Successes and Challenges of SLM and LMD for …...pulsed laser volute pulsed laser longitudinal...
Embed Size (px)
Transcript of Successes and Challenges of SLM and LMD for …...pulsed laser volute pulsed laser longitudinal...

© Fraunhofer IWS
Successes and Challenges of SLM and LMD for Industrial Production
March 27th – 28th 2017
Laser Additive Manufacturing Workshop
Schaumburg (IL)
Christoph Leyens, Frank Brückner, Elena Lopez, Mirko Riede
phone: +49 (0)351 83391-3420 email: [email protected]

© Fraunhofer IWS LEY: Leyens LAM_2018-03-28
2004 - 2016: overall anual growth (CAGR) of ~20 %
2016: growth softened due to weak polymer players
market: expected to multiply by a factor of two to five by 2022
Additive Manufacturing (AM) Development of metallic AM-market
[Roland Berger 2017]

© Fraunhofer IWS LEY: Leyens LAM_2018-03-28
Additive Manufacturing (AM) Landscape of metallic AM-technologies
[Roland Berger 2017]

© Fraunhofer IWS LEY: Leyens LAM_2018-03-28
Additive Manufacturing (AM) Capabilities of metallic AM-technologies
[Roland Berger 2017]

© Fraunhofer IWS LEY: Leyens LAM_2018-03-28
Additive Manufacturing Principle of Selective Laser Melting (SLM)
laser beam
remelted area
powder layer
melt pool solidificated metal
subjacent layer

© Fraunhofer IWS LEY: Leyens LAM_2018-03-28
Additive Manufacturing Principle of Laser Metal Deposition (LMD)

© Fraunhofer IWS
7 LEY: Leyens LAM_2018-03-28
SLM versus LMD Selected materials
LMD
SLMCu
Inconel 718 AlSi10Mg
Al2O3
TNM-B1
316L
Ti6Al4V
MAR-M247
WC
Si-SiC
Maraging steel
Ta
CBN
Co W
CoNiCrAlY
NiCrAlTaFeY

© Fraunhofer IWS
8 LEY: Leyens LAM_2018-03-28
SLM versus LMD Multi-material processing
SLM Multi-Material Approach LMD Multi-Material Approach
approaches for SLM, e.g. IGCV sequential removal and deposition of
different powder materials
LMD approach by Fraunhofer IWS 3D in-situ selection and parallel mixing of
powder materials tailored localized mixture
Ti-6Al-4V
Ta

© Fraunhofer IWS
9 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
SLM versus LMD Requirements for processed powders
Requirements for powder
controlled chemical composition low porosity spherical particle shape beneficial rheological properties defined (process dependent) particle size
distribution “the right material for the right
process”
irregular shape high porosity big particles “low cost” LMD application
spherical shape low porosity big particles LMD application
spherical shape low porosity small particles SLM application
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
10 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
Additive Manufacturing Process chain
- CAD Software
- scanning systems (GOM, Creaform)
- simulation tools
- design experts
- design rules
- CAD-CAM software
- SKM DCAM
3D model scanner data
material testing
simulation design
slicing support
production
process control
post processing analysis
monitoring evaluation
AM process chain
- process technology
- nozzles, lasers
- metallographic analysis (size and form)
- alloying elements
- control systems (cameras, image processing tools, EMAQS)
- monitoring (high speed, infrared, temperature, powder flow, gases, etc.)
- software tools - interpretation
from experts
- NDT - Metallography
- surface optimization
- hybrid processes
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
11 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
CAD CAM process part post process
Comparison of SLM and LMD Pros and cons along the process chain
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
12 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
complexity for free support essential
support structures spec. data format automatic path
generation
preparation low build rate autonom. processing lead time
[amazonaws] support removal accessibility powder recycling surface quality
[3D hubs]
SLM
CAD CAM process part post process
Comparison of SLM and LMD Pros and cons along the process chain
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
13 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
CAD CAM process part
complexity for free support essential
post process
build on pre-product specific design
support structures spec. data format automatic path
generation
open data format configurable semi-automatic five axis
tool path generation
preparation low build rate autonom. processing lead time
preparation, multi-material hybrid manufacturing adjustable during process process complexity, lead time
[amazonaws]
[DMG Mori]
support removal accessibility powder recycling surface quality
[3D hubs]
SLM
LMD
Comparison of SLM and LMD Pros and cons along the process chain
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
14 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
Comparison of SLM and LMD Pros and cons along the process chain
Selective laser melting Direct metal deposition
support structures automatic path generation
support-less semi-automatic 5-axis path
generation
data import and preparation support placement parameter assignment 2D-slicing (horizontal planes) automatic hatching build-file generation
data import and preparation 3D-segmentation select build direction/s 3D-slicing (freeform) semi-automatic hatching parameter assignment build-file generation
3-axsis 5-axsis
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
15 LEY: Leyens LAM_2018-03-28
development based on design rules
improved functionality
manufacturing with SLM
features not manufacturable conventionally
original optimized design SLM prototype
higher heat flux = higher efficiency
Additive Manufacturing (AM) SLM - process development

© Fraunhofer IWS
16 LEY: Leyens LAM_2018-03-28
investigation of orientations and supporting strategies for manufacturing turbine blades
1 supporting the trailing edge strong distortion an the thin
trailing edge and on the blade foot low heat dissipation
high dimensional deviation: ±0,5 mm
2 supporting the leading edge almost no distortion smaller dimensional deviation:
±0,3mm
1. 2.
Additive Manufacturing (AM) SLM - process development

© Fraunhofer IWS
17 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
Additive Manufacturing (AM) LMD - process development

© Fraunhofer IWS
18 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
Additive Manufacturing (AM) LMD - process development
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
19 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
helix pulsed laser
volute pulsed laser
longitudinal strategy pulsed laser
4-axis
transversal strategy pulsed laser
longitudinale strategy pulsed laser
double conturing 5-axis
Additive Manufacturing (AM) LMD - process development
long lead times due to feature adapted strategies
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
20 LEY: Leyens LAM_2018-03-28
smallest feature size: 3 mm
individual cladding strategies needed
overhangs with 5-axes
lead time / accuracy vs. build rate
smallest feature size: 500 µm
„complexity for free“
high accuracy
LMD (scale 2:1)
SLM (scale 1:1)
SLM vs. LMD Complexity vs. build-up rate

© Fraunhofer IWS
21 LEY: Leyens LAM_2018-03-28
SLM vs. LMD Complexity vs. build-up rate
LMD combustion chamber with nozzle Laser Metal Deposition corrosion resistant steel 316L build-up time: 6 hours height: 300 mm max. diameter: 180 mm
SLM thruster nozzle with conformal Cooling Channels: Selective Laser Melting corrosion resistant steel 316L build-up time: 24 hours height: 200 mm max. diameter: 150 mm
large part size low complexity short build-up time
complex cooling channels (1 mm² cross section)
high build-up time

© Fraunhofer IWS
22 LEY: Leyens LAM_2018-03-28
Application in…
blades – space and aerospace
Selective Laser Melting Laser Metal Deposition
microstructures medical and dental technology
reverse engineering
on existing parts or repair
cross section bone - bionic structures
High-power LMD
cooling channels and nozzles
SLM vs. LMD Applications

© Fraunhofer IWS
23 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
SLM vs. LMD Microstructure - Ti6Al4V
very low porosity (< 0,1%) inhomogeneous grain size distribution
through layer-wise bi-directional scanning coarser grains increased melt pool size less anisotropic structure
low porosity (< 0,2%) homogenous grain size distribution through
layer-wise rotation of 67° finer grains epitactic solidification anisotropic structure
Selective laser melting Direct metal deposition
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
24 LEY: Leyens LAM_2018-03-28
SLM vs. LMD Conclusion
Selective laser melting Direct metal deposition
porosity < 0,5 % < 0,1 %
selectable materials limited large variety (multi material)
component dimensions max. 800x400x500 mm³ almost unlimited
complexity of component almost unlimited, overhangs (without support minimal angle >45°) limited, walls with an angle of < 20°
detail resolution typ. 100 µm 30 µm – 45 mm
roughness Rz 30 – 50 µm 60 – 100 µm
substrate form flat surface freeform
build-up rate 1-20 mm³/s 3-480 mm³/s
Source: Concept Laser

© Fraunhofer IWS
25 LEY: Leyens LAM_2018-03-28
© Fraunhofer IWS
SLM vs. LMD Conclusion
Evaluation of SLM vs. LMD:
Costs
Material selection
Material utilization
Mechanical properties
Geometrical complexity
Maximal part size
Build-up rate
Near net-shape
Free form ability
Surface quality
Selective Laser Melting (SLM) Laser Metal Deposition (LMD)
[Guo 2013; Srivatsan 2016; IFAM; IfWW; Sierra 2016; Backes 2015]
comparison of advantages and disadvantages based on actual state of the art in literature
selection of a suitable process for the right application
LEY: Leyens LAM_2018-03-28

© Fraunhofer IWS
26 LEY: Leyens LAM_2018-03-28
The End
Thank you for your attention
Contact: Prof. Christoph Leyens Phone +49 (0)351 83391-3242 [email protected]