Syllabus Cursus Master Ingénierie, spécialité mécanique ...

17
Mise à jour 01/03/2020 Syllabus Cursus Master Ingénierie, spécialité mécanique Sorbonne Université 2 e année CMI * Unités hors contrat (ne rentrant pas dans le calcul de la moyenne du semestre (figurent au supplément au diplôme) Intitulé Unité d’Enseignement Code CM TD TP AMS Heures Présence Travail Perso ECTS 2A L2 S3 Analyse vectorielle et intégrales multiples LU2ME006 16,5 35 51,5 60 - 80 6 Mécanique des solides rigides LU2ME001 26 28 54 60 - 80 6 La mécanique en pratique LU2ME111 4 16 30 20 50-60 6 Projet en calcul scientifique LU2ME232 9 30 24 50-60 3 Sources d’énergie électrique et capteurs LU2EE200 20 20 20 60 60-80 6 Anglais 3 LU2XAN2 12 12 24 20-30 3 Histoire des entreprises LU2GSG31 16 24 4 44 50 - 60 6* Stage en entreprise LU2ME203 200 -300 20-30 3* 2A L2 S4 Méthodes mathématiques et numériques pour la mécanique 1 LU2ME003 19,25 28 6 53,25 60-80 6 Fluides 1 : statique et dynamique LU2ME004 21 24 6 51 50 - 60 6 Bases de la thermodynamique LU2ME202 10,5 12 3 25,5 30 - 40 3 Initiation au dessin technique et conception LU2ME201 7 20 30 27 40-50 3 Romarin, un véhicule téléguidé pour l'observation sous-marine LU2ME112 4 20 50 24 50-60 6 Électronique numérique combinatoire et séquentielle LU2EE299 20 20 20 60 60-80 6 Anglais 4 LU2XAN3 12 12 24 20-30 3* Introduction aux études sur les sciences et les techniques LU2HST53 16 8 24 30-40 3* Semestre S3 : 30 ECTS + 9* - Semestre S4 : 30 ECTS + 6* - Total année L2 L2 CMI = 60 ECTS + 15 *

Transcript of Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Page 1: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

SyllabusCursusMasterIngénierie,spécialitémécanique

SorbonneUniversité

2eannéeCMI

*Unitéshorscontrat(nerentrantpasdanslecalculdelamoyennedusemestre(figurentausupplémentaudiplôme)

IntituléUnitéd’Enseignement Code CM TD TP AMS HeuresPrésence

TravailPerso

ECTS

2AL2S3

Analysevectorielleetintégralesmultiples

LU2ME006 16,5 35 51,5 60-80 6

Mécaniquedessolidesrigides LU2ME001 26 28 54 60-80 6Lamécaniqueenpratique LU2ME111 4 16 30 20 50-60 6Projetencalculscientifique LU2ME232 9 30 24 50-60 3Sourcesd’énergieélectriqueetcapteurs

LU2EE200 20 20 20 60 60-80 6

Anglais3 LU2XAN2 12 12 24 20-30 3Histoiredesentreprises LU2GSG31 16 24 4 44 50-60 6*Stageenentreprise LU2ME203 200-300 20-30 3*

2AL2S4

Méthodesmathématiquesetnumériquespourlamécanique1

LU2ME003 19,25 28 6 53,25 60-80 6

Fluides1:statiqueetdynamique

LU2ME004 21 24 6 51 50-60 6

Basesdelathermodynamique LU2ME202 10,5 12 3 25,5 30-40 3Initiationaudessintechniqueetconception

LU2ME201 7 20 30 27 40-50 3

Romarin,unvéhiculetéléguidépourl'observationsous-marine

LU2ME112 4 20 50 24 50-60 6

Électroniquenumériquecombinatoireetséquentielle

LU2EE299 20 20 20 60 60-80 6

Anglais4 LU2XAN3 12 12 24 20-30 3*Introductionauxétudessurlessciencesetlestechniques

LU2HST53 16 8 24 30-40 3*

SemestreS3:30ECTS+9*-SemestreS4:30ECTS+6*-TotalannéeL2

L2CMI=60ECTS+15*

Page 2: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

AnalysevectorielleetIntégralesmultiplesNiveauL2-SemestreS3-Crédits6ECTS-CodeLU2ME006–MentionLicenceMécaniquePrésentationpédagogique.CetteUEapourobjectifdedonnerlesbasesmathématiquessuffisantesauxétudiantspouraborderensuitedifférentsdomaines lorsde leur cursus (thermodynamiqueavec les fonctionsdeplusieurs variables), calculs enmécaniquedessolidesoudesfluidesaveclecalculvectorieletlesdifférentsopérateurs,toutcommelescalculsenélectrostatiqueparexempleavecdescalculsdefluxvoiredesintégralesdecontour.Contenudel’Unitéd’Enseignement.

• Fonctionsdeplusieursvariables,différentielles.• Formalismedesformesdifférentielles.• Champsdevecteurs,gradient,rotationneletdivergence.• Diversesmanièresdedéfinirunecourbeouunesurface,• Courbesetsurfacesparamétrées,plantangent,vecteurnormal.• Intégralesmultiples,théorèmedeFubinietchangementdevariables.• Circulationd'unvecteuretthéorèmesdeGreen-RiemannetdeStokes.• Notiondefluxetthéorèmedeladivergence.

On insistera sur l'aspect opérationnel des notions introduites plutôt que sur des connaissances théoriques. Lesdémonstrationsserontfaitessousdeshypothèsessuffisantespourévitertouteslesdifficultéstechniques.

Pré-requis.Connaissancesdebasesurlesfonctionsd'uneouplusieursvariables(minimales).Connaissancesdebasesurlesintégralesdéfinies,dérivéesd'ordreunetdeuxdesfonctionsdeplusieursvariables,jacobien.(souhaitées).Référencesbibliographiques.

• StewartJames,Analyse:conceptsetcontextes.Volume1Fonctionsd'unevariableetVolume2FonctionsdeplusieursvariableséditéparDeBoeckServices(2006).

Ressourcesmisesàdispositiondesétudiants.Polycopiéde cours, sujetsdeTD,Quizz chaque semaineenamphi, exercicesd’entrainement à réaliser surGeogebra(géométriedansleplanetl'espace),Sagemath(calculformeletnumérique),wikicollaboratif.Connaissancesscientifiquesdéveloppéesdansl’unité.

• Comprendrelasignificationgéométriquedesopérateursgradient,durotationneletdeladivergence.Compétencesdéveloppéesdansl’unité.

• Manipulerlesnotionsdechampsscalairesetvectoriels.• Connaîtreetappliquerlesrèglesdecalculconcernantlesopérateursdifférentielsetlesthéorèmesassociés.• Développerlestechniquesdecalculdevolumessimples(cônes,portionsdesphères,...),fluxclassiques(angle

solide).Volumeshorairesprésentielethorsprésentiel.Totalprésentiel:51h30répartiesen16,5heuresdeCM,35heuresdeTD-Travailpersonnelrecommandé:60h–80h.Évaluation.Évaluationsousformed’écritsavec2épreuvesde2hetdescontrôlescontinusenTD.Note=sup(E+CC,2F)avecE=sup(P+F,8/5F),P=Partielsur30,F=Finalsur50,CC=ContrôlecontinuenTDsur20 Responsable.J.M.Fullana

Page 3: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

MécaniquedessolidesindéformablesNiveauL2-SemestreS3–Crédits6ECTS-CodeLU2ME001–MentionLicenceMécaniquePrésentationpédagogique.Cetenseignementapourobjectifsdeformerl’étudiantà:Décrire du mouvement d'un solide rigide. Introduire la notion de torseur distributeur des vitesses. Utiliser lacinématiquegraphiquepourunsystèmeplan.PrésenterlesdifférentesliaisonsentresolidespuisintroduireduPrincipeFondamentaldelaStatiquepourunensembledesolides.Donnerdesnotionsd’hyperstatisme.

Généraliser la notion de quantité demouvement au cas d’un solide avec le torseur cinétique. Construire lamatriced’inertied’unsolideetcalculdesélémentsdecettematricepourdessolidessimples.

Construire le torseur dynamique et présenter le Principe Fondamental de la dynamique en repère galiléen et nongaliléen.L’appliqueràladéterminationdesinconnuesstatiquesetcinématiques.MettreenœuvreleThéorèmedel’énergiecinétique(TEC)pourplusieurssolidesenliaisonparfaiteounonentreeuxetl’appliqueràlarecherchedeséquationsdemouvement.Contenudel’Unitéd’Enseignement.

• Cinématiquedusoliderigide:notiondetorseurcinématique.• Statiquedessystèmesdesolides.Torseursd’action.• Cinétiquedusoliderigide:momentsd'inertie,torseurcinétique.• Dynamiquedusoliderigide:torseurdynamique,principefondamentaldeladynamiqued'unsystèmematériel

enrepèregaliléenetnongaliléen.• Théorèmedel'énergiecinétiquepourunsystèmedesolidesrigides,puissancedeseffortsdeliaison.

Pré-requis.Calculvectorieletd’intégralessimples(indispensable).Mécaniquedupoint(recommandé).

Référencesbibliographiques.• Y.Berthaud,C.Baron, F.Bouchelaghem, J.L. LeCarrou,B.Daunay, É. Sultan,Minimanueldemécaniquedes

solides,Dunod,2009.Ressources mises à disposition des étudiants. Polycopié du cours en pdf et planches présentées en amphi le caséchéant.SujetsdeTDetlescorrigés,annalesdesexamenssurcinqannéesaveclescorrigésetdescommentairesainsiquedenombreuxdocumentscomplémentairesavecdesquiz.Forumdediscussion.

Connaissancesscientifiquesdéveloppéesdansl’unité.• Modélisation d’un problème par l’écriture des différents torseurs (cinématique, d’actions, cinétique et

dynamique).• Principefondamentaldeladynamiqueenrepèregaliléenounon.• TECdanslecasgénéraldesystèmesdesolidesenliaisonsquelconques.

Compétencesdéveloppéesdansl’unité.• Analysed’unproblèmedecinématiqueanalytiqueetgraphique(etcomparaisonlecaséchéantdesméthodeset

solutions).• Miseenéquationd’unproblèmedestatiqueetdedynamiquedessolidesdans lecasdesystèmesdesolides

aveccalculdesdifférentstorseurs.Larésolutiondeséquationsn’estpasdemandée.• Compréhensiondelasignificationdestermesd’unematriced’inertie.• ÉcrituredesdifférenteséquationsissuesduPFDouduTECpourendéduireleséquationsdemouvementet/ou

lesinconnuesefforts.Comparaisondesméthodes.• Vérificationdel’homogénéitédesrésultats(analysedimensionnellesimple).• Notation,rédactionrigoureuse.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentielles:54hrépartiesen26heuresdecours,28heuresdeTD.Travailpersonnelattendu:60h–80h.

Évaluation. Évaluation sur la base de deux examens écrits de deux heures: écrit 1 (/40) àmi-semestre, écrit 2 final(/60).

Responsables.MmeS.LeMoyneetM.Y.Berthaud

Page 4: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

MécaniqueenpratiqueNiveauL2-SemestreS3-Crédits6ECTS-CodeLU2ME111–MentionLicenceMécaniquePrésentationpédagogique.Cetteunitéd’enseignementapourobjectifdemettre lesétudiantsen situationà traversunprojetqui les conduit àélaboreruneexpériencesimpledemécaniquepour répondreàunquestionnementsurunphénomènephysique.Lesétudiants proposent unprotocole, assurent samise enplace, réalisent lesmesures,mettent en formedes résultats,analysent de façon critique les résultats, confrontent les résultats de l’expérimentation à des modélisations etsimulations.Contenudel’Unitéd’Enseignement.Lesétudiantssont formésendébutdecoursà l’analysedimensionnelle:nombressansdimension, théorèmePi.Puisdes expériences applicatives sont proposées endeux séquences. La première séquence concerne(uneexpérience auchoixparbinôme):

• OscillationsdansunesurfacelibreetdansuntubeenU.• Remontéed'unebulledansuntube.• Pendulesimpleetcomposé.• Déformationd'unerégletteetvibrationslibres.• Modèled'avalanche.• ExpériencedeTorricelli.

Lasecondeséquence(uneexpérienceauchoixparbinôme):• ContactdeHertz. • Instabilitéd'unfiletdeliquide.• Ecoulementsenrotation.• RésonateurdeHelmholtz.• Roulementsdebillesetdisques.• Forcedetraînéedansunliquide.

Pré-requis.UnitédeprojetenIngénieriedeniveauL1.Référencesbibliographiques.Fonctiondesprojets.Ressourcesmisesàdispositiondesétudiants.Polycopiédecours(enanglais).Matérielsdelasalleprojet(expérimental,appareilphoto,ordinateur).Descriptifdel’expérienceetduquestionnement.Tutoriellogicieldetraitementd’images,wiki.Compétencesdéveloppéesdansl’unité.

• Savoirconcevoiruneexpérience.• Réaliserdesmesuresenrespectantunprotocoleexpérimental.• Analyserdesrésultats(incertitudes)etlesinterpréter.• Travailenbinôme.• Rédactiond’unrapporttechniqueetsoutenanceorale.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentielles:24heuresrépartiesen4hdeCM,4hTD,16hTPexpérimentauxpréparatoiresauprojet(miseenplaceetanalysedel’expérience)–Heuresnonprésentielles:projetenbinômeenautonomie30h.

Évaluation.Deuxséancesd’évaluationduprojet (une intermédiaireetune finale)avec rapport écrit et soutenance (10minutesd’exposé,5minutesdequestions). Responsable. A.Antkowiack,J.M.Fullana,R.Wunenburger.

Page 5: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Projetencalculscientifique NiveauL2-SemestreS3-Crédits3ECTS–CodeLU2ME232–MentionLicenceMécaniquePrésentationpédagogique.Cetteunitéviseàconforteretapprofondirl’apprentissagedulangageCentreprisenpremièreannée.Elleestorganiséeen deux parties. La première partie est dédiée à des rappels de bases techniques et des bonnes pratiques enprogrammationscientifiqueenlangageCsuivied’unmini-projet.Ladeuxièmepartieestconsacréeàunprojetréaliséenbinômeavecunepartieenautonomiesurunsujetauchoixtouchantàproblèmesdemécaniqueoud’électronique.Contenudel’Unitéd’Enseignement.QuelquesexemplesdeprojetsSimulationde la trajectoired'une fusée. Simulationdes vibrationsd’une corde vibrante. Simulationd’uneavalanche.Filtragedesignauxnumériques.Mouvementdudoublependule.Chuted’unebilledansunliquide.Positiond’équilibred’une poutre. Prédiction de la trajectoire d’un satellite. Les rayons acoustiques. Intelligence artificielle: jeu dulabyrinthe.ModélisationetRésolutionduRubik’sCube. Jeudebillard.Étudede lahauteurd'eaudansdes réservoirscouplés. Pré-requis.Lesbasesdeprogrammationetd’algorithmiqueacquisesdans lesdeuxunitésdeL1d’informatique(S1etS2).Référencesbibliographiques.Quelquesexemplesenfonctiondesprojets

• RichardEKorf.1997-FindingOptimalSolutionstoRubik’sCubeUsingPatternDatabases.• XavierFoisse.Labyrintheprogrammeenc.mp4,2014.• Bruno Schapira. Des marches aléatoires pas comme les autres. Image des Mathématique, CNRS, décembre

2011.Ressourcesmisesàdispositiondesétudiants.TutoriauxdeprogrammationenC.DocumentssurlescommandesLinux,Gnuplot.ProgrammessourcesdesTD/TP.Exercicesd’entrainement.TutoriauxenLatexetBeamer.Connaissancesscientifiquesdéveloppéesdansl’unité.

• ApprofondissementdesbasesalgorithmiquesetdelaprogrammationenlangageC.Compétencesdéveloppéesdansl’unité.

• Miseenœuvredelapratiquedeprogrammationpourlarésolutiond’unproblèmephysique.• Analysedesrésultats,interprétation,validation.• Programmation,respectdesbonnespratiques,tests.• Travailenéquipe,autonomie.• Rédactionderapportsscientifiques(souslatex).• Présentationorale.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentielles:24hrépartiesen9hdeTP(révisionbasesduCetdepratique),15hd’encadrementdeprojet.Travailnonprésentielattendudanslecadreduprojet:50h–60h.Évaluation.Lanotefinaleestconstituéed’unenoted’examenécrit(25%),d’unenotedeprojet(75%)elle-mêmeconstituéed’uneévaluation sur le rapport écrit (30 %), la soutenance orale (30 %, 10 minutes de présentation) et le code (15 %,démonstrationentempsréel).

Responsables.MmeA.Belme,MmeC.Lalanne,M.A.Rohfritsch

Page 6: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Sourcesd’énergieélectriqueetcapteursNiveauL2-SemestreS3-Crédits3ECTS-CodeLU2EE200-MentionLicenceÉlectronique,ÉnergieÉlectrique

Présentation pédagogique. Aprèsun rappel sur le conceptd’énergie et une introductionportant sur la situationénergétiquemondialeet lesenjeuxqui lui sontassociés, lesdifférentes sourcesd’énergie renouvelables sontprésentées. L’accentestmisenparticuliersur3chaînesdeconversiond’énergiesdontonexposeralesfondementsphysiquesainsiquelesprincipauxavantagesetinconvénients. On poursuivra par des notions sur la gestion intelligente de l’énergie, susceptible de répondre au problèmed’intermittenceposéparunegrandepartiedesénergiesrenouvelables.Cetteunitéabordeégalementlescapteurs.Cesdomainescomplémentaires,celuidessourcesd’énergieélectriqueetceluidescapteurs(utiliséspourlamesureoud’autresapplications)ontdenombreuxpoints communs.Eneffet, lesphénomènesphysiquesetdonc les composantsélectroniquesutilisésdans cesdeuxdomainessontbiensouventcommuns:citonslesphotodiodesutiliséesenmodephotovoltaïque(productiond’énergie)etenmodephotoconducteur (capteur) et les applications de l’effet piézoélectrique pour la récupération d’énergie (un piézo dans votrechaussure)etpourlescapteurs(devibration).Sidespartiessontdonccommunesauxdeuxdomaines,lesdifférencesportentd’unepart sur l’optimisation du composant pour une application donnée (des matériaux le composant, de sa forme, etc.) et duconditionnementélectriquepouren tirer lemeilleur rendement (énergie)oupar exemple lameilleureprécision (capteur).NousétudieronsainsidanscetteUEdeseffetsphysiquesetdescomposantsélectroniquespropresoucommunsàcesdeuxdomainesetleurconditionnementélectroniqueenvued’uneapplicationdonnée.DesTPcomplètent la formation.Uneétudebibliographiqueseraégalementdemandéeauxétudiantssurundesthèmestraitésdanscemodule.UneéquipedeformateursdelabibliothèqueuniversitairedelaFacultéaccompagneralesétudiantsdanscetravailavecunpremieramphisousformedejeu,puisdesséancesdetutorat.Contenudel’Unitéd’Enseignement.

• Introductiongénérale:définitions–grandeursénergétiquesetélectriques–transducteurs.• Conservation de l’énergie totale / dégradation de la qualité de l’énergie.Panorama des sources d’énergie - contexte

énergétiquemondial–contexteclimatique–enjeux.• Panorama des sources d’énergies renouvelables.Analyse de 3 chaînes de conversion d’énergies : 1) mécanique vers

électrique;2)thermiqueversmécaniquepuisélectrique;3)solaireversélectrique.• Notionssurlagestionintelligentedel’énergie-“Smartgrids”-Solutionsdestockage.• Économiesd’énergiesnécessaires,diversificationdessourcesd’approvisionnement.• Généralitéssurlescapteurs(actif/passif,leseffetsutilisés,etc.).• Notions de métrologie.Exemples de capteurs : Capteurs de température, de déformation/contrainte, optiques, de

courant/tension.Montagespourlamétrologie,conditionnement.Pré-requis:aucun.Référencesbibliographiques.

• G.Asch&Coll.,Lescapteurseninstrumentationindustrielle,7eédition,Dunod(2010).• J.Rifkin,Latroisièmerévolutionindustrielle,Lesliensquilibèrentéditions,2012.• D.JCMcKay,L'énergiedurable–Pasqueduvent!,UITCambridgeLtd.,2011(versionaccessibleenligne).

Ressources mises à disposition des étudiants. Polycopié de cours, supports, sujet de Travaux Dirigés et TravauxPratiquesConnaissancesscientifiquesdéveloppéesdansl’unité.

• Notionssurlesdifférentesformesetsourcesd’énergie.• Généralitéssurlescapteurs.Notionsdemétrologie.

Compétencesdéveloppéesdansl’unité.• Savoirprésenteruneétudescientifiquesynthétiquesurunthèmeliéàl’énergieouauxcapteursavecrecul.• Savoircaractériserundispositifdetransformationd’énergieetévaluerlapuissanceobtenue.• Savoir réaliser et tester un circuit électrique simplemettant enœuvre un capteur et comprendre lamesure

réalisée.• Savoirrespectsdesprocédurestechniqueslorsdescâblagesetdesmesures.• Savoirrédigeretprésenterdesrapportsdetravauxpratiquesintégrantuneanalyse.• Travaillerenéquipe,autantqu'enautonomie

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:60hrépartiesen20hCM,20hTDet20deTP.Travailpersonnelattendu:50h–70h.Évaluation.Troisexamensrépartis(/15,/15,/30),rapportetexposésurlarecherchebibliographique(/20)etcontrôleécritsdeTP(/20).Responsable.O.Dubrunfaut

Page 7: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Anglais1,2,3,4,5(CycleLicence)NiveauL1,L2,L3-SemestresS1,S2,S3,S4,S5-Crédits3ECTS(chaquesemestre)Code1XAN5(S1)-1XAN6(S2)-LU2XAN2(S3),LU2XAN3(S4),LU3XAN1(S5)–DépartementdelanguesPrésentationpédagogique.L’apprentissage de l’anglais est un élément central de la formation de ingénieur CMI. Le diplômé doit pouvoircommuniquer,comprendreets'exprimeravecaisanceenanglaisensituationd'interactionsprofessionnellesetsociales.Ceprérequisestindispensable,ycomprispourdescarrièresfrançaises,auquels'ajoutelamaitrised'unesecondelanguedans la plupart des parcours à l'international. L'apprentissage de l'anglais a également un objectif d'ouverture àdifférentesculturesetenjeuxsociétaux.Desenseignementsd’anglaissontdispensésainsisurles5semestresdeLicenceavecl’objectifdepréparerledépartenmobilitéinternationaleobligatoireausemestreS6.Aminima,leniveauB2certifié(référenceeuropéenenlangue,CLESutilisateur indépendant-avancé)estviséavant ledépartenéchange.Lapratiquede la langueanglaiseestentretenueauretourdemobilitéauniveaumaster(4eet5eannée)àtraversdesenseignementsdispensésenlangueanglaise,lapratiquedelecturededocumentsdanslecadredesstages,projets,ainsiquelesenseignementsd’ouverture.Leniveauenanglaisenfindecursusestattestéparl’obtentionduTOIC(TestofEnglishforInternationalCommunication(TOEIC)avecunscoresupérieurà785,oucertificationTOEFL.Contenudel’Unitéd’EnseignementLesétudiantssontrépartisendeuxàtroisgroupesdeniveaudifférentspour leurpermettredeprogresserenanglaisavecdes modesd'apprentissagediversifiés en face à face, en autonomie (tutoriels, lectures, visionnagede filmsetséries)etenactivitéscollectivespargroupesdeniveaux(réalisationdefilms,joutesoratoires,...).Ces pratiques visent à consolider les compétences en langue telles qu’elles sont définies par le Cadre EuropéenCommun de Référence pour les Langues : compréhension orale, compréhension écrite, interaction orale, expressionorale, expression écrite. La progression dans les exigences de l’apprentissage au fil des semestres est assurée par lacoordinationd’unenseignantresponsable.

Pré-requis.AvoirauminimumleniveauB1(définiparleCECRL).Ressourcesmisesàdispositiondesétudiants.Laboratoiredelangues,testsdepréparation,documentsdiversarticles tirés de la presse anglophone, notamment autour des thèmes ‘Science in Society’ et ‘Controversies in Science’. Compétencesdéveloppéesdansl’unité

• Compréhensionécrite:textesrédigés,descriptiond'événements,desentimentsetdesouhaitsdansdesécrits.• Productionécrite:textecohérentsurdessujetsd’intérêt,descriptiond’expériencesetimpressions.• Compréhensionorale:émissionsderadiooudetélévisionsurl'actualité.• Prisedeparoleencontinu:exprimerdesexpériences, desévénements, rêves,espoirsousesbuts, l'intrigue

d'unlivreoud'unfilm,donnerl’idéeessentielled’unarticledepresseetexprimersesréactions.• Prise de parole en interaction: sans préparation à une conversation sur des sujets familiers ou d'intérêt

personnel.Volumeshorairesprésentielethorsprésentiel.1Heuresprésentiellestotales:24heuresrépartiesen2séancesdeTDde2heures.Lachargedetravailattenduepeutvarierenfonctionduniveaudel’étudiant,1hparsemainepourunétudiantayantleniveauattenduetjusqu’à3hpourunétudiantayantunniveaupeuavancé).Évaluation.Unenotedecontrôlecontinusur40pointsetunexamenécritsur60points.Responsable.M.D.Babel,coordinateurdel’enseignementdel’anglaissurles5semestresdeLicence.

Page 8: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

HistoiredesentreprisesNiveauL2-SemestreS3-Crédits6ECTS–CodeLU2GSG31–MineureTransthématiqueGestionPrésentationpédagogique.Ce cours vise à sensibiliser les étudiants au fonctionnement général des entreprises. Il le fait par l’intermédiaired’enseignementshistoriques.Ilsuituneapprochecomparatisteets’intéresseàl’histoiredesentreprisesenFrance,auxÉtats-Unis, en Grande Bretagne et au Japon. Parmi les sujets traités sont la révolution industrielle, l’essor desentreprisesmulti-divisionnellesetleurrestructurationpendantlesannées1980et1990.Unaccentparticulierestportésurl’évolutiondusecteurdeshautestechnologies.

Contenudel’Unitéd’Enseignement.Séance1-Présentationducoursd’histoiredesentreprises:Pourquoifairel’histoiredesentreprises?Séance2-Lesentreprisesavantlarévolutionindustrielle;lescheminsdel’industrialisation.Séance3-LesentreprisesenGrandeBretagne;l’essordesgrandesentreprisesauxÉtats-Unis.Séance4-Lecasfrançais(interventiond’YvesBouvier,FacultédesLettres,SorbonneUniversité).Séance5-VisiteduParisindustriel:maisondesmétallos,itinéraireenautonomie.Séance6-LesZaibatsusauJapon;lesentreprisespendantl’entre-deux-guerres.Séance7-Lesentreprisesdesannées1940auxannées1970.Séance8-LaSiliconValley.Séance9-Croissanceetdéclindel’industriemicroélectroniqueauJapon.

Pré-requis.LescompétencesetconnaissancesdéveloppéesdanslesdeuxunitésdeniveauL1d’ouvertureculturelleetsociétale,expressionécriteetoraleetHistoire,sciencesettechniques(recommandées).

Référencesbibliographiques.Extraitdelalistederéférencesconseilléesauxétudiants:BarjotD.,Lagrandeentreprisefrançaisedetravauxpublics(1883-1974),Paris,Économica,2006.BlaszczykR.etScrantonP,MajorProblems inAmericanBusinessHistory:DocumentsandEssays,NewYork,HoughtonMifflin,2006.CaronF.,Histoire de l’exploitation d’un grand réseau. La Compagnie du chemin de fer du Nord, Paris, Mouton, 1973. CaronFrançois,LesdeuxrévolutionsindustriellesduXXesiècle,Paris,AlbinMichel,1997.ChandlerA.Stratégiesetstructuresde l'ʹentreprise, Paris, Éditions d’Organisation, 1989. Joly H., Diriger une grande entreprise au XXe siècle. L’éliteindustrielle française, Tours, Presses universitaires François-Rabelais, 2013. Lécuyer C., "From Clean Rooms to DirtyWater: Labor, Semiconductor Firms, and the Struggle over Pollution and Workplace Hazards in SiliconValley,"InformationandCulture,52(3):304-333,2017.

Ressourcesmisesàdispositiondesétudiants.Nombreuxdocuments(enfrançaisetenanglais),entreautres:• Lectures d’études de casextraites de l’ouvrage T. McCraw, Creating Modern Capitalism, Cambridge, MA,

HarvardUniversityPress,1995.• Documents historiques: Journalist Demarest Lloyd Exposes the Standard Oil Monopoly », Atlantic Monthly,

mars1881.A.Carnegie,«HowYoungMenCanSucceed»,1885.RobertPinot,LecomitédesforgesdeFranceauservicedelaNation(août1914-nov.1918),Paris,ArmandColin,1919.…

Compétencesdéveloppéesdansl’unité.• Savoirsituerhistoriquementdesdéveloppements-clésdansl'ʹhistoiredesentreprises.• Mieuxcomprendrelefonctionnementdesentreprisesetlesprocessusd’industrialisation.• Savoirdétermineretcritiquerunethèsehistoriographiqueausujetdel’histoiredesentreprises.• Savoirlire,analyseretcommenteruntextehistoriquesurlesentreprises.• Perfectionnerlaconnaissancedel’anglais.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotal:44hrépartiesen16hCM,28hdeTD(incluantlessoutenances).Travailpersonnelattendu:50h–60hÉvaluation.Participationetinterrogations:10%,Présentationsurundocumenthistorique:10%,Présentationsuruneétudedecas:10%,Mémoire:40%,Contrôleécrit:30%.Responsable.M.C.Lécuyer

Page 9: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

StageeningénierieNiveauL1/L2-SemestreS2/S3-Crédits3ECTS-CodeLU2ME203-MentionLicenceMécanique

Présentationpédagogique.Cepremierstageded’immersionenentrepriseestréaliséenfindeL1CMImécanique.Saduréeestde six semainesminimum (mi juin – fin juillet). Le stage est régi par une conventionde stage. Il a pour objectif depermettre àl’étudiantdedécouvrirendébutdeformationlemilieudel’entreprise,sonorganisation,d’identifierlesmissionsd’uningénieur,soncadredetravail,sescontraintestemporelles,deproduireuntravailetdecontribueràrenforcerlaperceptiondumétierd’ingénieurqu’ilambitionne.L’étudiantdoitréaliserobligatoirementdesmissionstechniques.Lesentreprisesd’accueilsontaussibienauseindegrandsgroupesindustriels,PMEspécialiséesmécanique,informatiqueouélectronique,StartUp.

Contenudel’Unitéd’Enseignement.Larecherchedecestageesteffectuéeparl’étudiantlui-même.Ilestaccompagnéetsuividèsledébutdel’annéeduL1danscetterecherche.Enparticulier,l’accompagnementsefaitautraversdel’unitéd’orientationprofessionnelle(LU1SXOIP,semestreS1)aveclaformationàlarédactiondeCV,delettredemotivation,laréalisationd’unprofilLinkedlinetpardesrecherchesdocumentairessur les secteursd’activitésde lamécanique.Avant la signaturede laconvention,une fichecontractuelledestageestétablieparl’étudiantetvalidéeparlesresponsablesdelaformation,quipréciselecontextedustage,l’entrepriseetlesmissionstechniquesconfiées.Unrapportsuccinctàmi-parcoursestdemandéàl’étudiant.Lerapportdestagefinal(rédigésousLatex,25-30pages)etles supports de présentation orale sont à remettre début septembre de l’année de L2. L’étudiant est responsable de lacommunicationavecsontuteur(transmissionduplanningdesoutenance,fiched’appréciationetsuivi).

Pré-requismiminum.Aucun

Ressourcesmisesàdispositiondesétudiants.• Documentsd’accompagnementàlarédactiond’unCVetd’unelettredemotivation.• Listedesstagesdespromotionsantérieures.• Divers documents accessibles au Service d’Orientation et d’Insertion (SOI) de la Faculté dont une base de

référencementd’entreprises(Compas).• Les étudiants ont accès à la plateforme du réseau national Figure destinée aux étudiants des CMI pour les

accompagner dans leurs recherches de stage ou d'emploi, ou tout simplement pour s'informer de l'état dumarchédutravail

• https://cmi-figure.jobteaser.comhttps://www.youtube.com/watch?v=AFQiQKVXtuo• Unefichesynthétiquededirectivespourlapréparationdurapportécritetlasoutenance.• Lafiched’appréciationàfairecompléterparletuteur.

Connaissancesscientifiquesdéveloppéesdansl’unité.• Propresàchaquestageselonledomained’activitésdel’entrepriseetlesmissionsconfiées.

Compétencesdéveloppéesdansl’unité.• Savoirprésenterl’entrepriseetsepositionnerensonsein,définirlesinteractionsavecsescollègues.• Savoirdécriresesmissionsentermesd’organisationdutravail,devocabulaireetd’outilsspécifiques

nécessaires.• Savoiranalysersesmissionspourdéterminerlescompétencesnécessairesàlaréussitedelamissionet

l’autonomieetlaprised’initiativepossible.• Savoirdétermineraposteriorilescompétencesacquisesdurantlestageetleniveauderesponsabilitédansla

réalisationdesa/sesmissions,lesdifficultésrencontréesetsolutionsmiseenplace.• Initiationàl’auto-évaluationàtraversle«debriefing»etlesdébatslorsdessoutenances(participation

obligatoireàl’ensembledessoutenances).• Apprentissageparl’exempleàtraverslaparticipationauxsoutenances.• Travailauseind’uneéquipe.• Savoircommuniquersursontravailàl’écritetoral.

Volumeshorairesprésentielethorsprésentiel.Sixsemainesminimumdestageàtempsplein(souventhuit).

Évaluation.Rapportdestage(/40),évaluationdestuteurs(/20),soutenanceorale(/40),10mind’exposé,10minutesdequestions)

Responsables.MmeH.DumontetetM.Y.Berthaud

Page 10: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Méthodesmathématiquesetnumériquespourlamécanique1

NiveauL2-SemestreS4-Crédits6ECTS-CodeLU2ME003–MentionMécaniquePrésentationpédagogique.L'objectif de cette unité est de présenter les méthodes analytiques et numériques de résolution des équationsdifférentielles ordinaires pour l’étude et la résolution de problèmes simples en sciences de l’ingénieur. En associantanalysemathématiqueetnumérique,cecoursviseàdonnerauxétudiantsunlargepaneldeméthodespossiblesetlessensibiliser à qualité des solutions exactes / approchées. Le projet numérique permet de mettre en œuvre cesméthodessurunproblèmemécaniqueetdepoursuivrelapratiquedulangagedeprogrammation.Contenudel’Unitéd’Enseignement.

• RésolutiondesÉquationsDifférentiellesOrdinaires(EDO)du1erordrelinéairesetnonlinéaires.• Méthodesnumériquesd’interpolation(PolynômedeLagrange,MoindresCarrés,miniMax).• Méthodesnumériquesd’intégration(Trapèzes,Simpson,méthodescomposites,quadraturedeGauss).• Dérivationnumérique(schémaprogressifs,régressifsetcentrés).• RésolutionnumériquedesEDOdupremierordre(notionsdeconsistanceetconvergence,méthodesd’Euler,

Runge-Kutta).• RésolutiondesEDO2ndordrelinéaires,EDOordren.• Rappelsvaleurspropres,vecteurspropres.Systèmesdifférentiels.• Sériesentières,RésolutiondesEDOpardécompositionensérieentière.• Travauxpratiquesnumériques:Interpolationpolynomiale(TP1).Intégrationnumériqued’EDO(TP2).

Pré-requis.Lescoursdemathématiquesde1reannéedesdeuxsemestres,ainsiquelescoursdeprogrammationdeL1,lecoursd’analysevectorielleetintégralesmultiplesdeL2,semestre3.

Référencesbibliographiques.• E.Kreyszig,AdvancedEngineeringMathematics",10thEdition,JohnWileySons,Inc.,2010• R.Théodor,Initiationàl'analysenumérique,Masson,1989• J.P.Nougier,Méthodesdecalculnumérique,Masson,1989• M.Crouzeix,A.L.Mignot,Analysenumériquedeséquationsdifférentielles,Masson,1989• J.P.Demailly,Analysenumériqueetéquationsdifférentielles,PresseUniversitairesdeGrenoble,1991

Ressourcesmisesàdispositiondesétudiants.PolycopiéducoursetdesTD.Annalescorrigées.

Connaissancesscientifiquesdéveloppéesdansl’unité.• Acquisitiondeconnaissancesdebaseenanalysemathématiquesdeséquationsdifférentiellesetanalyse

numériquecorrespondanteaucours.

Compétencesdéveloppéesdansl’unité.• Savoirintégrerleséquationsdifférentiellesdupremieretdusecondordreusuelles.• Savoirimplémenterunalgorithmederésolutiond’équationsdifférentiellesdupremierordre.• Savoirintégrerdesconnaissancespourl’étudeetlarésolutiondeproblèmessimplesdemécanique.• Savoirtravaillerenéquipeetenautonomiedanslecadred’unprojet.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:53h30répartiesen11coursde1h45,14séancesdeTDde2h,2TPnumériquesde3h.Travailpersonnelattendu:60h–80h.Évaluation.L’évaluationsefaitsurlabasededeuxécritsd’uneduréede2havecunEcrit1àmi-semestre(/30),unEcrit2enfindesemestre(/40)etd’unprojetnumériqueréaliséenbinôme(/30,notedurapportetduprogramme)Responsables.MmeD.Baltean-Carles,MmeA.Belme,MmeC.Weisman

Page 11: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Fluides1:StatiqueetDynamique

NiveauL2-SemestreS4-Crédits6ECTS–CodeLU2ME004–MentionLicenceMécanique

Présentationpédagogique.Cetteunitéestuneintroductionàlamécaniquedesfluidesquiapourobjectifsde:

• Introduirelanotiondepression,leseffortsexercésparunfluideaurepos.• Décrirelemouvementd'unfluide.• Introduiredenouvellesactionsmécaniquesduesaumouvement(forcesdeviscosité).• Initierunevued'ensembledesdifférentes formesd'inertie (forcesd'inertiedansunécoulement de fluideet

conservationdelaquantitédemouvement)etd'énergie(etdesthéorèmesénergétiques).• Visualiseretcomprendrelesphénomènesphysiquesàl'aided'expériencesdedémonstration.

Contenudel’Unitéd’Enseignement.• Statiquedesfluides:notionsdepression,loifondamentaledelastatiquedesfluides,théorèmed’Archimède.• Cinématiqued'unmilieudéformable:descriptionLagrangienneetEulériennedumouvement,dérivée

particulaire,trajectoires,lignesdecourant.• Dynamiquedesfluidesparfaits:équationd'Euler,théorèmedeBernoullietapplications(tubedeVenturi,

FormuledeTorrricelli,tubedePitot),phénomènedecirculationetdeportance.• Dynamiquedufluidevisqueuxetincompressible:notiondeviscosité,loideNewtonpourlaviscosité,

applicationàdesécoulementssimples(entraînementparuneparoimobile),nombredeReynolds.• TP1:Impactd’unjetsuruneplaqueetunehémisphère(mesuredelavitesseaupointd’impact,calculdedébit,

prédictiondelaforceexercéesurl’obstacle).• TP2:TubedeVenturi(mesurededébit,pertedecharge)

Pré-requismiminum.ConnaissancesetcompétencesacquisesdanslesdeuxunitésdeMécanique-PhysiqueduL1.BasesdemathématiquesacquisesenL1etenL2,semestreS3,enanalysevectorielle,fonctionsdeplusieursvariables,formesdifférentielles(L2LU2ME006).

Référencesbibliographiques.• Guyon,Hulin,Petit,Hydrodynamiquephysique,CNRSéditions,2001.• Guyon,Hulin,Petit,Cequedisentlesfluides:lasciencedesécoulementsenimages»,Belin,2005.• Ryhming,Dynamiquedesfluides,PressesPolytechniquesetUniversitairesRomandes–PPUR,2004.• Acheson,ElementaryFluidDynamics,OxfordUniversityPress,1990.• Carlier,Hydrauliquegénéraleetappliquée,Eyrolles,1998.• GermainetMuller,MécaniquedesmilieuxContinus,Masson,1993

Ressourcesmisesàdispositiondesétudiants.PolycopiéducoursetdesTD.Quizz/testsdeconnaissances.Annalescorrigées.MatérieldeTP:banchydraulique,tubedeVenturi

Connaissancesscientifiquesdéveloppéesdansl’unité.• Loisdelastatiquedesfluidesparfaits(pression,théorèmed’Archimède).• DescriptionsLagrangienneetEulériennedelacinématiquedesfluides.• Loisdeladynamiquedesfluides,théorèmed’Euleretsesapplications.• Notiondefluidevisqueux(viscosité,entrainementparoimobile,nombredeReynolds).

Compétencesdéveloppéesdansl’unité.• Notionsd’ordredegrandeuretd’approximation.Analysedesincertitudes.• Utilisationdedifférentscapteurs(vitesse,débit).• RédactionderapportsdeTP.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:51hrépartiesen21hCM,24hdeTD,6hdeTP.Travailpersonnelattendu:60h.

Évaluation.Évaluationsurlabasededeuxexamensécritsdedeuxheures,écrit1(20%),écrit2(60%)etnotedeTP(20%).

Responsables.C.Croizet,P.Druault.

Page 12: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

BasesdethermodynamiqueNiveauL2-SemestreS4-Crédits3ECTS-CodeLU2ME202–MentionLicenceMécaniquePrésentationpédagogique.L’objectifdecemoduleestd’acquérir lesnotionsdebaseenthermodynamiquemacroscopique,nécessairesdansuneformation de mécanique. L’accent sera porté sur les concepts fondamentaux de la thermodynamique et sur laméthodologie propre à cette discipline (apprendre à définir un système, à effectuer un bilan énergétique, un bilanentropique...),encommençantpardesproblèmesacadémiques,pourallerprogressivementverslesapplications.Contenudel’Unitéd’Enseignement.

• Systèmesthermodynamiques:variablesd’état,étatd’équilibre,équationd’état(gazparfait,gazréel,liquide,solide).

• Équivalencetravail-chaleur,coefficientsthermo-élastiquesetcalorimétriques.• 1erprincipedelathermodynamique(conservationdel’énergie)appliquéàunsystèmefermé:étudedes

systèmesincompressiblesetdesgazparfaits.• 2eprincipedelathermodynamique(principed’évolution)appliquéàunsystèmefermé:irréversibilité,

entropie;Machinesthermiques.• Travauxpratiques:Gazparfait(loisd’étatetpremierprincipe)ouMachineditherme(2eprincipe).

Pré-requis.ConnaissancesetcompétencesacquisesdanslesdeuxunitésdeMécanique-PhysiqueduL1.BasesdemathématiquesacquisesenL1etenL2,semestreS3,enanalysevectorielle,fonctionsdeplusieursvariables,formesdifférentielles(L2LU2ME006).Référencesbibliographiques.

• J.P.Perez,Thermodynamique,Fondementsetapplications,éditeurDunod,2001.(contientdesexercicesrésolus).

• J.N.Foussard&E.Julien,Thermodynamique,basesetapplications.éditeurDunod,2005.• H.Lumbroso,Thermodynamique,problèmesrésolus,3eédition,McGraw-Hill,1984.

Ressourcesmisesàdispositiondesétudiants.Notesdecoursenligne,sujetsdeTDetTP,annalescorrigées.Testd’autoévaluationdespré-requis,deprogressiondansl’apprentissage.

Connaissancesscientifiquesdéveloppéesdansl’unité.• Acquisitiondesbasesdelamodélisationenthermodynamique.• Comprendrelesensphysiquedespremieretsecondprincipesdelathermodynamiquepourunsystèmefermé.

Compétencesdéveloppéesdansl’unité.

• Savoirdéfinirunsystème,fairedesbilansd’énergiedansdessituationssimples.• Applicationdescompétencesenmathématiques(manipulationdefonctionsdeplusieursvariablesetdeformes

différentielles,résolutiond’EDO)àdesproblèmesdethermodynamique.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:25h30répartiesen6séancesdeCMde1h45,6séancesdeTDde2h,1séancedeTP(3h),Travailpersonnelattendu:30h–40h.Évaluation.Examenécrit1(/70),undevoirmaison(/10)–NotedeTP/(20).Responsables.MmeC.Weisman

Page 13: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Initiationaudessintechniqueetàlaconceptionassistéeparordinateur

NiveauL2-SemestreS4-Crédits3ECTS-CodeLU2ME201-MentionLicenceMécaniquePrésentationpédagogique.Cette unité a pour objectif de mettre les étudiants en contact avec des outils numériques industriels (Catia) dedescriptiond’objetsmécaniquesconstitutifsd’unsystème(robot,mécanisme,structure).Elleleurpermetd’acquérirlesbasesfondamentalesdudessintechniqueafind’exploiteretderéaliserdesdocumentstechniques(plansd’ensemble,de définition, coupes, perspectives, schémas techniques et autres…). Elle fournit également une formation de basenécessaire pour l’utilisation de logiciels industriels de DAO et de CAO pour l’étude cinématique des mécanismesindustriels et leur assemblage. À l’issue de cette unité, l’étudiant pourra utiliser de façon réfléchie des modeleursindustriels(Catia,Solidworks).Contenudel’Unitéd’Enseignement.

• Basesdudessinindustriel.• Connaissance et représentation normalisée des composants standards de bases tels que les éléments

d’assemblage,roulements,engrenages…• Initiationaudessinindustrielàl’aidedulogicielCATIAdeDassaultSystèmes.• Constructiondevolume3Dentenantcomptedelamorphologiedespièces.• Miseenplanàpartirdevolume3D.• Utilisationd’unebibliothèqued’élémentsstandards.• InitiationàlaFabricationAssistéeparOrdinateur(FAO)parimprimante3D.

Pré-requis.Lesconnaissancesetcompétencesdéveloppéesdansl’unitédeL2demécaniquedessolidesindéformables.

Référencesbibliographiques.• A.Chevalier,Guidedudessinateurindustriel,ÉditeurHachetteTechnique,1999.• J.-L.Fanchon,GuidedesSciencesetTechnologiesindustrielles,Afnor,ÉditeurNathan,2019.• R.BourgeoisetR.Cognet,Dessintechnique,ÉditeurFoucher,1994.• Hazard,Mémotech,Dessinindustriel,ÉditionsCasteilla,1998.• P.AgatietM.Rossetto,Liaisonsetmécanismes,ÉditeurDunod,2001.• V.Arakelian,Structureetcinématiquedesmécanismes,ÉditeurHermès,1997.

Ressourcesmisesàdispositiondesétudiants.Tutoriauxlogiciels.Sallesinformatiquesenlibreprojet.

Connaissancesscientifiquesdéveloppéesdansl’unité• NotionsetfonctionsdebasedeDAO,CAOetdelaFabricationAssistéeparOrdinateur(FAO).

Compétencesdéveloppéesdansl’unité.• Utiliserenautonomiedestechniquescourantesdansledomainedugéniemécanique.• Savoirutiliserdefaçonréfléchieunmodeleurindustriel.• Concevoirdesmaquettesnumériquesdemécanismesindustrielssimples.• Capacité de simulation et de résolution numérique des mécanismes industriels simples et d’interpréter les

résultats.• Mobiliserlesconceptsfondamentauxdelamécaniquepourexpliquerdesphénomènessimples.• Travaillerenautonomie.• Savoirrédigerunrapporttechnique.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:27hrépartiesen7hdecours,20hdetravauxpratiquesnumériques.Travailpersonnelattendu:40hdanslecadreduprojetréaliséenautonomieetenindividuel.

Évaluation.L’évaluationsefaitparsurunrapportécritduprojetdebureaud’étude(60%)etd’unécritTP(40%)(pièceàréaliseràpartird’unplan).

Responsables.S.Haliyo

Page 14: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Romarin:unvéhiculetéléguidépourl'observationsous-marineNiveauL2-SemestreS4-Crédits6ECTS-CodeLU2ME112-MentionLicenceMécanique

Présentationpédagogique.ROMARIN2estuneunitéd’enseignementparl’apprentissageconsacréeàlaconceptionetl’expérimentationd’unpetitrobot de typeROV (RemotelyOperatedVehicle) pour l’exploration sous-marine. Ce projet vise lamise enœuvre deconnaissances théoriques acquises au cours de la formation en L1 L2 Mécanique et permet de développer desconnaissances et des compétences transversales en ingénierie, associant la mécanique, l’acoustique, la robotique,l’électroniqueet l’informatique. Laméthoded’apprentissageparpédagogieactivemiseenpratiquedans le cadredecette unité repose sur le travail en autonomie par groupes d’étudiants, favorisant ainsi la prise d’initatives etd’émulationcollectivepourlaréalisationd’unobjettechnologiqueetl’analysededonnéesscientifiques.

Contenudel’Unitéd’Enseignement.Phase1.Apprentissageexpérimentalguidé(24h)Lapremièrepartiedel’unitéRomarin2débuteparlaréalisationd’unROV élémentaire qui servira ensuite de plateforme de développement pour l’élaboration de fonctionnalitésopérationnelles. Les étudiants procèdent aumontage du cadre, de lamotorisation et du système de commande durobot(8hTP)puisréalisentunpremiersystèmed’instrumentation(capteursdeluminosité+pression+température)aumoyendelaprogrammationd’unmicro-contrôleurdetypeArduinolorsd’unesecondeséancedeTPexpérimentaux(8h).Enfinunedemi-journéesurlesitedelahalletechnologiqueàSaintCyrl’Écoleestconsacréeauxessaisdurobotetdessystèmesdemesureenbassin.Cettepremièrepériodeseraégalementponctuéepard’interventions (2x2h)deconférenciersissusdumilieuindustrielouacadémique.Phase2.ApprentissageparProjetenautonomiecollective (36h)Chaqueéquipetravailleraenautonomiepourfaireévoluer son robot afin de pouvoir réaliser une mission spécifique d’observation, de manipulation ou encored’acquisition de données sous-marines. Les étudiants seront amenés à revoir les choix de conception et dedimensionnementde laplateformeROV initialeafindepermettre l’améliorationdesperformanceshydrodynamiquesdu véhicule et l’ajout d’équipements ou d’instrumentations plus évolués. Les étudiants seront alors maitres duprocessusdedéveloppementtechnologiquedeleurprojet:choixtechniques,planificationdesessaisetdescampagnesdemesures,gestiondesbasesdedonnéesetdelacommunicationduprojet.Lesmissionsassignéesàchaqueéquiperelèventdedifférentsateliersthématiques:cartographieparsonar,géo-localisation,pincerobotique,instrumentationetasservissementduROV.

Pré-requis. Connaissances scientifiques acquises dans les unités de mécanique des solides, mécanique des fluides,électronique.CompétencesdéveloppéesenCAO,DAOetFAOdanslecadredel’unitéd’initiationaudessinindustriel.

Ressourcesmisesàdispositiondesétudiants.Documents,directives,notices,enlignesurlesitewebdeviel’unitéhttps://romarinsu.wordpress.com/

Connaissancesscientifiquesdéveloppéesdansl’unité.• Interdisciplinairesenacoustique/robotique/électronique/mécanique/informatique.• Connaissancesgénéralessurledomainedel’océanographie.

Compétencesdéveloppéesdansl’unité.• Miseenœuvredeconnaissancesscientifiquesdanslecadred’unprojet.• Conduited’unprojeteningénierie.• Pratiquesexpérimentales(CAO,impression3D,montage,programmation,calibration).• Respectdesdirectivesdesécurité.• Développementdescapacitésdecommunicationécriteetorale.• Travailenéquipe,autonomie,initiatives,challenge.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:24hrépartiesen20hdeTP(Partie1apprentissageguidé),4hdeconférencesTravailpersonnelattendu:50-60hdanslecadredesateliersenautonomie.

Évaluation.Évaluationsurlabased’unrapportécrit(/30),unenotedeContrôlecontinu(/60)intégrantlesévaluationssuivantes:Investissementenséance,travailréalisé,testdefonctionnalitéduROV,présentationoraleetpagewebderestitutionduprojet.

Responsable.J.C.Chassaing

Page 15: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

ÉlectroniquenumériquecombinatoireetséquentielleNiveauL2-SemestreS4-Crédits6ECTS-CodeLU2EE299–MentionLicenceÉlectroniqueÉnergieÉlectriquePrésentationpédagogique.L’objectif de cette unité est d’amener les étudiants àmaîtriser les fonctions combinatoires et séquentielles de baseutiliséesenélectroniquenumérique.Delareprésentationbinaire,l’algèbredeBoole,jusqu’auxfonctionsarithmétiques,lesbascules,registresetcompteurs.L’étudiant sera également amené à appréhender un langage de description dematériel VHDL au travers d’unmini-projetenutilisantuneméthodologied'analysedescendante.

Contenudel’Unitéd’Enseignement.• Introduction–Conceptiondesystèmesnumériquessurpuce.• Représentation:Nombresetcodage.• AlgèbredeBoole.• IntroductionauVHDL.• Méthodologieascendanteetdescendante.• Fonctionscombinatoiresetsynthèsedefonctionscombinatoires.• Fonctionsarithmétiques.• Basculesetnotiondemémorisation.• Registres,compteursSystèmespipelinés.• ConversionAnalogique/NumériqueetNumérique/Analogique.

Pré-requis:aucun.

Référencesbibliographiques.• Airiau,Berge,Olive&Rouillard:VHDLdulangageàlamodélisation.PressePolytechniqueRomande,1998.• ThomasL.Floyd:Systèmesnumériques,coursetexercicescorrigés.ReynaldGouletEditions,2018.• N.Richard:Électroniquenumériqueetséquentielle.Dunod,2002.

Ressourcesmisesàdispositiondesétudiants.Documentsdecours,sujetsd’exercicesetélémentsdecorrigés.Connaissancesscientifiquesdéveloppéesdansl’unité.

• Connaissancesdesfonctionscombinatoiresetséquentiellesdebase:notionssurl’algèbredeBoole,leVHDL.Fonctionsarithmétiquesusuelles.

Compétencesdéveloppéesdansl’unité.• SavoirréaliserunprogrammeenVHDL.• Savoirrespecterdesprocédureslorsdel’écritureduprogramme.• Savoirintégrerdesconnaissancespourlaréalisationd’unprojet.• RédigeretprésenterdesrapportsdeTPetdeprojet.• Travaillerenéquipe,autantqu'enautonomie

Volumeshorairesprésentielethorsprésentiel.Heuresprésentiellestotales:60hrépartiesen20hdecours,20hdeTDet20hdeTP.Travailpersonnelattendu:60h-80h.

Évaluation.Deuxexamensrépartis(/50),rapportetexposédeTP/projet(/50).Responsable.M.A.Pinna

Page 16: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

Anglais1,2,3,4,5(CycleLicence)NiveauL1,L2,L3-SemestresS1,S2,S3,S4,S5-Crédits3ECTS(chaquesemestre)Code1XAN5(S1)-1XAN6(S2)-LU2XAN2(S3),LU2XAN3(S4),LU3XAN1(S5)–DépartementdelanguesPrésentationpédagogique.L’apprentissage de l’anglais est un élément central de la formation de ingénieur CMI. Le diplômé doit pouvoircommuniquer,comprendreets'exprimeravecaisanceenanglaisensituationd'interactionsprofessionnellesetsociales.Ceprérequisestindispensable,ycomprispourdescarrièresfrançaises,auquels'ajoutelamaitrised'unesecondelanguedans la plupart des parcours à l'international. L'apprentissage de l'anglais a également un objectif d'ouverture àdifférentesculturesetenjeuxsociétaux.Desenseignementsd’anglaissontdispensésainsisurles5semestresdeLicenceavecl’objectifdepréparerledépartenmobilitéinternationaleobligatoireausemestreS6.Aminima,leniveauB2certifié(référenceeuropéenenlangue,CLESutilisateur indépendant-avancé)estviséavant ledépartenéchange.Lapratiquede la langueanglaiseestentretenueauretourdemobilitéauniveaumaster(4eet5eannée)àtraversdesenseignementsdispensésenlangueanglaise,lapratiquedelecturededocumentsdanslecadredesstages,projets,ainsiquelesenseignementsd’ouverture.Leniveauenanglaisenfindecursusestattestéparl’obtentionduTOIC(TestofEnglishforInternationalCommunication(TOEIC)avecunscoresupérieurà785,oucertificationTOEFL.Contenudel’Unitéd’EnseignementLesétudiantssontrépartisendeuxàtroisgroupesdeniveaudifférentspour leurpermettredeprogresserenanglaisavecdes modesd'apprentissagediversifiés en face à face, en autonomie (tutoriels, lectures, visionnagede filmsetséries)etenactivitéscollectivespargroupesdeniveaux(réalisationdefilms,joutesoratoires,...).Ces pratiques visent à consolider les compétences en langue telles qu’elles sont définies par le Cadre EuropéenCommun de Référence pour les Langues : compréhension orale, compréhension écrite, interaction orale, expressionorale, expression écrite. La progression dans les exigences de l’apprentissage au fil des semestres est assurée par lacoordinationd’unenseignantresponsable.

Pré-requis.AvoirauminimumleniveauB1(définiparleCECRL).Ressourcesmisesàdispositiondesétudiants.Laboratoiredelangues,testsdepréparation,documentsdiversarticles tirés de la presse anglophone, notamment autour des thèmes ‘Science in Society’ et ‘Controversies in Science’. Compétencesdéveloppéesdansl’unité

• Compréhensionécrite:textesrédigés,descriptiond'événements,desentimentsetdesouhaitsdansdesécrits.• Productionécrite:textecohérentsurdessujetsd’intérêt,descriptiond’expériencesetimpressions.• Compréhensionorale:émissionsderadiooudetélévisionsurl'actualité.• Prisedeparoleencontinu:exprimerdesexpériences, desévénements, rêves,espoirsousesbuts, l'intrigue

d'unlivreoud'unfilm,donnerl’idéeessentielled’unarticledepresseetexprimersesréactions.• Prise de parole en interaction: sans préparation à une conversation sur des sujets familiers ou d'intérêt

personnel.Volumeshorairesprésentielethorsprésentiel.1Heuresprésentiellestotales:24heuresrépartiesen2séancesdeTDde2heures.Lachargedetravailattenduepeutvarierenfonctionduniveaudel’étudiant,1hparsemainepourunétudiantayantleniveauattenduetjusqu’à3hpourunétudiantayantunniveaupeuavancé).Évaluation.Unenotedecontrôlecontinusur40pointsetunexamenécritsur60points.Responsable.M.D.Babel,coordinateurdel’enseignementdel’anglaissurles5semestresdeLicence.

Page 17: Syllabus Cursus Master Ingénierie, spécialité mécanique ...

Miseàjour01/03/2020

IntroductionauxétudessurlessciencesetlestechniquesNiveauL2SemestreS4-Crédits3ECTS-CodeLU2HST53–MentionMineuretransthématique

Présentation pédagogique. Cette unité a pour but d’introduire et de familiariser les étudiants avec les études desciencessocialessurlessciencesetlestechniques.Lecourss’organiseenséancesthématiques,quiontcommeobjectifdestimuler ledébatetd’aider l’étudiantàs’approprierdesnotionsdebaseenhistoire,philosophieetsociologiedessciences,afinqu’ilpuisseréfléchirdefaçoncritiqueauxdébatsactuelssurlaproductionscientifiqueettechnique,surlesrapportsentrescience,technologieetsociété,etsurlespolitiquesscientifiques.Nousaborderonsdesétudesdecascontemporainsetdel’histoirerécentedessciences,avecunfocussurlestransformationsdurôleduscientifiqueetdel’ingénieur,etlesenjeuxquiaccompagnentlesrapportsentreexpertstechnoscientifiquesetlasociétéausenslarge.

Contenudel’Unitéd’Enseignement1. Introduction aux études sur les sciences. 2. La construction sociale des sciences. 3. Le travail technoscientifique :genreetprofessionnalisation.4. Lescontroversesscientifiques.5. Lesgrandssystèmes techniques.6. Laconstructionsocialedestechniques.7.Technologieetchangementsocial.8.Experts,expertiseetrisque.9.Lamiseenéconomiedestechnosciences.10.Amateursetsciencesparticipatives.

Pré-requis.Enseignementd’expressionécriteetoraleduL1(recommandé).

Référencesbibliographiques.• BiagioliM.,ed.,TheScienceStudiesReader (Routledge,1999).Bonneuil,C.& JolyP-B.,Sciences, techniqueset

société (La Découverte, 2013). Bucchi M., Science in Society: An Introduction to Social Studies of Science(Routledge, 2002). Busino G. Sociologie des sciences et des techniques (PUF, 1998). Gingras Y. Sociologie dessciences (PUF, 2013). Hackett, E. J. et al., ed.,Handbook of science and technology studies (MIT Press, 2008).Jasanoff S., G.Markle; J.Petersen; Trevor Pinch, eds., Handbook of Science and Technology Studies (SagePublications,1995).PestreD.,IntroductionauxScienceStudies(LaDécouverte,2006).SismondoS.,AnIntro.toScience and Technology Studies (Blackwell, 2003). Vinck, Dominique, Sciences et société. Sociologie du travailscientifique(A.Colin,2007).

Ressourcesmisesàdispositiondesétudiants.Articles,chapitresdelivreetlivresenrapportàlathématiqueducours.Ouvrageàlire(200pages,françaisouanglais).

Connaissancesscientifiquesdéveloppéesdansl’unité.• Connaissancesfondamentalessurlesprocessussociauxdeproductionscientifiqueettechnique.• Connaissancesdesdifférentesapprochesthéoriquesdansledomainedesétudessurlessciencesetlestechniques.• Compréhensiondesprincipauxmodesd'organisationsocialedelaproductionscientifiquedanslasciencemoderne

etcontemporaine.Compétencesdéveloppéesdansl’unité.• Savoiridentifierlesenjeux,acteursetmodesd’articulationdescontroversestechniquesetscientifiques.• Savoirrepéreretanalyserdansunesituationhistoriquedonnéedescontroversestechniquesetscientifiques.• Savoiridentifieretanalyserdestravauxappartenantauxétudessocialessurlessciencesetlestechniques.• Savoirmobiliserdesnotionsbasiquesd’histoire,dephilosophieetdesociologiedessciencesdanslaréflexionsurles

débatsactuelssurlesrapportsentrescience,technologieetsociété,dansledomainedespolitiquesscientifiques.• Savoiranalyseretcomprendredesdocumentsdansledomainedesscienceshumainesetsociales.• Savoirorganiseretprésenterdescommunicationsorales.• Rédigeretdévelopperdesargumentscomplexesdansuntexteécrit.• Coopéreretmutualiserdesinformationsdanslecadred’untravailenéquipe.

Volumeshorairesprésentielethorsprésentiel.Heuresprésentielles:24hrépartiesen16hCMet8hTD.Travailpersonnelattendu:30-40h.

Évaluation.L’évaluationestencontrôlecontinuetsecomposedesexercicessuivants:Présentationoraledeslectures(binômeoutrinôme;deuxprésentations)(20%),Recensiond’unlivre(individuelle;unerecension(40%).Examenfinal(individuel;unexamen)(40%).Responsable.N.Herran