TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des...

22
XXX XXX Version X TECHNOLOGIES D’ACCELEROMETRES POUR LA MESURE DE VIBRATION ET CHOC Le but de cet article technique est de passer en revue les différentes technologies d’accéléromètres et d’aider à leur choix selon les applications et l’environnement, tout en sachant que l’utilisation principale d’un accéléromètre est la mesure de vibration. Chaque famille d’accéléromètres présente des avantages et des inconvénients, il est évident que la qualité de la mesure dépend du choix du bon accéléromètre, il doit être choisi selon l’application mais également selon sa qualité. Il est bon de garder aussi à l’esprit que la chaîne de mesure utilisée comprend le capteur, l’ensemble câble/ connecteur, ainsi que le conditionneur ou le système d’acquisition des données. Avant de commenter les choix, il est bon de reprendre quelques notions de base concernant les différentes technologies d’accéléromètres. En général, les mesures d’accélération, choc et vibration nécessitent des accéléromètres dont la conception permet la mesure d’évènements statiques ou / et dynamiques. Pour les évènements « dynamiques », il est nécessaire d’utiliser des accéléromètres à réponse alternative. Pour les évènements « statiques », il est nécessaire d’utiliser des accéléromètres à réponse continue Néanmoins, certains accéléromètres à réponse continue peuvent mesurer des évènements dynamiques, basse fréquence.

Transcript of TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des...

Page 1: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

TECHNOLOGIES D’ACCELEROMETRES POUR LA

MESURE DE VIBRATION ET CHOC

Le but de cet article technique est de passer en revue les différentes technologies

d’accéléromètres et d’aider à leur choix selon les applications et l’environnement, tout en

sachant que l’utilisation principale d’un accéléromètre est la mesure de vibration.

Chaque famille d’accéléromètres présente des avantages et des inconvénients, il est évident

que la qualité de la mesure dépend du choix du bon accéléromètre, il doit être choisi selon

l’application mais également selon sa qualité. Il est bon de garder aussi à l’esprit que la chaîne

de mesure utilisée comprend le capteur, l’ensemble câble/ connecteur, ainsi que le

conditionneur ou le système d’acquisition des données.

Avant de commenter les choix, il est bon de reprendre quelques notions de base concernant

les différentes technologies d’accéléromètres.

En général, les mesures d’accélération, choc et vibration nécessitent des accéléromètres dont

la conception permet la mesure d’évènements statiques ou / et dynamiques.

Pour les évènements « dynamiques », il est nécessaire d’utiliser des accéléromètres à réponse

alternative.

Pour les évènements « statiques », il est nécessaire d’utiliser des accéléromètres à réponse

continue

Néanmoins, certains accéléromètres à réponse continue peuvent mesurer des évènements

dynamiques, basse fréquence.

Page 2: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

ACCELEROMETRES A REPONSE ALTERNATIVE (AC)

Pour la mesure de phénomènes dynamiques

Les accéléromètres piézoélectriques

Qu’est ce que la piézoélectricité ?

L’observation humaine la plus ancienne de l’effet électrique a été effectuée sur l’agencement

des forces mécaniques. Un pouvoir mystérieux était connu des Grecs anciens comme étant

une propriété de l’ELEKTRON (ambre) lorsqu’on le frottait. Des siècles plus tard,

l’électricité ayant été découverte, ses divers aspects étaient codifiés par un préfixe particulier

tel que : voltaïque, thermo, photo, et bien sûr PYRO et PIEZO.

On avait observé depuis longtemps que le cristal de tourmaline placé dans des cendres

chaudes commence par attirer les cendres puis à la repousser.

La caractéristique électrique fut établie en 1756 par Aepinus qui avait remarqué des polarités

opposées aux deux extrémités d’un cristal de tourmaline chauffé.

En 1824, Brewster, qui avait étudié les effets de plusieurs sortes de cristaux, introduisit le

vocable PYROELECTRICITE. Suivant une théorie de Coulomb que l’électricité doit être

produite par pression sur un cristal, Hauy et Becquerel ont montré les effets électriques de

certains cristaux lorsque ceux-ci étaient comprimés.

La découverte la plus importante fut celle des frères Pierre et Jacques Curie en 1880 : certains

cristaux, étant comprimés dans des directions particulières, présentent des charges positives et

négatives en certains endroits de leur surface.

Les charges sont proportionnelles à la pression et disparaissent lorsque la pression est

supprimée, ainsi la PIEZOELECTRICITE était découverte. Cependant pendant les décades

qui suivirent peu d’attention fut portée à cette découverte.

Avec le bond en avant de la seconde guerre mondiale, la piézoélectricité fut utilisée pour

générer et détecter des ondes à haute fréquence à travers l’eau en vue de construction de

sonars, l’effet réciproque étant alors utilisé : l’application d’une charge à un cristal produit un

mouvement ou une déformation de l’aspect physique du cristal.

Il fallut encore attendre de nombreuses années avant de construire des accéléromètres tels que

nous les connaissons aujourd’hui.

Page 3: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Qu’est ce que l’effet piézoélectrique ?

La réponse la plus simple serait la transformation d’une énergie mécanique en une énergie

électrique.

La figure ci-dessous montre une méthode de transformation simple ou à partir d’un matériau

piézoélectrique sous contrainte, une force en entrée fournit un signal électrique en sortie, dans

le cas de compression dans l’axe de polarisation.

Quel est le mécanisme qui transforme l’énergie ?

Afin de faciliter la compréhension, considérons la figure 1 ci-dessous qui représente une

structure cristalline imaginaire à une dimension, comprenant un alignement d’ions

alternativement positifs et négatifs, à la manière de perles enfilées sur un élastique.

Considérons la région entourée par les lignes en pointillées.

Dans cette structure symétrique, la vue à partir du centre de la région vers la gauche ou vers la

droite, est exactement la même.

Maintenant, supposons que nous appliquions une contrainte d’extension au cristal et que

l’allongement soit faible (figure 2), les deux anions s éloignent du centre avec des

déplacements identiques mais en sens opposé. Le cation ne bouge pas, au centre de la région.

Ainsi, il n’y a pas de déplacement important de charge dans la région considérée ou dans la

structure cristalline qui est considérée comme un tout.

Page 4: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Fig.1: Illustration d’une structure cristalline Fig.2:Illustration d’une structure cristalline

Symétrique asymétrique

Voyons maintenant, ce qu’il advient lorsque nous allongeons faiblement une structure

asymétrique. Le cation est à gauche du centre de la région de la figure 2 effectuant un

déplacement de charge positive à gauche.

De nouveau, les deux anions se déplacent à partir du centre d’une quantité égale et opposée

mais maintenant le cation se déplace vers la gauche du centre comme l’indique la figure 2

effectuant un déplacement de charge positive à gauche.

Si le cristal est maintenant comprimé, le cation se déplace à droite et une charge

piézoélectrique de polarité opposée est générée.

Le même processus peut être appliqué pour l’effet réciproque, c'est-à-dire si un potentiel était

appliqué à chaque région, cela créerait un faible mouvement résultant de la variation des

dimensions du cristal.

Si un cristal est un conducteur électrique, les charges piézoélectriques seront immédiatement

court-circuitées et il n’y aura rien en sortie.

Les matériaux piézoélectriques généralement utilisés pour les accéléromètres sont des

matériaux isolants afin que la charge soit conservée et puisse être utilisée.

Les matériaux piézoélectriques utilisés pour les capteurs peuvent être divisés en deux

catégories

Cristaux simples (quartz et tourmaline).

Ils ont des qualités certaines, quoique leur sensibilité soit faible par comparaison avec les

céramiques ferroélectriques.

La figure ci dessous montre un cristal naturel, du quartz dans le cas présent. Il y a 32

catégories de cristaux. Onze catégories ont un centre de symétrie et donc, ne présentent pas

d’effet piézoélectrique. Il y en a un, la catégorie 29, qui est asymétrique mais pas

piézoélectrique.

Les 21 autres restantes, étant asymétriques présentent l’effet piézoélectrique.

Page 5: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Les 3 cristaux piézoélectriques, les plus couramment utilisés dans les capteurs sont le sel de

Rochelle, le quartz et, la tourmaline.

Le sel de Rochelle n’est plus utilisé de nos jours à cause d’un point de Curie très bas (25°C),

sa faible tenue mécanique et sa basse température de désintégration (55°C).

Historiquement, il a été important pour les travaux de recherche sur la piézoélectricité.

Par contre, le quartz et la tourmaline sont couramment utilisés pour les capteurs, ils ont des

qualités certaines bien que leur sensibilité soit faible, la tourmaline étant très utilisée pour les

applications très haute température.

Céramiques ferroélectriques

Pour fabriquer un matériau piézoélectrique utilisable, il faut que la plupart des régions

cristallines aient leurs axes piézoélectriques alignés dans la même direction.

On réalise ceci au moyen d’un champ électrique intense. Cet effet de polarisation est analogue

à la magnétisation du fer dans un champs magnétique, d’où l’expression Ferro Electricité

Les céramiques ont en général une sensibilité élevée, elles peuvent également être fabriquées

à la demande en taille et forme, ce qui n’est pas le cas des cristaux simples.

Pyroélectricité

Lorsque l’on place des céramiques ferroélectriques dans un champ électrique intense, on

obtient un seul axe de polarisation mais, tous les cristaux à un seul axe présentent alors le

phénomène de pyroélectricité primaire, c'est-à-dire que si la température varie, on génère une

charge.

Ceci peut être gênant dans les applications pratiques de la piézoélectricité.

Dépolarisation

Comme les éléments piézoélectriques peuvent être polarisés, ils peuvent également être

dépolarisés.

Page 6: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Pendant la polarisation beaucoup de régions ferroélectriques microscopiques, à l’intérieur du

matériau, alignent leur axe de polarisation suivant le champs primaire de polarisation externe

et tendent à maintenir cet alignement à cause du champs interne créé par celui-ci.

Cependant elles restent dans la direction de polarisation à cause des contraintes internes.

Lorsque le champ de polarisation est supprimé, quelques régions veulent revenir à l’état initial

afin de se soustraire à la contrainte. Il en résulterait une diminution de la sensibilité.

Heureusement, cette tendance à la dépolarisation peut être annulée avant utilisation en

recuisant le matériau dans son état de polarisation.

On provoque ainsi un relâchement des contraintes avant que le matériau soit mis en service.

Ceci constitue une part importante du procédé de fabrication pour obtenir des capteurs fiables.

Il y a également d’autres possibilités externes de dépolarisation, si une contrainte de

compression est appliquée dans la direction de polarisation, quelques régions voudraient

s’échapper parce qu’elles sont un peu plus minces, lorsque la pression est assez forte, un

élément peut être dépolarisé.

Heureusement les forces nécessaires pour une telle dépolarisation sont assez élevées, ce qui

n’est pas un problèmes dans la plupart des applications, sauf dans le cas d’un choc important

dépassant les spécifications du capteur.

Effet de la température

Pour produire des éléments ferroélectriques les plus stables et les plus sensibles le matériau

doit être poussé jusqu’à la saturation. Les champs électriques de polarisation sont

généralement très élevés, de l’ordre de 40000 Volts par centimètre. Des variations de

polarisation peuvent survenir avec des champs beaucoup trop faibles et également avec des

champs non désirés. Une source insidieuse de champ non désiré de dépolarisation, existe dans

les éléments ferroélectriques. C'est-à-dire qu’avec une grande variation de température, des

charges électriques importantes peuvent être développées. Si l’élément piézoélectrique est en

circuit ouvert, c'est-à-dire que les charges ne sont pas évacuées, plusieurs centaines de volts

peuvent exister aux bornes, c’est le résultat de la variation de polarisation de l’élément

piézoélectrique et par voie de conséquence de la variation de sensibilité.

Un autre et très important effet de la température est que la gamme de température

d’utilisation pratique d’un capteur est restreinte par le point de température dit de Curie.

A une certaine température, suivant le matériau, l’élément ferromagnétique cesse d’être

ferroélectrique et désormais, ne peut plus être utilisé en tant que piézoélectrique.

En résumé, les accéléromètres utilisent un élément piézoélectrique naturel ou artificiel

(quartz, tourmaline, céramique PZT) pré contraint par une masse sismique.

La vibration fait varier la pré contrainte et déforme l’élément piézoélectrique qui génère

alors un signal électrique haute impédance, exprimé en unités pC/g ou mV/g

Page 7: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Constructions internes d’accéléromètres piézoélectriques

Conditions à remplir

Pour convertir en signal électrique, de façon satisfaisante, une vibration ou un choc complexe,

un accéléromètre devra répondre à certains critères, ci-dessous mentionnés Il devra….

.fonctionner avec une large gamme d’accélération dynamique

.couvrir une gamme de fréquence allant de 2 Hz (ou moins, pour les chocs de longue

durée, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des

phénomènes acoustiques et les chocs de courte durée)

.être insensible aux phénomènes non vibratoires tels que :

.la température extérieure et les transitoires de température

.les bruits acoustiques

.les rayonnements parasites (nucléaires, interférences, magnétiques)

.être insensible aux signaux de vibration non souhaités tels que

.les vibrations transverses

.les contraintes de base induites par le spécimen à tester et le mode de fixation utilisée

.reproduire l’information désirée sans distorsion due à l’amortissement et au filtrage

.avoir une fréquence de résonance (capteur monté) élevée, pour minimiser les effets de

résonance d’éléments du capteur.

.modifier le moins possible la vibration du spécimen à tester, poids du capteur < à 10% du

poids du spécimen à tester.

.avoir des caractéristiques stables dans le temps

Lorsque l’accéléromètre est soumis à une accélération suivant son axe vertical, l’élément

piézoélectrique est comprimé (ou décomprimé) par les forces d’inertie agissant sur la masse.

Cette construction permet d’atteindre les buts recherchés, c'est-à-dire, haute sensibilité et une

fréquence de résonance élevée mais a un inconvénient important.

Bien que le cristal lui-même fournisse le ressort dans le système masse ressort, constitué par

le cristal et la masse de précontrainte, les parois du boîtier agissent également comme ressort,

en parallèle avec l’élément sensible.

Ceci implique que tout changement dans les dimensions du boîtier va influer sur les

caractéristiques et le fonctionnement du capteur.

Par exemple, des variations de température vont produire une variation dans les dimensions

du boîtier et, par conséquent, influer sur l’élément sensible.

En particulier, cette construction sera très sensible aux hautes énergies acoustiques car les

ondes acoustiques, en rencontrant le boîtier, vont être directement transmises à l’élément

sensible et auront pour conséquence une sortie électrique parasite.

Cette construction interne n’est plus utilisée et est incluse ici comme référence au premier

accéléromètre piézoélectrique commercialisé.

Page 8: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Exemples de construction interne d’accéléromètre piézoélectrique

(Ces constructions internes sont aussi utilisées pour les accéléromètres piézoélectriques avec

électronique incorporée)

Compression par écrou central

Cette construction améliore la précédente en fournissant un isolement plus important aux

influences parasites. La compression par écrou central comporte une base, une tige filetée,

une masse et un système de compression. La précontrainte est obtenue en vissant l’écrou de

compression sur la tige filetée centrale. Le boîtier du capteur est monté au dessus et soudé sur

la base. Le boîtier a alors un simple rôle de protection et n’est pas en contact direct avec le

système « masse ressort ».

Compression Isobase®

La construction compression par écrou central peut encore être améliorée, toutefois en

diminuant légèrement la fréquence de résonance. La compression par écrou central assure une

liaison étroite entre la surface de montage et l’élément sensible, mais l’accéléromètre est

toujours sensible aux phénomènes non vibratoires tels que la contrainte de base, la chaleur et

le bruit acoustique. Pour améliorer ceci, Endevco™ a conçu la construction Isobase®,

comparable à la précédente, sauf que la base de montage a une forme particulière pour mieux

isoler la base de montage du capteur de la surface de l’élément sensible et mieux protéger de

l’influence de contrainte de base.

Construction en cisaillement

Les accéléromètres qui fournissent une sortie électrique, en utilisant un élément

piézoélectrique travaillant en cisaillement, permettent, une meilleure réjection des signaux

induits par les contraintes de base. De même que pour la construction par écrou central, le

boîtier a un rôle de protection et n’est pas en contact avec le système masse ressort, mais les

contraintes venant de la base de montage sont très bien isolées, puisque les éléments

piézoélectriques sont fixés sur une tige. Ce type de construction a pour avantage une

sensibilité très faible aux contraintes de base et aux phénomènes acoustiques.

Comme les accéléromètres utilisant des cristaux ferroélectriques montés en cisaillement ne

présentent pas de phénomènes pyroélectriques primaires, un autre avantage sera l’absence de

signaux parasites en sortie, dus à des phénomènes pyroélectriques ou a des transitoires de

température. La plupart des accéléromètres à cisaillement annulaire sont fabriqués en fixant

les différents éléments à l’aide d’adhésif époxy, ce qui limite leur gamme de température de

Page 9: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

-55 à +260°C.Les principaux avantages de ce type de construction sont la simplicité, la

sécurité, mais aussi la possibilité d’avoir de capteurs miniatures et micro- miniatures, d’une

taille ≤ à 4mm pour un poids de ≤ 0,13 gramme.

Les accéléromètres miniatures sont utilisés dans la plupart des applications hautes fréquences

pour éliminer les erreurs dues à leur masse. Une modification intéressante, consiste à creuser

la tige centrale qui traverse entièrement le capteur, afin de pouvoir le monter par une vis

captive traversante. Cette technique permet une grande souplesse pour le montage du capteur

dans des endroits difficiles d’accès, par l’orientation (radiale) du connecteur.

Construction Isoshear®

Les accéléromètres fonctionnant en cisaillement pourront également être construits en

utilisant des éléments ayant une forme plate. Ces capteurs ont une conception semblable à

ceux à cisaillement annulaire car les céramiques piézoélectriques seront fixées de part et

d’autre d’un élément central par l’intermédiaire d’une masse qui sera précontrainte contre

celui-ci. Dans un accéléromètres Isoshear ®, l’ensemble est boulonné assemblé, comme le

montre la figure sur la page suivante.

Comme pour le cas précédent, le montage est symétrique par rapport au centre de gravité du

capteur et permet d’obtenir de hautes fréquences de résonance.

De plus, cette technique n’utilisant pas d’adhésif organique, la gamme en température ne sera

pas limitée à celle de l’adhésif.

Un autre avantage important de ce type de montage, est la possibilité de disposer plusieurs

éléments entre l’élément central et la masse de précontrainte, ces éléments plans, peuvent être

empilés comme pour une construction en compression.

Lors de la fabrication, on pourra accroître la sensibilité, ajouter des éléments de compensation

en température, augmenter la capacité interne et ajouter ou non, un isolant électrique par

rapport au boîtier.

Ces différentes possibilités permettent d’obtenir un capteur correspondant au mieux à une

application désirée. Les constructions Isoshear® ont généralement une sensibilité aux

contraintes de base et une erreur due à la température très faibles, et par conséquent, des

rapports signal sur bruit particulièrement élevés.

Ces caractéristiques permettent également d’effectuer des mesures en basse fréquence jusqu’a

0,1Hz.

Page 10: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Piézoélectrique sortie haute impédance : charge (pC/g)

Ces accéléromètres délivrent directement un signal électrique proportionnel à la vibration,

Etant auto générateurs,ils n’ont pas besoin d’une alimentation.

Du fait de la haute impédance du signal électrique de sortie,il est nécessaire d’utiliser un

amplificateur,tension ou charge, avec une entrée haute impédance ainsi qu’un câble coaxial

de liaison, traité contre les effets triboélectriques,générateurs de charges parasites.

L’amplificateur de charge étant peu sensible aux problèmes causés par les variations de

capacité des câbles, il est généralement plus couramment utilisé qu’un amplificateur de

tension .L’amplificateur de charge permet également d’utiliser la grande dynamique des

accéléromètres piézoélectriques (>120dB) ; dynamique globale pouvant être ajustée par le

gain réglable de l’amplificateur.

Les éléments piézoélectriques naturels (quartz, tourmaline) et artificiel (PZT), permettent une

large plage d’utilisation en température (-260 à +700°C). Ce type d’accéléromètre, très

robuste, est bien adapté aux mesures de vibration en températures extrêmes, par exemple, la

surveillance vibratoire de turbines et mesure cryogéniques.

Piézoélectrique sortie basse impédance amplificateur incorporé : tension (mV/g)

Page 11: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Les accéléromètres piézoélectriques générateurs de charge électrique sont des capteurs, bien

connus depuis de nombreuses années. L’utilisation des circuits hybrides et de la

microélectronique, a permis d’incorporer un amplificateur adaptateur d’impédance dans

l’accéléromètre. D’autres fonctions (filtrage…) peuvent aussi être intégrées.

Cette gamme d’accéléromètres est commercialisée sous divers noms IEPE, ICP, ISOTRON

Pourquoi alimentation en courant constant ?

L’alimentation des accéléromètres IEPE par un courant constant, permet l’utilisation d’un

câble à deux conducteurs, transmettant simultanément l’énergie de fonctionnement et le

signal.

Une conception d’accéléromètre IEPE à alimentation sous tension constante, nécessiterait

l’utilisation de trois ou quatre conducteurs. De plus, le circuit hybride comporterait des

composants supplémentaires (régulateur) et l’impédance de sortie serait plus élevée que dans

la conception à courant constant.

Comment générer le courant constant nécessaire ?

Les amplificateurs conditionneurs d’accéléromètres spécifiques aux IEPE, ou admettant les

deux types d’accéléromètres piézoélectriques avec ou sans électronique incorporée, incluent

une source à courant constant. La figure ci-dessous, représente le schéma équivalent d’un

accéléromètre IEPE relié par un câble, en général une paire torsadée, a une source

d’alimentation souvent incorporée au système d’acquisition des données.

La sortie basse impédance de l’IEPE créant une bonne immunité aux bruits électriques, il

n’est pas nécessaire d’utiliser un câble faible bruit.

Schéma du système accéléromètre IEPE+Câble+Alimentation

R1 : résistance série du câble plus résistance interne de l’IEPE

C1 : capacité du câble

C2 : capacité de blocage de la composante continue

R2 : résistance d’entrée du circuit utilisateur

Page 12: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Influence de la température

La plupart des IEPE ont une plage de température d’utilisation de -55 à +121°C (portée

récemment à +162°C).

La présence de composants électroniques (transistors à effet de champ, amplificateur

opérationnel, résistances, capacités) dans l’accéléromètre est la raison principale de cette

plage plus limitée que celle des accéléromètres piézoélectriques sans électronique incorporée.

Dans cette plage, deux paramètres sont particulièrement affectés, la tension de polarisation et

la sensibilité. Les caractéristiques du transistor à effet de champ provoquent une augmentation

de la tension de polarisation pour les températures basses et une diminution pour les

températures hautes

Conclusion

La simplicité de mise en œuvre au niveau du câblage et l’avantage d’un coût réduit de la voie

de mesure accéléromètrique, destine ces accéléromètres aux applications, type laboratoire

d’essais, mesures embarquées, essais en vol.

Ils peuvent également être très utiles lors de mesure en présence de perturbations électriques

et/ou électromagnétiques importantes ainsi qu’avec des câbles de liaison de grande longueur.

Des accéléromètres IEPE disposant d’un boîtier spécifique sont également très utilisés pour

les applications de surveillance (industrie).

Néanmoins les accéléromètres piézoélectriques sans électronique intégrée, demeurent la

seule solution lorsque la température dépasse les limites supportables par les composants

électroniques et ceci jusqu’à plus de 700°C.

Bien que n’étant pas des accéléromètres, d’autres types de capteurs permettent de mesure des

vibrations.

Capteurs de vitesse électrodynamiques

Bien que n’étant pas un accéléromètre, ce type de capteur peut être utilisé pour mesurer des

vibrations

Quand une bobine se déplace dans un champ magnétique, elle est le siège d’une force

électromotrice proportionnelle à la vitesse de déplacement de la bobine.

Les capteurs de vitesse, basés sur ce principe, consistent généralement en une bobine guidée

par des suspensions flexibles, se déplaçant dans l’entrefer d’un aimant permanent.

La tension de sortie en circuit ouvert, aux bornes de la bobine est : E=BLV, ou

E= La tension de sortie (Volt)

Page 13: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

B= Induction magnétique (tesla)

L= Longueur du fil dans le champs magnétique (m)

V= Vitesse relative bobine/champ magnétique

Pour obtenir une réponse linéaire en vitesse, le système est amorti par huile ou champ

magnétique.

Le capteur est utilisé au dessus de la fréquence propre là ou la vitesse relative ne dépend plus

de la fréquence. La fréquence propre est base (généralement 10 Hz)

Les inconvénients de ce type de capteur, encombrement, risque de rupture des suspensions, fo

qu’il n’est pratiquement plus utilisé.

Détecteur à courant de Foucault

Les capteurs à courant de Foucault sont des dispositifs de mesure sans contact. Un petit

cylindre en matériau métallique, recouvert d’un bobinage, est l’un des éléments d’un circuit

oscillant Quand une surface métallique s’approche de l’extrémité du cylindre, des courants de

Foucault s’y établissent, ce qui absorbe de l’énergie. La relation entre le déplacement et les

pertes d’énergie n’est pas linéaire et doit être linéarisée au moyen d’un circuit électronique

approprié. L’électronique associée au détecteur comprend généralement l’oscillateur de la

porteuse, dont la fréquence est d’environ 2MHz, un circuit de linéarisation et un

démodulateur.

En raison de la fréquence élevée, la câble d’interconnexion entre le détecteur et son

électronique fait partie du circuit et ne peut pas être changé.

La sensibilité varie avec les caractéristiques électriques et magnétiques des matériaux.

Ce type de capteur est principalement utilisé pour la surveillance de machines tournantes, par

exemples, la mesure des déplacements d’arbres par rapport aux paliers.

Page 14: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

ACCELEROMETRES A REPONSE CONTINUE (DC)

Pour la mesure de phénomène statique ou dynamique basse fréquence et chocs

Les accéléromètres potentiomètriques

Il existe des accéléromètres dont l’élément transducteur est un potentiomètre. La masse est

liée au curseur, ce qui permet d’obtenir une tension variable.

Comme pour les accéléromètres à jauges, les accéléromètres potentiomètriques permettent des

mesures d’accélérations statiques et de vibrations au dessus de la fréquence de résonance.

Celle-ci est très basse, de l’ordre de 20 Hz.

Ce type d’accéléromètre n’est que très rarement utilisé !

Les accéléromètres piézorésistifs

Piézorésistivité

Lorsque qu’une force est appliquée sur un corps élastique, sa longueur augmente et sa section

diminue. Ces deux dimensions, en variant, modifient sa résistance électrique.

Le rapport entre la contrainte suivant l’axe transversale et la contrainte suivant l’axe

longitudinal est défini par le coefficient de Poisson dont une valeur typique pour la plupart des

matériaux est 0,3.

Lorsque les variations de dimensions d’un élément sont seules considérées, le facteur de jauge

devient 1,6 (1+2 x coefficient de Poisson).

La plupart des matériaux, tels que ceux utilisés pour les jauges de contrainte à fils ont un

facteur de jauge légèrement supérieur à 1,6.

Ce qui signifie qu’il y a une petite variation de la résistivité du matériau sous contrainte mais

pas suffisamment importante.

Par contre, pour d’autres matériaux, la variation de la résistivité est importante avec la

contrainte, c’est ce que l’on appelle l’effet piézorésistif.

Les matériaux ayant une grande variation de résistivité sous contrainte sont appelés matériaux

piézorésistifs.

Jauges silicium

Le silicium est un matériau dont les facteurs de jauge se situent entre +100 et+175 pour le

type P et -100 et -140 pour le type N. La variation de résistivité est une fonction du matériau,

de la résistivité, du niveau de dopage et du type de dopant, avec la direction cristallographique

suivant laquelle le matériau sera usiné.

Les propriétés piézorésistives d’un matériau semi-conducteur au silicium sont caractérisées

par la résistivité, elle-même déterminée par la concentration du dopant.

Page 15: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Voici les caractéristiques dues à la résistivité

1 Facteur de jauge K

2 Coefficient de température de la résistance

3 Coefficient de température du facteur de jauge

Le facteur de jauge K est d’abord déterminé par le niveau de dopage mais dépend également

de la température.

La figure1 montre les effets du niveau de dopage sur le facteur de jauge ainsi que ceux de la

température. Le facteur de jauge et le coefficient de température sont inversement proportion-

-nels au niveau de dopage. La plupart des jauges de contrainte silicium ont des niveaux de

dopage tels que les facteurs de jauges se situent entre +100 et +140 et à ces niveaux le

coefficient de température du facteur de jauge est acceptable.

Page 16: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

La figure 2 montre que les facteurs de jauges les plus importants sont obtenus par des niveaux

de dopage minimum, ainsi les facteurs de jauge importants ont pour conséquence une

résistance de jauge plus importante. Les résistances de jauges les plus élevées permettent une

tension d’alimentation plus importante, donc, les faibles niveaux de dopage offrent la

meilleure sensibilité. Malheureusement, les coefficients de température de la résistivité et du

facteur de jauge sont tous deux plus favorables à de hauts niveaux de dopage. De plus, la

sensibilité élevée provenant d’un faible niveau de dopage fait que pour les applications

d’accéléromètre, le dopage faible est le meilleur choix.

La caractéristique dynamique de la mesure rend prioritaires la sensibilité et la bande

passante.

Jauges plates et jauges sculptées, les plus couramment utilisées.

Jauge plate

Deux larges pattes de fixation sont réunies par un élément central étroit (partie active).

Avec cette configuration les contraintes sont concentrées dans un élément microminiature à la

surface polie sans source potentielle de contrainte parasite.

Grâce aux larges surfaces de contact aux extrémités, les contraintes induites par la fixation

seront maintenues à une faible fraction de la contrainte utile au niveau de l’étranglement.

Les raccordements électriques se font par l’intermédiaire de fils fixés sur les surfaces de

contact. La plupart de ces modèles utilisent les propriétés résistives du silicium à l’état brut.

Ces jauges sont produites à partir d’un cristal unique de silicium à haut niveau de pureté, les

propriétés électriques sont définies par l’addition d’impuretés appropriées.

Le silicium est dopé par diffusion (bore, phosphore).

Les jauges sont fabriquées à partir de tranches de matériau coupées d’un lingot et pour obtenir

l’effet piézorésistif recherché, le cristal devra être aligné et coupé suivant des directions

Page 17: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

cristallographiques prédéterminées.

Les versions actuellement commercialisées sont plus complexes. Elles utilisent de plus en plus

le principe de la jauge sur « entaille » par développement de la gravure chimique.

Cette technique moderne de gravure anisotropique permet la sculpture d’un substrat de

silicium cristallin.

Exemples de constructions internes, faible accélération et choc haut niveau

Jauges sculptées

La figure ci dessous montre un élément monolithique sculpté pour un accéléromètre de

mesure de choc très élevé. Le « chip » de silicium de 1mm2 comprend l’assemblage complet :

ressort, masse, pont complet de jauges semi-conductrices. Les éléments d’équilibrage du pont

sont logés dans le boîtier principal de l’accéléromètre.

Page 18: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Les jauges de contrainte sont formées par dopage d’un élément silicium plat. Ensuite sont

gravées les entailles libérant des jauges et les masses sismiques sont simultanément définies

comme les parties de silicium non gravées.

La structure monolithique et la taille extrêmement réduite assurent un rapport force/poids très

élevé, les jauges étant libres, ce qui optimise la linéarité et la sensibilité. La résonance à

plusieurs mégahertz de la structure et la gamme linéaire de plus de 100 000g dépasse les

performances des capteurs antérieurs.

Comme la masse, les jauges et le substrat sont une seule pièce de silicium monocristallin sans

joint de colle, ces capteurs sont particulièrement stables.

Les accéléromètres piézorésistifs sont de plus en plus utilisés pour la mesure de choc sur des

structures à grande déformation, ce qui nécessite une très bonne réponse en basse fréquence

ainsi que pour des chocs à fort niveaux d’accélération sur des structures à grande rigidité, ce

qui nécessite une étendue e mesure importante mais aussi une fréquence de résonance très

élevée. Pour la mesure de faible et moyenne accélération, basse fréquence, les accéléromètres

capacitifs de la nouvelle génération sont mieux adaptés.

Les accéléromètres capacitifs

Ces accéléromètres sont des capteurs à l’état solide incorporant des éléments sensibles micro

mécanismes silicium de technologie très avancée et une microélectronique intégrée.

Ils ont été conçus pour les applications nécessitant une mesure précise d’accélération de

faible niveau (0 à 200g) dans une bande passante du continu à 2000Hz(selon l’étendue de

mesure pleine échelle).

Page 19: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Des performances améliorées, telles qu’une augmentation de la précision, de la stabilité du

signal de sortie en fonction de la température ainsi qu’une grande fiabilité, distinguent

particulièrement cette conception.

La perception de l’accélération se fait par une paire d’éléments sensibles en silicium à

micromécanismes spécialement conçus, pour être sensibles aux changements de capacité

induits par des déflections microscopiques dues à la variation des niveaux d’accélération.

Les éléments sensibles étant montés de manière différentielle, toute accélération appliquée

augmente la capacité d’un élément tandis que diminue celle de l’autre et produit ainsi, un

débit de courant inégal à travers les capteurs.

Ce courant différentiel est alors mesuré, conditionné et converti en tension, fournissant ainsi

un signal de sortie proportionnel à l’accélération appliquée à l’entrée.

Page 20: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Un diagramme simplifié du fonctionnement est monté par la figure ci-dessus, les éléments

sensibles à variation de capacité sont montés sur un substrat avec des composants discrets et

un circuit intégré, l’ensemble se plaçant ensuite, dans un boîtier support hermétique.

En général, ces accéléromètres sont munis de butées mécaniques de protection contre des

chocs importants et sont également amortis par gaz.

Les caractéristiques d’amortissement sont très précisément contrôlées en fonction de la

température afin d’augmenter la réponse en fréquence.

De par la faible viscosité thermique du gaz, comparée à celle d’un liquide, cette technique a

prouvé son efficacité en assurant un coefficient d’amortissement stable pour une grande

variation de température.

L’accéléromètre à capacité variable répond aux besoins de nombreux secteurs de marchés

existants nécessitant la mesure à très basse fréquence ou continue, d’accélération.

Actuellement, deux autres types d’accéléromètres peuvent également répondent à ce besoin.

Les accéléromètres piézorésistifs, conçus pour la mesure de faible accélération, mais ils sont

limités en surcharge. De plus, ils n’offrent pas en fonction de la température, toute la

précision ou la stabilité nécessaire à la majorité de applications « mesure de faible

accélération ».

Les servo-accéléromètres à boucle asservie, sont aussi capables de mesures avec très grande

précision et stabilité.

La majorité des systèmes sismiques utilisés par les servo- accéléromètres sont toutefois,

susceptibles d’importantes dégradations de performances ou de destruction, quand ils sont

soumis à des niveaux de chocs ou vibration importants.

Les accéléromètres à équilibre de force (servo-accéléromètre)

Il existe différents modèles de servo-accéléromètres, mais les plus couramment utilisés ont

une construction interne utilisant une masse pendulaire pouvant être de différents types de

matériaux, quartz amorphe ou silicium micro- usiné.

Pour des applications de très grande précision, composant pour centrale inertielle de type

aviation longue distance, sous marin….d’autres technologies sont utilisées.

Pour les accéléromètres asservis micro- usinés, le système inertiel est constitué d’une masse

pendulaire maintenue par deux pattes de flexion, micro usinée à partir d’un wafer en silicium.

Ce wafer est soudé entre deux plaques de verre ayant des électrodes à film minces

prédisposées. La figure 1,ci-dessous, présente une vue éclatée d’un capteur micro usiné qui

mesure 8 x 4 x 2mm et son circuit électronique incorporé.

Page 21: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

Lorsqu’une accélération est appliquée au système, la masse tourne autour des pattes de

flexion. Le mouvement crée par cette accélération est détecté par les capacités différentielles

et traduit en tant que signal d’écart dans la boucle d’asservissement.

Le signal d’écart est amplifié et réinjecté vers les électrodes des plaques de verre.

Cette tension de réaction va créer une force électrostatique entre les électrodes.

Le couple associé à cette force électrostatique sur la masse aura tendance à la faire tourner en

sens inverse pour retrouver sa position initiale.

Ce couple est égal à celui crée par l’accélération sur la masse et de signe opposé. La tension

d’asservissement nécessaire pour réaliser cette opération est directement proportionnelle à

l’accélération appliquée.

Le circuit électronique présenté aussi en figure 1, comprend un oscillateur, un détecteur de

position, un capteur de température et la boucle d’asservissement.

Un circuit électronique complémentaire, est également utilisé pour régler la tension de

polarisation et le facteur d’échelle, fournir l’alimentation, contrôler les caractéristiques

dynamiques et régler le coefficient d’ajustement en vibration de l’accéléromètre.

Une fonction auto test permet une vérification complète de l’accéléromètre (parties

mécanique et électronique).

Page 22: TECHNOLOGIES D’ACCELEROMETRES POUR …©e, étude de flottement…) à environ 10000Hz (pour des vibrations induites par des phénomènes acoustiques et les chocs de courte durée)

XXX XXX

Version X

En injectant une tension dans la boucle de contre réaction, la masse pendulaire ira dans la

direction de la force électrostatique induite créant par conséquent un effet équivalent à celui

d’une accélération.

Cette fonction permet également d’annuler l’influence de la gravité terrestre sur le capteur, en

cas de mesure de très faible niveau d’accélération, perpendiculairement au sol.

La large gamme dynamique de certains servo- accéléromètres est bien adaptée pour une

variété d’applications dans les domaines aéronautiques, militaires, automobiles et industriels.

Une excellente stabilité et précision les rend adéquats pour les applications de guidage et de

contrôle, tels que le guidage inertiel des missiles et projectiles intelligents.

Ils peuvent aussi s’utiliser pour les essais en vol,les essais de flutter,, de stabilité, de vibration

lors du décollage, surveillance sismique, mouvements des bateaux, stabilisation de plate

formes, mesure d’inclinaison.

Novembre 2013

Marc Chambroux

Consultant Mesure et Système

[email protected]