Stress Corrosion Cracking Behavior of Pure Copper in...

38
J AEA-Research Stress Corrosion Cracking Behavior of Pure Copper in Ammonia Solution and Groundwater Containing Ammonium Ion Naoki TANIGUCHI, Manabu KAWASAKI and Morimasa NAITO Geological Isolation Research Unit Geological Isolation Research and Development Directorate March 2010 Japan Atomic Energy Agency JAEA-Research 2009-067

Transcript of Stress Corrosion Cracking Behavior of Pure Copper in...

  • JAEA

    -Research

    Stress Corrosion Cracking Behavior of Pure Copper in Ammonia Solution and

    Groundwater Containing Ammonium Ion

    Naoki TANIGUCHI, Manabu KAWASAKI and Morimasa NAITO

    Geological Isolation Research UnitGeological Isolation Research and Development Directorate

    March 2010

    Japan Atomic Energy Agency

    JAEA-Research

    2009-067

  • 本レポートは日本原子力研究開発機構が不定期に発行する成果報告書です。

    本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。

    なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp)

    より発信されています。

    独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課

    〒319-1195 茨城県那珂郡東海村白方白根 2 番地 4

    電話 029-282-6387, Fax 029-282-5920, E-mail:[email protected]

    This report is issued irregularly by Japan Atomic Energy Agency

    Inquiries about availability and/or copyright of this report should be addressed to

    Intellectual Resources Section, Intellectual Resources Department,

    Japan Atomic Energy Agency

    2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

    Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:[email protected]

    © Japan Atomic Energy Agency, 2010

  • JAEA-Research 2009-067

    2009 12 18

    SSRT 0.05M

    0.1M NH4OH

    -144mV vs.SCE

    319-1194 4-33

  • JAEA-Research 2009-067

    JAEA-Research 2009-067

    Stress Corrosion Cracking Behavior of Pure Copper in Ammonia Solution and

    Groundwater Containing Ammonium Ion

    Naoki TANIGUCHI , Manabu KAWASAKI and Morimasa NAITO

    Geological Isolation Research Unit,

    Geological Isolation Research and Development Directorate,

    Japan Atomic Energy Agency

    Tokai-mura, Naka-gun, Ibaraki-ken

    (Received, December 18, 2009)

    Since the propagation rate of stress corrosion cracking (SCC) is generally larger than that

    of other corrosion modes without cracking, it is difficult to avoid the penetration due to SCC

    by designing the corrosion allowance. Therefore, it is important to clarify the possibility of

    SCC initiation or conditions where SCC is possible to be occurred. It has been known that

    copper and copper alloys are susceptible to SCC in an ammonia environment depending on its

    conditions. In this study, the SCC susceptibility of oxygen free copper was investigated in an

    ammonia solution and groundwater containing ammonium ion under the oxidizing condition

    by the slow strain rate technique. As the results, no SCC was observed both in 0.05M and

    0.1M NH4OH solution. In the case of Horonobe groundwater containing ammonium ion,

    brittle fracture surface and cracks were observed at -144mV vs.SCE. The morphologies of the

    SCC were not only intergranular type but also transgranular type and transgranular cracks

    branched from intergranular crack. In these test conditions, corrosion products were strongly

    adhered to the specimen surface and inside of the cracks. This indicates that the SCC was

    caused by tarnish rupture mechanism. In the buffer material saturated with the Horonobe

    groundwater, mechanical properties such as maximum stress and fracture strain were

    comparable with those in silicon oil, and no distinct cracks due to SCC were detected on the

    specimens.

    Keywords: Copper, Overpack, Ammonia, Ammonium Ion, Stress Corrosion Cracking

    Waste Isolation Technology Section, Waste Management Department (additional post)

    Collaborating Engineer: Waste Isolation Technology Section, Waste Management

    Department (additional post)

  • JAEA-Research 2009-067

    1. ----------------------------------------------------------------------------------------------------------

    2. -------------------------------------------------------------------------------------------------------

    3. -------------------------------------------------------------------------------------------------------

    4. -----------------------------------------------------------------------------------------------------------

    5. --------------------------------------------------------------------------------------------------------

    --------------------------------------------------------------------------------------------------------------

    Contents

    1. Introduction -------------------------------------------------------------------------------------------------------

    2. Experiments -------------------------------------------------------------------------------------------------------

    3. Results --------------------------------------------------------------------------------------------------------------

    4. Discussions-------------------------------------------------------------------------------------------------------

    5. Summary ---------------------------------------------------------------------------------------------------------

    References -------------------------------------------------------------------------------------------------------------

    1

    2

    9

    25

    28

    29

    1

    2

    9

    25

    28

    29

  • This is a blank page.

  • JAEA-Research 2009-067

    - 1 -

    1.

    1) Cu/Cu2O H2/H2O PH2=1atm2)

    mm/y 3)

    4) 2 1)

    5)

    King 6)

    100mg/l

    Slow Strain Rate Technique SSRT

    120mg/l

  • JAEA-Research 2009-067

    - 2 -

    .

    2.1

    2.1 2.1

    JIS Z2201 14B

    #800

    2.2

    NH4OH 0.05M 0.1M

    7)

    8) NaHCO3 CaCl2 NH4Cl

    2.2

    NH4+ NH3

    1mm

    OPC

    V1 70wt%

    30 1.6g/cm3 80 9)

    8.3×10-7/s 1µm/min

    Ecorr

    SSRT Ecorr

    2.3

    2.3

    2.2

    2

    2.3

  • JAEA-Research 2009-067

    - 3 -

    2.4

    2.4

    RTV

    600mL 80

    0.05MPa 0.05MPa

    KCl-HCl

    SEM

    SEM

  • JAEA-Research 2009-067

    - 4 -

    2.1

    ppm)

    Pb 2.0

    Zn

  • JAEA-Research 2009-067

    - 5 -

    2.3 SSRT

    (mV vs. SCE)

    Si

    0.05M NH4OH -50

    0.1MNH4OH -280

    -110

    -110

    -144

    -144

    +OPC -150

  • JAEA-Research 2009-067

    - 6 -

    2.1

    2.2 SSRT

    12

    20

    1210 10

    50 50 2

    10R15

    4

    20

    13

    39

    35

    29

    20

    1.5

    13

    39

    35

    29

    20

    1.5

    12

    2mm

  • JAEA-Research 2009-067

    - 7 -

    2.3

  • JAEA-Research 2009-067

    - 8 -

    2.4 SSRT

    PTFE

    PTFE

  • JAEA-Research 2009-067

    3.

    3.1

    3.1 0.05M-NH4OH

    0.1M

    -144mV

    vs.SCE -144 V vs.SCE

    -110mV vs.SCE -110mV vs.SCE

    OPC

    3.2 -

    - 3.2 3.5 3.2

    0.1M

    -110mV vs.SCE -110mV vs.SCE

    3.3

    -144mV vs.SCE -144 V vs.SCE

    3.4

    -110mV vs.SCE

    OPC 3.5

    OPC

    3.3 SEM

    SEM

    SEM 3.6 (a) (b)

    (a)

    (c) (d)

    - 9 -

  • JAEA-Research 2009-067

    - 10 -

    3.7 0.05M 3.8 0.1M

    3.7(a) 3.8(b)

    3.7(c) 3.8(c)

    -110mV

    3.9

    (a),(b)

    3.8

    3.10 (a),(b)

    (c)

    -144mV vs.SCE

    3.11 (b)

    3.12

    (b)

    (c)

    OPC 3.13

    (b) (a),(c)

    -

    (d)

    3.4

    SEM -144 V vs.SCE -144mV vs.SCE

  • JAEA-Research 2009-067

    - 11 -

    -144mV vs.SCE

    -144mV vs.SCE 3.14

    -144mV vs.SCE 3.15

  • JAEA-Research 2009-067

    - 12 -

    3.1 SSRT

    No.1

    0.05M-NH4OH

    0.1M-NH4OH

    -110mV vs.SCE

    -110mV vs.SCE

    -144mV vs.SCE

    -144mV vs.SCE

    OPC

    -150mV vs.SCE

  • JAEA-Research 2009-067

    - 13 -

    3.2 SSRT -

    3.3 -

  • JAEA-Research 2009-067

    - 14 -

    3.4 -

    3.5 -

  • JAEA-Research 2009-067

    - 15 -

    3.6 SEM

    (a)

    (b)

    (c)

    (d)

  • JAEA-Research 2009-067

    - 16 -

    3.7 0.05M NH4OH -50 mV vs. SCE SEM

    (a)

    (b)

    (c)

  • JAEA-Research 2009-067

    - 17 -

    3.8 0.1M NH4OH -280 mV vs. SCE SEM

    (a)

    (b)

    (c)

  • JAEA-Research 2009-067

    - 18 -

    3.9 -110 mV vs. SCE SEM

    (a)

    (b)

    (c)

  • JAEA-Research 2009-067

    - 19 -

    3.10 -110 mV vs. SCE SEM

    50 m

    50 m

    50 m

    50 m

    (a)

    (b)

    (c)

    (d)

  • JAEA-Research 2009-067

    - 20 -

    3.11 -144 mV vs. SCE SEM

    (a)

    (b)

    (c)

    (d)

  • JAEA-Research 2009-067

    - 21 -

    3.12 -144 mV vs. SCE SEM

    (a)

    (b)

    (c)

  • JAEA-Research 2009-067

    - 22 -

    3.13 +OPC -150 mV vs. SCE SEM

    (a)

    (b)

    (d)

    (c

  • JAEA-Research 2009-067

    - 23 -

    3.14 -144mV vs.SCE

    50 m

    50 m

  • JAEA-Research 2009-067

    - 24 -

    3.15 -144mV vs.SCE

    50 m

    50 m

  • JAEA-Research 2009-067

    - 25 -

    .

    4.1

    0.05M 0.1M

    pH NH4+ NH3

    4)

    0.05 4)

    4) 0.5ppm

    0.5mg/l 4)

  • JAEA-Research 2009-067

    - 26 -

    30mV Suzuki 10)

    0.05M

    -70mV vs. SCE~-50mV vs.SCE -30mV vs.

    SCE 10mV

    -144mV vs.SCE

    Ca, Mg, Si

    4.2

    Tarnish-Rupture( )

    6) Suzuki 10)

    Tarnish-Rupture

    -144mV vs.SCE -144mV vs.SCE

    -110mV vs.SCE

    30mV

    11)

    11)

    -144mV vs.SCE

    -110mV vs.SCE

    11)

  • JAEA-Research 2009-067

    - 27 -

    Tarnish-Rupture

  • JAEA-Research 2009-067

    - 28 -

    5.

    SSRT 0.05M 0.1M

    pH

    -110mV vs.SCE

  • JAEA-Research 2009-067

    - 29 -

    1)

    2 2 JNC TN1400

    99-022(1999).

    2) R. M. Garrels and C. L. Christ: Solution, Minerals, and Equilibria, Jones and Bartlett

    Publishers (1990).

    3) 1993 .

    4) 24 No.3,4,

    97-107(1983).

    5) E. Arilahti, M.Bojinov, K. Makela, T. Laitinen and T. Saario: Stress corrosion cracking

    investigation of copper in groundwater with ammonium ions. POSIVA Working Report

    2000-46. Posiva Oy (2000).

    6)

    -01-23 (2001).

    7) JNC TN8430

    2004-005(2005).

    8) 15

    JNC TN1400 2004-007(2004).

    9) N. Taniguchi, M. Kawasaki: Influence of sulfide concentration on the corrosion behavior

    of pure copperin synthetic seawater Journal of Nuclear Materials, 379, pp.154 161

    (2008).

    10)Y.Suzuki and Y. Hisamatsu: Stress Corrosion Cracking of Pure Copper in Dilute

    Ammonical Solutions, Corrosion Science, Vol.21, No.5, pp.353-368(1981).

    11)

    58 11 pp.386-394(2009).

  • This is a blank page.

  • 1024 10-1 d

    1021 10-2 c

    1018 10-3 m

    1015 10-6 µ

    1012 10-9 n

    109 10-12 p

    106 10-15 f

    103 10-18 a

    102 10-21 z

    101 da 10-24 y

    SI

    SI

    min 1 min=60s

    h 1h =60 min=3600 s

    d 1 d=24 h=86 400 s

    ° 1°=( /180) rad

    ’ 1’=(1/60)°=( /10800) rad

    ” 1”=(1/60)’=( /648000) rad

    ha 1ha=1hm2=104m2

    L l 1L=11=1dm3=103cm3=10-3m3

    t 1t=103 kg

    SI SI

    SI

    eV 1eV=1.602 176 53(14)×10-19J

    Da 1Da=1.660 538 86(28)×10-27kg

    u 1u=1 Da

    ua 1ua=1.495 978 706 91(6)×1011m

    SI SI SI

    SI

    Ci 1 Ci=3.7×1010Bq

    R 1 R = 2.58×10-4C/kg

    rad 1 rad=1cGy=10-2Gy

    rem 1 rem=1 cSv=10-2Sv

    1 =1 nT=10-9T

    1 =1 fm=10-15m

    1 = 200 mg = 2×10-4kg

    Torr 1 Torr = (101 325/760) Pa

    atm 1 atm = 101 325 Pa

    1cal=4.1858J 15 4.1868J

    IT 4.184J

    µ 1 µ =1µm=10-6m

    10 SI

    cal

    (a)SI

    (b)rad sr

    (c) sr(d)(e)

    (f) activity referred to a radionuclide ”radioactivity”(g) PV,2002,70,205 CIPM 2 CI-2002

    CGS SI

    a amount concentration

    substance concentration

    SI

    Pa s m-1 kg s-1

    N m m2 kg s-2

    N/m kg s-2

    rad/s m m-1 s-1=s-1

    rad/s2 m m-1 s-2=s-2

    , W/m2 kg s-3

    , J/K m2 kg s-2 K-1

    J/(kg K) m2 s-2 K-1

    J/kg m2 s-2

    W/(m K) m kg s-3 K-1

    J/m3 m-1 kg s-2

    V/m m kg s-3 A-1

    C/m3 m-3 sAC/m2 m-2 sAC/m2 m-2 sAF/m m-3 kg-1 s4 A2

    H/m m kg s-2 A-2

    J/mol m2 kg s-2 mol-1

    , J/(mol K) m2 kg s-2 K-1 mol-1

    C/kg kg-1 sAGy/s m2 s-3

    W/sr m4 m-2 kg s-3=m2 kg s-3

    W/(m2 sr) m2 m-2 kg s-3=kg s-3

    kat/m3 m-3 s-1 mol

    SISI

    m2

    m3

    m/sm/s2

    m-1

    kg/m3

    kg/m2

    m3/kg

    A/m2

    A/m(a) mol/m3

    kg/m3

    cd/m2(b) 1(b) 1

    SI SI

    SI SI

    ( ) rad 1 m/m( ) sr(c) 1 m2/m2

    Hz s-1

    N m kg s-2

    , Pa N/m2 m-1 kg s-2

    , , J N m m2 kg s-2

    W J/s m2 kg s-3

    , C s A, V W/A m2 kg s-3 A-1

    F C/V m-2 kg-1 s4 A2

    V/A m2 kg s-3 A-2

    S A/V m-2 kg-1 s3 A2

    Wb Vs m2 kg s-2 A-1

    T Wb/m2 kg s-2 A-1

    H Wb/A m2 kg s-2 A-2( ) K

    lm cd sr(c) cdlx lm/m2 m-2 cdBq s-1

    , ,Gy J/kg m2 s-2

    , , ,

    Sv J/kg m2 s-2

    kat s-1 mol

    SISI

    SI

    bar bar=0.1MPa=100kPa=105Pa

    mmHg 1mmHg=133.322Pa

    =0.1nm=100pm=10-10m

    M=1852m

    b b=100fm2=(10-12cm)2=10-28m2

    kn kn=(1852/3600)m/s

    Np

    dB

    SI SI

    m

    kg

    s

    A

    K

    mol

    cd

    SI SI

    SI

    erg 1 erg=10-7 J

    dyn 1 dyn=10-5N

    P 1 P=1 dyn s cm-2=0.1Pa s

    St 1 St =1cm2 s-1=10-4m2 s-1

    sb 1 sb =1cd cm-2=104cd m-2

    ph 1 ph=1cd sr cm-2 104lx

    Gal 1 Gal =1cm s-2=10-2ms-2

    Mx 1 Mx = 1G cm2=10-8Wb

    G 1 G =1Mx cm-2 =10-4T

    Oe 1 Oe (103/4 )A m-1

    CGS

  • この印刷物は再生紙を使用しています