments are pre-sented as the mean percentage (� SEM) of the maximum value.

Fig. 2. Injection of 4-mer protects from diabetes induced by transfer ofeffector 6.5-TCR TH1 cells in RIP-HA mice. (A) Development of the diabetesmodel. Increasing numbers of 6.5-TCR TH1 cells were injected i.v. into immu-nocompetent RIP-HA mice, and development of diabetes was plotted againsttime. (B and C) Protection from diabetes by 4-mer. (B) RIP-HA mice wereadoptively transferred with 2.5 � 106 6.5-TCR TH1 cells. The animals wereinjected with the indicated doses (0.01–2.5 �g) of either the HA107–119 peptideor 4-mer. The frequency of diabetes in each group is shown. All PBS-treatedcontrol RIP-HA mice (n � 13) developed diabetes. (C) The extent of insulitis wasdetermined at day 30 as the percentage of normal, periinfiltrated, infiltrated�50%, or infiltrated �50% islets (n � number of mice). Total number of isletsis indicated in parentheses. Among the HA107–119 peptide-treated mice, 4 of 8mice treated with 0.63 �g and 7 of 11 mice treated with 2.5 �g survived andcould be analyzed histologically.

9394 � www.pnas.org�cgi�doi�10.1073�pnas.0610423104 Piaggio et al.

Page 243: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

Induction of Active Suppression by the 4-Mer Treatment. To inves-tigate the mode of action of the 4-mer treatment, we evaluatedthe duration of 4-mer presentation by host APCs in vivo.RIP-HA mice were first injected with 2.5 �g of 4-mer orHA107–119 peptide, or PBS alone. One or 15 days later, theyreceived CFSE-labeled splenocytes from 6.5-TCR RAG2�/�

mice, and CD69 induction was assessed on CFSE� HA-specificCD4 T cells as an indicator of in vivo priming. Expression ofCD69 on HA-specific CD4 T cells was only increased in micethat received the 4-mer 24 h before the cell transfer (Fig. 3A).These results establish that the 4-mer is no longer presented 15days after its injection.

We then challenged protected RIP-HA mice with a secondtransfer of 6.5-TCR TH1 cells 15 days after the first cell transferwithout further injection of the multimer. Ten of 11 tolerized micewere able to control this second wave of diabetogenic TH1 cells(Fig. 3B; P � 0.0001). Moreover, a protective effect was alsoobserved in mice, referred to as the ‘‘4-mer-only’’ group, whichinitially received only the 4-mer treatment (but no diabetogenic Tcells) and were injected 15 days later with 6.5-TCR TH1 cells (Fig.3B; P � 0.0007). These results suggest that multimer injection caninduce dominant tolerance.

To investigate whether protection from diabetes could be trans-ferred to naive animals, splenocytes from unmanipulated or toler-ized RIP-HA mice were transferred to a second group of RIP-HAmice. The next day, these recipient mice received 6.5-TCR TH1diabetogenic cells. Splenocytes from tolerized RIP-HA mice sig-nificantly (P � 0.022) protected the recipients from diabetesinduced by TH1 cells (Fig. 3C). Collectively, these results indicatethat a regulatory cell population capable of transferring protectionfrom diabetes is induced and/or expanded after 4-mer injection.

This conclusion led us to evaluate the proportion of infiltratingmononuclear cells expressing Foxp3, a major specification factor forregulatory T cells (13, 14), in the islets of 4-mer versus HApeptide-treated mice by immunohistochemistry (Fig. 4). The insu-litis of 4-mer-treated animals was characterized by a significantdecrease in mononuclear cells (P � 7 � 10�4) and an �50%increase in the proportion of Foxp3� cells (P � 2 � 10�6) (Fig. 4B),and �90% of these cells were also stained with an anti-CD4 mAb(Fig. 4A Lower). These Foxp3� CD4 T cells usually displayed aperiinsular distribution, with few cells penetrating within the islets(Fig. 4A Upper). Collectively, these data show that the 4-mer-treated mice exhibit a nondestructive insulitis enriched in Foxp3�

CD4 T cells.In contrast to the islets, no significant difference in the propor-

tion of CD25� or CD25� Foxp3� CD4 T cells was observed in thespleen and pancreatic lymph nodes of 4-mer- versus HA peptide-treated mice [see supporting information (SI) Fig. 6]. These findingssuggest that in lymphoid organs the relevant regulatory T cells arediluted among polyclonal regulatory T cells and/or that these cellsare recruited selectively to the islets. Study of cytokine productionby splenocytes and pancreatic lymph node cells ex vivo indicatedthat the production of IL-6, IL-10, TNF-�, and IFN-� in responseto HA peptide was reduced or even inhibited in 4-mer-treated mice(see SI Fig. 7). No increase in basal or HA-induced TGF-�production was observed in 4-mer-treated animals, and in vivoneutralization of IL-4, IL-10, and TGF-� either alone or in com-bination did not impair the ability of the 4-mer to protect fromdiabetes (data not shown).

Control of Pathogenic Effector T Cells with Different HA Specificity. Toassess whether the regulatory cell population acts on pathogenic Tcells bearing different antigenic specificity (bystander suppression),diabetogenic HNT-TCR TH1 cells, specific for the I-Ad:HA126–138complex, were used. As described above, RIP-HA mice weretolerized by transfer of 6.5-TCR TH1 cells, followed by injection ofthe 4-mer or treated with the 4-mer only. Fifteen days later, micewere challenged with a dose of HNT-TCR TH1 cells that induces

fully penetrant diabetes in RIP-HA mice (Fig. 3D). Nearly half ofthe tolerized RIP-HA mice were able to control a subsequenttransfer of HNT-TCR TH1 cells (8 of 15 mice became diabetic; P �0.02). Similar results were obtained with animals treated with the4-mer alone (9 of 15 mice became diabetic; P � 0.005). These resultsindicate that treatment with the 4-mer induces a regulatory cellpopulation able to confer protection from T1D induced by diabe-togenic CD4 T cells with a different specificity.

Fig. 3. The 4-mer treatment induces dominant tolerance. (A) Duration of 4-merpresentation by APCs in vivo. RIP-HA mice were treated with PBS or with 2.5 �gof HA107–119 peptide or 4-mer. One day (Left) or 15 days (Right) later, mice wereinjectedwith30�106 CFSE-labeled6.5-TCRRAG2�/� splenocytes.Theproportionof HA-specific CD4� CFSE� T cells expressing CD69 was determined 24 h later inthe spleen of recipient mice. (B–D) Dominant tolerance induced by 4-mer. RIP-HAmice received 5 � 106 6.5-TCR TH1 cells and were treated with 2.5 �g of 4-mer.These tolerized mice (filled circles) were challenged 15 days later by a secondtransfer of 5 � 106 6.5-TCR TH1 cells (HA107–119-specific) (B) or 25 � 106 HNT-TCRTH1 cells (HA126–138-specific) (D). In parallel, adoptive transfer was carried out in4-mer-only mice that had received only the 4-mer treatment (filled squares).Control RIP-HA recipient mice were left untreated to confirm the diabetogenicpotential of each TH1 preparation (filled triangles). (C) RIP-HA mice were trans-ferred with 5 � 107 splenocytes from control unmanipulated RIP-HA mice (emptycircles) or tolerized RIP-HA mice (filled circles). The next day, these recipient micereceived5�106 6.5-TCRTH1cells, andthedevelopmentofdiabeteswasassessed.

Piaggio et al. PNAS � May 29, 2007 � vol. 104 � no. 22 � 9395

IMM

UN

OLO

GY

Page 244: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

Development of Dominant Tolerance Requires an Endogenous Lym-phocyte Population. Because treatment with the 4-mer alone wasalmost as effective as the combined tolerization with 4-mer andadoptive transfer of TH1 cells, conversion of the transferred T cellsinto regulatory cells does not appear to be a major mechanism ofprotection. To determine the contribution of recipients’ lympho-cytes in the regulation, adoptive transfer experiments were carriedout in T and B cell-deficient RAG2�/� RIP-HA recipients. TheseRAG2�/� RIP-HA mice received 6.5-TCR TH1 cells and wereinjected with 2.5 �g of the 4-mer or PBS. PBS-treated micedeveloped T1D within 12 days of transfer, whereas mice treatedwith the 4-mer presented a significantly delayed diabetes onset (Fig.5; P � 0.014). This result indicates that endogenous lymphocyteswere not responsible for the early control of the diabetogenic TH1cells. This initial control was associated with a rapid but partialdeletion of the pathogenic T cells. Indeed, 48 h after treatment, thenumber of HA-specific T cells was decreased by 88% in the spleenand 55% in pancreatic lymph nodes in 4-mer-treated comparedwith PBS-treated mice (data not shown).

To determine the influence of endogenous T or B cells on thesubsequent induction of dominant tolerance, a group of RAG2�/�

RIP-HA mice that had been tolerized by the combined applicationof 6.5-TCR TH1 cells and 4-mer received a second transfer ofdiabetogenic 6.5-TCR TH1 cells 15 days later. In contrast toimmunocompetent RIP-HA mice (Fig. 3B), the tolerizedRAG2�/� RIP-HA mice developed diabetes with the same kineticsas untreated mice (Fig. 5). Thus, in the absence of endogenous T

and B cells, the 4-mer is able to delay the onset of disease by directlytargeting the transferred TH1 cells, but cannot establish long-lasting dominant tolerance.

DiscussionIn the present study, we characterized the cellular mechanismsunderlying the therapeutic effect of the injection of small doses ofa multimerized epitope in a mouse model of T1D. In this model, the4-mer appeared to act through distinct mechanisms, leading to ashift in the balance between pathogenic and regulatory cells. Its firsteffect was to induce a partial deletion of diabetogenic TH1 cells.However, development of diabetes was only delayed in 4-mer-treated RAG�/� RIP-HA mice. In a second phase, we observed aninduction and/or activation of cells with regulatory properties.These regulatory cells developed in immunocompetent RIP-HAmice treated with 4-mer, but not in RAG�/� recipients, suggestingthat they originate from the recipients’ lymphocytes, rather thanfrom conversion of the transferred pathogenic TH1 cells. Inaddition, preliminary experiments suggest that the 4-mer treatmentdoes not convert naive conventional HA-specific CD4 T cells intoFoxp3� CD25� regulatory cells (L.T.M., S.B., and R.S.L., unpub-lished data). These regulatory cells were able to control diabeto-genic TH1 cells injected at a time when presentation of the 4-merwas no longer detectable in the recipients. The dominant regulatorycapacity of these cells was further evidenced by their ability to blockdiabetes when transferred in conjunction with pathogenic T cells(Fig. 3C). In addition, islets from 4-mer-treated mice were signif-icantly enriched in Foxp3� CD4 T cells, suggesting that tissue-infiltrating regulatory T cells were contributing to the tolerantphenotype, as previously described in other diabetes models (15–18). Very few regulatory T cells are needed to inhibit autoimmu-nity, provided that they express a relevant specificity. Thus, even ifonly some of the islet-infiltrating Foxp3� CD4 T cells from 4-mer-treated mice were HA-specific, it could certainly explain theirmajor clinical effect. However, at this stage, we have no tools todirectly assess their antigenic specificity. Although dominant tol-erance in vivo has been attributed to antiinflammatory cytokines inseveral experimental situations (19–21), in our model, administra-tion of mAbs neutralizing IL-4, IL-10, and TGF-� did not impair thediabetes-protective effect of the 4-mer.

Probably the most interesting aspect of the 4-mer effect is itsability to promote suppression of pathogenic T cells that are not

Fig. 4. Accumulation of Foxp3� mononuclear cells in the infiltrated islets of4-mer-treated mice. (A) Pancreatic sections from 4-mer- or HA107–119 peptide-treated mice described in Fig. 2B were stained for nuclear Foxp3 (brown,counterstained by H&E). (Upper) Islet-infiltrating mononuclear cells andFoxp3� cells were counted. (Lower) Double staining was performed on frozensections to reveal Foxp3 (brown) and CD4 (blue). (B) The number of Foxp3�

and Foxp3� mononuclear cells was counted for each infiltrated islets for atotal of 30,096 cells. The mean number (� SEM) of infiltrating cells (Left) andthe proportion of Foxp3� cells (Right) are indicated (n � number of mice). Thenumber of islets is indicated in parentheses.

Fig. 5. The 4-mer-induced dominant tolerance depends on endogenous lym-phocytes. RAG2�/� RIP-HA mice received a first injection of 5 � 106 6.5-TCR TH1cells, called here TH1(A), and were injected i.v. with 2.5 �g of 4-mer (filled circles)or PBS only (filled triangles). A group of mice were tolerized by the combinedtreatment with 4-mer and 6.5-TCR TH1 cells (filled squares), and a group ofcontrol untreated mice (filled diamonds) received on day 15 a second transfer ofdiabetogenic T cells, called here TH1(B). Adoptive T cell transfers are indicated bysolid arrows and i.v. injections of 4-mer by dashed arrows. All PBS-treated mice (6of 6) eventually developed fatal diabetes within 12 days of TH1 cell transfer.

9396 � www.pnas.org�cgi�doi�10.1073�pnas.0610423104 Piaggio et al.

Page 245: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

specific for the injected multimerized epitope. This type of by-stander suppression induced by multimer treatment has previouslybeen documented in the experimental autoimmune encephalomy-elitis setting (9). In a likely scenario, regulatory cells directlyinactivate effector T cells attracted to their immediate vicinity by ashared source of antigen. Alternatively, the ability of the 4-mer toinduce regulatory lymphocytes could be related to a tolerogeniceffect on the APCs in the absence of a ‘‘danger’’ signal. Thesetolerogenic APCs can be further educated by tolerant T cells (22).Consequently, the same tolerogenic APC could be simultaneouslypresenting different HA epitopes, modulating the diabetogenicityof the two different HA-specific T cell populations analyzed here.One possible implication of our findings is that specifically designedmultimers may inhibit T cell responses to autoantigens secondarilyrecognized during the course of a destructive autoimmune process.

Several antigen-specific strategies have been devised to promotedeletion or anergy of pathogenic autoreactive T cells, or to convertthem into innocuous or even regulatory cells (2–5, 23). Theobservation that full protection from experimental autoimmunedisease was achieved with very low doses of multimerized self-antigen is potentially of therapeutic interest and represents adistinct advantage over earlier approaches (2, 3). However, antigen-specific immune suppression at very low-antigen doses is notunprecedented. Indeed, similar to the multimer used here, solubledimeric HA110–120:I-Ed-Fc chimeric molecules display potent stim-ulatory properties on 6.5-TCR T cells and have a long half-life invivo (24, 25). Treatment of (6.5-TCR � RIP-HA)F1 doubletransgenic mice with 2 �g of these chimeric molecules preventedand even reversed diabetes through the induction of T cell anergyin the spleen and stimulation of IL-10-secreting Tr1 cells in thepancreas (25). However, due to the transient nature of the toleranceinduced, a chronic treatment was required to maintain the diabetes-protective effect. An analogous approach using peptide:I-Ag7-Fcchimeric molecules was shown to prevent diabetes induced by theadoptive transfer of BDC2.5 transgenic T cells into TCR��/�

nonobese diabetic mice. This treatment induced clonal anergy andantiinflammatory cytokines, but here again diabetes reappearedafter suspension of the treatment (26).

To date, the only product approved by the Food and DrugAdministration for autoimmune diseases acting at the level of thepeptide:MHC/TCR complex is glatiramer acetate (GA) for thetreatment of multiple sclerosis (27). GA is made of synthetic aminoacid copolymers that promiscuously bind to MHC class II mole-cules. Notably, GA has been shown to directly impair the capacityof dendritic cells to secrete the TH1-polarizing cytokine, IL-12p70,and to promote the induction of IL-4 and IL-10-secreting T cells(27–30). Moreover, modified amino acid copolymers ameliorateexperimental autoimmune encephalomyelitis through mechanismssimilar to those described here for the 4-mer (31, 32). Similaritiesare also found in the mechanisms of action of anti-CD3 Abs, whichafford long-term remission from T1D in nonobese diabetic mice byfirst inducing the depletion or inactivation of T cells and thenpromoting active tolerance involving TGF-�-producing regulatoryCD4 T cells (33). However, in contrast to GA and anti-CD3 mAbs,the multimers specifically target the deleterious autoreactive T cells.In addition, the sequence of T cell epitope multimers can, inprinciple, be adapted for the treatment of various autoimmunediseases by representing crucial target autoantigens (9, 10).

A major concern regarding immunotherapy using the systemicadministration of self-antigens is safety. Indeed, hypersensitivity oranaphylactic reactions can develop in mouse and man (34–37).Moreover, tolerance induction may be preceded by a transient Tcell activation phase, which would pose a risk of exacerbating theautoimmune disease (2, 38, 39). Defining the correct dose is alsoessential to ensure efficacy and avoid side effects. Several additionalsteps are therefore needed before implementing a multimerizedself-peptide therapy in humans (40). These include the earlydetection of a potentially harmful immune response in vivo in

transgenic animals expressing human MHC molecules. A furtherprerequisite is the ability to accurately monitor the number andfunction of antigen-specific CD4 T cells in humans (41, 42). In anyevent, immunomodulation by multimerized epitopes emerges as apromising alternative for organ-specific autoimmune diseases. Theongoing identification of major self-peptides recognized by patho-genic T cells in human diseases, such as diabetes (43) and multiplesclerosis (39), should help the design of therapeutically relevantmultimerized epitopes.

Materials and MethodsAntigens. The monomeric HA110–119 and HA107–119 peptides weresynthesized by NeoMPS (Strasbourg, France). The 4-mer consistsof four covalently linked linear HA107–119 peptides separated by 12aa-long spacer sequences [-(GGPG)3-]. It was produced as previ-ously described (7) and was purified on a reverse-phase C4-HPLCcolumn (Vydac, Hesperia, CA). Absence of endotoxin was con-firmed by a standard limulus amoebocyte lysate assay (Cambrex,East Rutherford, NJ).

Mice. RIP-HA (12), 6.5-TCR (11), and HNT-TCR (44) transgenicmice were backcrossed at least 10 times onto the BALB/c back-ground. Where indicated, RAG2�/� 6.5-TCR and RAG2�/�

RIP-HA mice were used. All animal experiments were performedunder specific pathogen-free conditions in accordance with theEuropean Union guidelines and had local committee approval.

Flow Cytometry. The following biotin-, FITC-, and PE-conjugatedmonoclonal antibodies (mAb) were used: anti-mouse CD4 (cloneCT-CD4), CD8 (clones CT-CD8a and 5H10), CD25 (clone 7D4),CD69 (clone H1.2F3), CD62L (clone MEL-14), anti-rat IgG2b-PE(clone 2b10A8), anti-rat IgG2b biotin (clone RG7/11.1), and the 6.5anti-clonotypic mAb (11). Analysis was performed by using aFACScan flow cytometer, and data were analyzed by usingCellQuest software (Becton Dickinson, Mountain View, CA).

In Vitro TH1 Cell Differentiation. To generate HA-specific TH1 cells,107 spleen and lymph node cells from 6.5-TCR mice were stimu-lated with 10 �g/ml HA110–119 peptide in RPMI medium 1640supplemented with 10% FCS, 1 ng/ml IL-2, and 20 ng/ml IL-12(R&D Systems, Minneapolis, MN). At day 6, CD4 cells werepurified by magnetic sorting by using a rat anti-mouse CD4 mAb (3�g/ml, clone CT-CD4), goat anti-rat IgG-coated magnetic beads,and separation columns (Miltenyi Biotech, Bergish Gladbach,Germany). Positively selected CD4 T cells (106 per well) wererestimulated with HA peptide-pulsed irradiated syngeneic spleencells (107 per well) in complete medium. At day 9, living cells werecollected by Ficoll density separation and used in adoptive transferexperiments. TH1 cells were generated from HNT-TCR miceunder the same conditions.

Proliferation Assays. Single-cell suspensions from spleens andlymph nodes of 6.5-TCR mice (106 per well) or purified TH1cells were stimulated with anti-CD3� mAb (0.5 �g/ml; clone145–2C11; PharMingen, San Diego, CA) or with increasingconcentrations of the HA110–119 peptide (10�5 to 10 �g/ml) in thepresence of irradiated BALB/c spleen cells (106 per well).Proliferation was assessed by the incorporation of [3H]thymidine(Amersham, Arlington Heights, IL) added for the last 16 h ofculture. To measure the in vivo half-life of the 4-mer on APCs,splenocytes (106 cells per well) from BALB/c mice injected i.v.with 2.5 �g of the 4-mer or HA107–119 peptide, or with PBS, wereirradiated and used to induce proliferation of purified CD4 Tcells from unmanipulated 6.5-TCR mice (APC:T cell ratio of5:1), without exogenously added antigen (45).

In Vivo Activation of CD4 T Cells. Splenocytes from 6.5-TCRRAG2�/� mice (106 per ml) were labeled for 10 min at 37°C with

Piaggio et al. PNAS � May 29, 2007 � vol. 104 � no. 22 � 9397

IMM

UN

OLO

GY

Page 246: THÈSE - thesesupsthesesups.ups-tlse.fr/1108/1/Bergereau_Emilie.pdf · l’inflammation du système nerveux central (SNC). Les résultats obtenus ont montré que le transfert de Th1

5 �M 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE;Molecular Probes, Eugene, OR). Thirty million CFSE-labeled cellswere adoptively transferred into RIP-HA mice injected with PBSor 2.5 �g of either 4-mer or HA107–119 peptide 1 or 15 days earlier.The percentage of activated (CD69�) CD4� CFSE� cells wasdetermined by FACS 24 h after the transfer.

Adoptive Transfer of Diabetes, Prevention of Diabetes by Injection ofthe Peptides, and in Vivo Neutralization of IL-4, IL-10, and TGF-�. T1Dwas induced in RAG2�/� or immunocompetent RIP-HA adultmice by i.v. injection of the indicated number of 6.5-TCR TH1 cells.In some experiments, mice received a second i.v. injection of 5 �106 6.5-TCR TH1 cells or 25 � 106 HNT-TCR TH1 cells. Incotransfer experiments, RIP-HA mice were first injected i.v. with5 � 107 total splenocytes from either control RIP-HA mice orRIP-HA mice injected 15 days earlier with 5 � 106 6.5-TCR TH1cells and the 4-mer. The next day, recipient mice received 5 � 106

diabetogenic 6.5-TCR TH1.Mice were treated with two identical i.v. injections of the 4-mer

or the HA107–119 peptide in 200 �l PBS 3 h and 3 days after TH1cell transfer. Control animals were injected i.v. with PBS. In someexperiments, mice also received i.p. control rat IgG (Sigma–Aldrich, St. Louis, MO) or neutralizing mAbs against IL-10 (cloneJES5–2A5, 0.5 mg at days 0 and 3), IL-4 (clone 11B11, 0.5 mg at days0 and 3), and TGF-� (clone 2G7, 0.5 mg at days �2, 0, 2, 4, 6, and8). This mAb dose has been previously shown to neutralize cytokineeffects in vivo (46, 47).

Glycosuria was assessed by using test strips (Glukotest; Roche-Diagnostic, Mannheim, Germany). Mice were considered diabeticif glycosuria was above 1 g/liter on two consecutive tests. Cumula-tive diabetes frequencies were compared by using the log-rank test.

Histology. Pancreata were fixed in formol solution and processed forparaffin embedding. Sections (5-�m thick) were stained with H&E,and the degree of insulitis was evaluated microscopically. Fordetection of nuclear Foxp3, sections were first treated with S2368buffer (pH � 9) (DakoCytomation, Glostrup, Denmark) forepitope retrieval and then incubated with purified anti-mouseFoxp3 mAb (clone FJK-16s; e-Bioscience, San Diego, CA). Afterwashes, a secondary biotinylated rabbit anti-rat Ig was added, anda peroxidase-based ABC detection system (DakoCytomation) us-ing DAB as the chromogenic substrat was used. Slides werecounterstained with hematoxylin. Photographs were taken for eachinfiltrated islet, and the number of Foxp3� and Foxp3� in each isletwas counted by an investigator unaware of the treatment receivedby the animals.

For double staining, pancreata were snap-frozen, cryosections(5-�m thick) were acetone-fixed, and endogenous peroxydaseactivity and biotin groups were blocked. Staining was firstperformed by using anti-mouse Foxp3 mAb as described above.The CD4 staining (L3T4; BD Biosciences) was then performedand revealed by using Vector Blue (Vector Laboratories, Bur-lingame, CA).

For additional information, see SI Methods.

We thank F. Capilla for assistance with immunohistochemistry, A.Estival for multiplex cytokine analyses, and Drs. A. Saoudi and D.Gonzalez-Dunia for helpful comments on the manuscript. This work wassupported by grants from the Juvenile Diabetes Research FoundationInternational, the French Institute for Medical Research, the Fondationpour la Recherche Medicale, the Midi-Pyrenees Region (to R.S.L.), andDeutsche Forschungsgemeinschaft Grant SFB650 (to O.R. and K.F.).

1. Vanderlugt CL, Miller SD (2002) Nat Rev Immunol 2:85–95.2. Liblau R, Tisch R, Bercovici N, McDevitt HO (1997) Immunol Today

18:599–604.3. Harrison LC, Hafler DA (2000) Curr Opin Immunol 12:704–711.4. McDevitt H (2004) Proc Natl Acad Sci USA 101(Suppl 2):14627–14630.5. Feldmann M, Steinman L (2005) Nature 435:612–619.6. Stern LJ, Wiley DC (1994) Structure (London) 2:245–251.7. Rotzschke O, Falk K, Strominger JL (1997) Proc Natl Acad Sci USA 94:14642–

14647.8. Falk K, Rotzschke O, Strominger JL (2000) Eur J Immunol 30:3012–3020.9. Falk K, Rotzschke O, Santambrogio L, Dorf ME, Brosnan C, Strominger JL

(2000) J Exp Med 191:717–730.10. Stienekemeier M, Falk K, Rotzschke O, Weishaupt A, Schneider C, Toyka KV,

Gold R, Strominger JL (2001) Proc Natl Acad Sci USA 98:13872–13877.11. Kirberg J, Baron A, Jakob S, Rolink A, Karjalainen K, von Boehmer H (1994)

J Exp Med 180:25–34.12. Lo D, Freedman J, Hesse S, Palmiter RD, Brinster RL, Sherman LA (1992)

Eur J Immunol 22:1013–1022.13. Hori S, Nomura T, Sakaguchi S (2003) Science 299:1057–1061.14. Fontenot JD, Gavin MA, Rudensky AY (2003) Nat Immunol 4:330–336.15. Pop SM, Wong CP, Culton DA, Clarke SH, Tisch R (2005) J Exp Med

201:1333–1346.16. Chen Z, Herman AE, Matos M, Mathis D, Benoist C (2005) J Exp Med

202:1387–1397.17. Green EA, Choi Y, Flavell RA (2002) Immunity 16:183–191.18. Battaglia M, Stabilini A, Draghici E, Migliavacca B, Gregori S, Bonifacio E,

Roncarolo MG (2006) Diabetes 55:1571–1580.19. Homann D, Holz A, Bot A, Coon B, Wolfe T, Petersen J, Dyrberg TP, Grusby

MJ, von Herrath MG (1999) Immunity 11:463–472.20. Maloy KJ, Powrie F (2001) Nat Immunol 2:816–822.21. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA (2003) Proc Natl

Acad Sci USA 100:10878–10883.22. Alpan O, Bachelder E, Isil E, Arnheiter H, Matzinger P (2004) Nat Immunol

5:615–622.23. Apostolou I, von Boehmer H (2004) J Exp Med 199:1401–1408.24. Casares S, Zong CS, Radu DL, Miller A, Bona CA, Brumeanu TD (1999) J Exp

Med 190:543–553.25. Casares S, Hurtado A, McEvoy RC, Sarukhan A, von Boehmer H, Brumeanu

TD (2002) Nat Immunol 3:383–391.26. Masteller EL, Warner MR, Ferlin W, Judkowski V, Wilson D, Glaichenhaus

N, Bluestone JA (2003) J Immunol 171:5587–5595.

27. Sela M, Mozes E (2004) Proc Natl Acad Sci USA 101(Suppl 2):14586–14592.28. Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA (2000) J Clin Invest

105:967–976.29. Neuhaus O, Farina C, Wekerle H, Hohlfeld R (2001) Neurology 56:702–708.30. Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML

(2003) J Immunol 170:4483–4488.31. Stern JN, Illes Z, Reddy J, Keskin DB, Sheu E, Fridkis-Hareli M, Nishimura

H, Brosnan CF, Santambrogio L, Kuchroo VK, Strominger JL (2004) Proc NatlAcad Sci USA 101:11743–11748.

32. Illes Z, Stern JN, Reddy J, Waldner H, Mycko MP, Brosnan CF, Ellmerich S,Altmann DM, Santambrogio L, Strominger JL, Kuchroo VK (2004) Proc NatlAcad Sci USA 101:11749–11754.

33. Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L (2003)Nat Med 9:1202–1208.

34. Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L (2000)Nat Med 6:1176–1182.

35. Pedotti R, Mitchell D, Wedemeyer J, Karpuj M, Chabas D, Hattab EM, TsaiM, Galli SJ, Steinman L (2001) Nat Immunol 2:216–222.

36. Liu E, Moriyama H, Abiru N, Miao D, Yu L, Taylor RM, Finkelman FD,Eisenbarth GS (2002) J Clin Invest 110:1021–1027.

37. Smith CE, Eagar TN, Strominger JL, Miller SD (2005) Proc Natl Acad Sci USA102:9595–9600.

38. Lanoue A, Bona C, von Boehmer H, Sarukhan A (1997) J Exp Med 185:405–414.

39. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B,Eaton J, Antel J, Frank JA, et al. (2000) Nat Med 6:1167–1175.

40. von Herrath MG, Nepom GT (2005) J Exp Med 202:1159–1162.41. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO,

Peakman M (2004) J Clin Invest 113:451–463.42. Mallone R, Nepom GT (2004) Clin Immunol 110:232–242.43. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, Hering

BJ, Hafler DA (2005) Nature 435:224–228.44. Scott B, Liblau R, Degermann S, Marconi LA, Ogata L, Caton AJ, McDevitt

HO, Lo D (1994) Immunity 1:73–83.45. Bercovici N, Heurtier A, Vizler C, Pardigon N, Cambouris C, Desreumaux P,

Liblau R (2000) J Immunol 165:202–210.46. Cautain B, Damoiseaux J, Bernard I, van Straaten H, van Breda Vriesman P,

Boneu B, Druet P, Saoudi A (2001) Eur J Immunol 31:1132–1140.47. Chiba A, Oki S, Miyamoto K, Hashimoto H, Yamamura T, Miyake S (2004)

Arthritis Rheum 50:305–313.

9398 � www.pnas.org�cgi�doi�10.1073�pnas.0610423104 Piaggio et al.