Spécificités des moteurs aéronautiques de nouvelle génération

60
. . . . . . Spécificités des moteurs aéronautiques de nouvelle génération 16 e cycle de conférences Cnam/SIA Utilisation rationnelle de l’énergie et environnement 10, 17, 24 et 31 Mars 2015 Gilles Aouizerate [email protected] - Page LinkedIn Ingénieur chez Snecma, groupe Safran 17 mars 2015

Transcript of Spécificités des moteurs aéronautiques de nouvelle génération

Page 1: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Spécificités des moteurs aéronautiques denouvelle génération

16e cycle de conférences Cnam/SIAUtilisation rationnelle de l’énergie et environnement

10, 17, 24 et 31 Mars 2015

Gilles [email protected] - Page LinkedIn

Ingénieur chez Snecma, groupe Safran

17 mars 2015

Page 2: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Points abordés

Focus sur l’aviation civile et commerciale

Quelques définitions

Panorama de solutions techniques

Références

Discussions

Page 3: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

La propulsion dans l’aviation civile et commerciale

En 2011 le marché des moteurs pour l’aviation civile etcommerciale était estimé à plus de 21 milliards de $ [4]

La croissance annuelle de ce marché est estimée à 6% [4]

La part des moteurs sur la valeur d’un avion est estimée entre 15et plus de 30%

En 2013 le marché de la maintenance des moteurs pour l’aviationcivile et commerciale était estimé à presque 24 milliards de $ [1]

La croissance annuelle de ce marché est estimée à plus de 4% [1]

Page 4: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les acteurs et leurs poids I

..

62%

.

CFM international(General Electric + Snecma)

.

14%

.

IAE(Rolls Royce +

Pratt &Whitney + MTU)

.

9%

.

General Electric

.

6%

.

Pratt &Whitney

.

5%

.

Rolls Royce

.4%

.EngineAlliance

(GE + P&W)

Répartition du marché des moteurs dans l’aviation civileet commerciale en 2011 [4], cbaGA

Sur certains segments lesmotoristes sont en concurrence...

...sur d’autres ils sont partenaires

Lorsqu’un avionneur vend unavion, il a le plus souventplusieurs options de moteurs

C’est donc la compagnie aérienne(ou le loueur) acquéreur del’avion qui est le client dumotoriste

Page 5: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les acteurs et leurs poids II

..

45%

.

Fabricants

.

35%

.

Compagniesaériennes

.

4%

.

Autres

Répartition du marché de la maintenance des moteurspour l’aviation civile et commerciale en 2013 [3],cbaGA

Sur certains marchés lesconcurrents des motoristes sontleurs clients

Page 6: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Quelques exemples I

Un Airbus A380, cbRoger Green

Airbus A380 :I RR Trent 900I Engine Alliance (GE et

P&W) GP7200

Un Boeing 747, cbaBrian, Altair78

Boeing 747 :I P&W JT9DI GE CF6I RR RB211I P&W PW4000I GE GEnx

Page 7: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Quelques exemples II

Le premier A320NEO, cbaDon Vip

Airbus A320NEO :I P&W PW1100I CFM (GE et Snecma) Leap

Une maquette de Boeing 747MAX, cbaBin im Garten

Boeing 737MAX :I CFM (GE et Snecma) Leap

Page 8: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Quelques exemples III

Un Sukhoi Superjet 100, cbaKatsuhiko Tokunaga

Sukhoi Superjet 100 :I Powerjet (Saturn et

Snecma) SaM146

Un ATR42, cbaKlausF

ATR42 :I P&W PW127F

Page 9: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Paramètres majeurs pour l’industrie des moteurs civils I

La forte croissance du trafic aérien

La maîtrise des émissions (par voie réglementaire ou non)

Le renouvellement des flottes vieillissantes

L’exigence des compagnies aériennes de maîtriser les coûtsd’opération et de maintenir leur profitabilité

Page 10: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Paramètres majeurs pour l’industrie des moteurs civils II

Évolution du prix du pétrole depuis 1970 [5], cbaGA

Page 11: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Quelques ordres de grandeur I

moteur aéronautique moteur automobilePuissance ∼ 105 ch ∼ 102 chdurée totale defonctionnement

∼ 105 h ∼ 103 h

durée de vie ∼ 101 ans ∼ 101 ansintervalle derévision

∼ 104 h ∼ 102 h

frais demaintenance

∼ 102 $/h ∼ 100 $/h

coûts dedéveloppement

∼ 109 $

prix « catalogue » ∼ 107 $ ∼ 103 $

Page 12: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Un convertisseur d’énergie I

Le rôle principal d’un moteur d’avion est de fournir au véhiculequ’il propulse la puissance nécessaire à son déplacement, soit :

P = F.u0, (1)

où P est la puissance reçue par l’avion, F la poussée transmise àce dernier par le moteur et u0 la vitesse de l’avion.

Cette puissance est obtenue à partir d’une forme d’énergiepotentielle stockée à bord, le plus souvent chimiquement dans ducarburant.

Dans le cas du vol atmosphérique cette énergie transite par de l’air.

Page 13: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Un convertisseur d’énergie II

.................Puissancecarburant

.

Pertesthermiques

.

Puissancepropulsive

.

Puissancecinétique

(air).

Pertespropulsives

ηglobal =puissance propulsivepuissance carburant = ηthermique × ηpropulsif (2)

Page 14: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

La turbomachine

Du fait d’un rapport poids/puissance favorable les moteurs d’avionsont constitués autour d’une turbomachine.

Son fonctionnement repose sur le principe suivant :1. On comprime de l’air prélevé dans le milieu (idéalement de

manière isentropique)2. On y brûle du carburant (idéalement de manière isobare)3. On détend cet air (idéalement de manière isentropique)

C’est de cette détente que l’on va extraire le travail nécessaire à lapropulsion de l’avion.

Selon les architectures choisies, ce travail sera néanmoins exploitédifféremment.

Page 15: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les principales architectures I

Architecture turbojet, cbaEmoscopes, M0tty

Dans cette architecture, appelée turbojet en anglais :I Tout l’air sert à brûler le carburantI C’est seulement la détente dans la tuyère qui propulse l’avion

Page 16: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les principales architectures II

Architecture turbofan, cbaK Aainsqatsi, M0tty

Dans cette architecture, appelée turbofan en anglais :I Il y a deux flux dont l’un sert à brûler le carburant (le rapport

entre les deux s’appelle le taux de dilution)I C’est toujours une détente dans une tuyère qui propulse

l’avion et les deux flux y participent

Page 17: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les principales architectures III

Architecture turbopropulseur, cbaEmoscopes, M0tty

Dans cette architecture, appelée turbopropulseur :I Il y a deux flux dont l’un sert à brûler le carburant mais le

taux de dilution est très importantI Ce n’est pas la détente dans une tuyère qui propulse l’avion

mais une hélice

Page 18: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Le cycle de Brayton ILa thermodynamique d’une turbomachine est décrite par le cyclede Brayton :

Le cycle de Brayton, cbaGA

Page 19: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Le cycle de Brayton II

Travail massique fourni par le fluide, cbaGA Chaleur massique reçue par le fluide, cbaGA

On démontre [24] que le rendement du cycle de Brayton s’écrit :

ηthermique idéal =wfourniqreçue

= 1− T0

T3(3)

Page 20: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes ILe cycle réel n’est pas exactement le cycle de Brayton [23] :

I La compression n’est pas isentropiqueI La combustion ne se fait pas de manière isobareI la détente n’est pas isentropique

Un cycle plus réaliste, cbaGA

Page 21: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes IILes pertes par frottements visqueux dans les canaux en sont enpartie responsables.

Pertes dues aux frottements visqueux lors de la phase decompression, cbaGA

Pertes dues aux frottements visqueux lors de la phase dedétente, cbaGA

wcomp =− cp (T3′ − T0)

+ L +Σ∆f

=− cp (T3′ − T0)

ηac

wturb =cp (T4 − T8′)

− Σ∆Π

=ηatcp (T3′ − T0)

Page 22: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes IIILa viscosité de l’air en contact avec les surfaces inactives des rotorsinduit des pertes par frottements [23].

Par ailleurs, les paliers ainsi que les auxiliaires (pompes,engrenages, etc.) prélèvent de la puissance mécanique sur l’arbre[23].

Dessin d’une boite à engrenages, cbDE Jos Boite à engrenages du Rolls Royce PegasuscbHigh Contrast

On note l’ensemble de ces pertes Pm.

Page 23: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes IV

Des pertes volumétriques sont à prendre en compte.

Il s’agit soit de fuites [23] soit de prélèvements assurant desfonctions secondaires (dégivrage, pressurisation cabine, etc.)

Pour simplifier on considère me le débit entrant dans lecompresseur, mfc le débit perdu à travers le compresseur (fuites etprélèvements), mc le débit traversant la chambre de combustion etentrant dans la turbine et mft le débit perdu à travers la turbine.On définit ainsi les rendements volumétriques suivants :

ηfc =me − mfc

me(4) ηft =

mc − mftmc

(5)

Page 24: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes V

La combustion n’est pas non plus ni réellement isobare, nicomplète :

ηc =qréelle reçueqidéale reçue

(6)

Page 25: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les pertes VI

La manière dont le travail issu du cycle thermodynamique va êtretransmis à l’avion ne se fait pas sans perte [24] :

ηpropulsif = ηp =puissance propulsive

accroissement de puissance cinétique (7)

ηp =F.u0

m2(u2

8 − u20)

=mu0(u8 − u0)m2(u2

8 − u20)

=2

1 +u8

u0

, (8)

où u0 est la composante axiale en absolu de la vitesse avion, u8 dela vitesse sortie moteur et m le débit d’air à travers le moteur.

Page 26: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Bilan

.........................................Puissancecarburant

.

Pertes de combustion

.

Pertes de cycle idéal

.

Pertes aérodynamiques d’aubages

.

Prélèvements fonctionnels

.

Pertes volumétriques

.Pertes mécaniques

. Pertes propulsives.

Puissancepropulsive

ηg ' ηpηc

(ηftηat (T4 − T8′)−

1

ηfcηac(T3′ − T0)

)− Pm

T4 − T3′(9)

Page 27: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Le concept de Technology Readiness Level (TRL) I

La NASA propose une échelle pour évaluer la maturité d’unetechnologie : c’est devenu un référentiel utilisé dans l’industrie [21]

niveau de TRL DescriptionTRL 1 Basic principles observed and reportedTRL 2 Technology concept and/or application

formulatedTRL 3 Analytical and experimental critical function

and/or characteristic proof-of-conceptTRL 4 Component and/or breadboard validation in

laboratory environment

Page 28: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Le concept de Technology Readiness Level (TRL) II

niveau de TRL DescriptionTRL 5 Component and/or breadboard validation in

relevant environmentTRL 6 System/subsystem model or prototype

demonstration in a relevant environment(ground or space)

TRL 7 System prototype demonstration in a spaceenvironment

TRL 8 Actual system completed and “flight qualified”through test and demonstration (ground orspace)

TRL 9 Actual system “flight proven” throughsuccessful mission operations

Page 29: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Améliorer le rendement isentropique (ηac et ηat)

On cherche à diminuer les pertes par frottements visqueux pour serapprocher du cycle idéal

Cycle avec pertes aérodynamiques non-minimisées,cbaGA Cycle avec pertes aérodynamiques minimisées, cbaGA

Page 30: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Veine et aubages à géométries optimisées

Maillage d’un distributeur(GRAPE), pR. Chima,NASA

Contours de Mach d’undistributeur (RVCQ3D),pR. Chima, NASA

Maillage d’un étage decompresseur (TCGRID),pR. Chima, NASA

Contours de pression d’unétage de compresseur(SWIFT), pR. Chima,NASA

I Principe : Optimiser lespertes d’aubages au moyende calculs CFD détaillés

I Bénéfices :ηac ↗ et ηat ↗

I Risques : Pas de risquesidentifiés

I TRL : 9

Page 31: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Améliorer le rendement thermique (ηthermique)D’après l’expression (3), ηthermique croît avec T3, mais le travail netfourni décroît si la température d’entrée turbine T4 reste la même.

Deux cycles à T3 différents mais à mêmes T4, cbaGA Deux cycles à T3 et T4 différents, cbaGA

Pour qu’une telle augmentation de ηthermique soit pertinente il fautaugmenter TMAX la température limite en entrée turbine.

Page 32: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Aubages de turbine refroidis [13, 12, 25, 18, 29]

Dessin d’aube de turbine, cbaTomeasy

Aube refroidie de roue mobile de la turbine hautepression d’un CFM56-3, cbaNubifer

I Principe : Refroidir lesaubages turbine avec de l’airprélevé au compresseur pourprotéger les pièces d’unetempérature d’air supérieureaux limites matériaux

I Bénéfices :ηthermique idéal ↗

I Risques : ηfc ↘ etémissions NOx ↗

I TRL : 9

Page 33: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Aubages et matériaux nouveaux [13, 12, 25, 18, 29, 11, 2]

Aube de redresseur de la turbine haute pression d’unV2500 revêtue d’une barrière de protection thermique,cbaOlivier Cleynen

I Principe : La science desmatériaux permet d’éleverencore la températured’entrée turbine par l’usagede revêtements de protectionou de structures avancées(mono-cristal, composite àmatrice céramique)

I Bénéfices :ηthermique idéal ↗

I Risques : ηfc ↘ etémissions NOx ↗

I TRL : 8 à 9

Page 34: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Synthèse sur la température d’entrée turbine

..

1945

.

1965

.

1985

.

2005

.

2025

.

Année d’introduction

.

1000

.

1200

.

1400

.

1600

.

1800

.

2000

.

2200

.

2400

.

Tem

péra

ture

(K)

..

.

U500

.

.

U700

.

.

INCO738

.

.

INCO939

.

.

INCO792

.

non refroidi

.

refroidisse

ment

simple

.

refroid

issement

sophis

tiqué

.

refroi

dissem

entet

nouvea

uxmaté

riaux

.

barrière de

protection therm

ique

.

compositeà

matricecéra

mique

.

Températuremaxi. matériaux

.

Températureentrée turbine

Évolution de la température entrée turbine et des technologies de refroidissement [12, 2], cbaGA

Page 35: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Combustion pauvre par injection directemultipoints [26, 28]

..Richesse du mélange

.

NO

x

.

Stoechiométrie

Évolution des émissions de NOx en fonction de lastoechiométrie, cbaGA

I Principe : Il s’agit d’injecterle carburant directementdans la zone de flamme,sans pré-mélange oucombustion pilote, pouravoir un mélange le plushomogène possible et éviterainsi la combustionlocalement riche

I Bénéfices : NOx ↘I Risques : Instabilité de

combustion, CO ↗I TRL : 4 à 5

Page 36: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Améliorer le rendement propulsif (ηp)

D’après l’expression (8), ηp croît quand le ratio u8/u0 → 1.

..1

.2

.3

.4

.5

.

u8/u0

. 0%.20%

.

40%

.

60%

.

80%

.

100%

.

η p

Rendement propulsif en fonction du rapport u8/u0, cbaGA

Pour diminuer le ratio u8/u0 tout en maintenant le niveau depoussée le meilleur levier est le débit m via le taux de dilution.

Page 37: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Turbopropulseurs [24, 14]

Un PW127F sur un ATR72, cbaDon-vip

..0.

400.

800.

1200.

Vitesse avion (km/h)

.0% .

20%

.

40%

.

60%

.

80%

.

100%

.

η p

.

turb

opro

pulse

ur

.

turbo

fan

.

.

CroisièreA320

.

.

CroisièreATR42

Rendements comparés d’un turbopropulseur et d’unturbofan en fonction de la vitesse, cbaGA

I Principe : Le taux dedilution élevé d’unturbopropulseur lui confèreun rendement propulsifavantageux à basse vitesse

I Bénéfices : ηp ↗I Risques : u0 ↘ et bruit ↗I TRL : 9

Page 38: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Turbofans à fort taux de dilution [17, 24, 8]

Un JT8D (taux dedilution ∼1), cbAndreGustavo Stumpf Filho

Un CFM56-7 (taux dedilution de 5.1 à 5.5),cbaLukasz Golowanow

Un GEnx (taux dedilution de 8 à 9),cbaThomasVandermeiren, aéroportde Bruxelles

Un Leap (taux de dilutionde 10 à 11),cbaKG1951

I Principe : En augmentantle diamètre de la soufflanteet de son carénage et/ou enoptimisant leur structure etleur aérodynamique onaugmente le taux de dilution

I Bénéfices : ηp ↗ etbruit ↘

I Risques : ηthermique ↘ ettraînée ↗

I TRL : 9

Page 39: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Soufflante à entraînement indirect [19, 15, 6]

Un réducteur (2) est placé entre la soufflante (1) et laturbomachine, cbaTosaka

..Diamètre de soufflante

.Cons

omm

atio

nde

carb

uran

t

.

entrainement indirect

.

entrainement direct

Consommation comparées d’un turbofan à entraînementdirect et indirect en fonction du diamètre de lasoufflante [15], cbaGA

I Principe : Interposer unréducteur entre la soufflanteet l’arbre basse pression dela turbomachine permet àces deux organes de tournerà des vitesses plus adaptéestout en augmentant le tauxde dilution

I Bénéfices : ηp ↗ etbruit ↘

I Risques : traînée ↗I TRL : 8

Page 40: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Doubles soufflantes non-carénéescontra-rotatives [15, 6, 10, 14]

Un GE36 monté sur un McDonnell Douglas MD-80transformé en banc volant, cbaAndrew Thomas

Un AN-70 équipé de ses Progress D-27, cbaMarianivka

I Principe : Il s’agit d’uneconvergence entrel’architecture d’unturbopropulseur et celle d’unturbofan alliant lerendement du premier et lavitesse du second

I Bénéfices : ηp ↗, u0 →I Risques : bruit ↗, impacte

l’architecture avionI TRL : 7

Page 41: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Moteurs enterrés [22, 27] I

..

fuselage

...

fuselage

..−u0. us.

u8

.

us

.

u8

.

ηp =F.u0

F2(u8 + u0)

=F.u0

F(

u0 +∆u2

).

ηp =F.u0

F2(u8 + us)

=F.u0

F(

us +∆u2

)

Page 42: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Moteurs enterrés [22, 27] II

Un maquette du concept D8 du Massachusetts Instituteof Technology en soufflerie, pDavid Bowman, NASALangley

Un maquette du concept D8 du Massachusetts Instituteof Technology en soufflerie, pDavid Bowman, NASALangley

I Principe : Faire ingérer parle moteur la couche limitedu fuselage lui permettraitde réduire l’accroissementd’énergie cinétique à fournirà l’air pour une mêmepuissance propulsive

I Bénéfices : ηp ↗ ettraînée ↘

I Risques : impactel’architecture avion,distorsion en entrée moteur

I TRL : 2 à 3

Page 43: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Changer de cycle thermodynamique (ηthermique)

Les limites du cycle de Brayton commencent à être atteintes :

Existe-t-il des alternatives ?

Page 44: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Moteurs à échangeurs [20, 28]

Un cycle avec un simple échangeur (en bleu) permetd’extraire plus de travail pour une même quantité decarburant brûlée, cbaGA

..(T3/T0)

γ/(γ−1).

η the

rmiq

ue

.

cycle avecéchangeur simple

.

cycle de Brayton

.

cycle avecéchangeur etrécupération

Au-delà d’un certain taux de compression le rendementd’un cycle avec échangeur dépasse celui du cycle deBrayton [28], cbaGA

I Principe : Refroidir le fluxau milieu de la phase decompression à l’aide d’unéchangeur plongé dans leflux de la soufflante offre uncycle thermodynamique plusavantageux

I Bénéfices : ηthermique ↗I Risques : masse ↗, ηac ↘

et ηat ↘I TRL : 3 à 4

Page 45: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

La propulsion solaire

L’avion solaire Solar Impulse 2, cbaMilko Vuille

I Principe : Couvrir la voilurede panneaux photovoltaïquespour alimenter des moteursélectriques

I Bénéfices : Émissions ↘I Risques :

Poids/Puissance ↗, vol denuit

I TRL : 5

Page 46: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

L’Electric Green Taxiing System (Par Safran et Honeywell)

Le train d’un A320 équipé de l’EGTS de Safran etHoneywell, cbaOlivier Cleynen

I Principe : Des moteursélectriques sont implantésdans les trains d’attérrissagede l’avion pour le propulserau roulage

I Bénéfices : émissions ↘,coûts d’opération et demaintenance↘

I Risques : Intérêt limité auxcourts et moyens courriers

I TRL : 8 à 9

Page 47: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

La propulsion distribuée hybride [9]

Le concept N3-X équipé d’une propulsion hybride,pNASA

I Principe : Un ou plusieursmoteurs thermiques ouautres (piles àcombustible ?) génèrent del’électricité pour alimenterdes moteurs àsuperconducteurs qui fonttourner une distribution desoufflantes

I Bénéfices : Émissions ↘I Risques : Impacte

l’architecture avion,pertes aux interfaces ↗

I TRL : 2

Page 48: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Les biocarburants [7]

Huile de jatropha hydrotraitée, cbBiswarup Ganguly

I Principe : Il est possibled’incorporer jusqu’à 50% debiocarburants issus del’hydrotraitemant d’huilesvégétales (HEFA, HVO,HRJ) ou du procédé desynthèse Fischer-Tropsch(BtL)

I Bénéfices : CO2 ↘I Risques : Température de

fonctionnement, fonctionssecondaires du carburant àbord, rentabilité,concurrence agroalimentaire

I TRL : 8 à 9

Page 49: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Moteurs à cycles combinés pour le vol suborbital [30, 16]

Le X-15 propulsé par un moteur-fusée (anaérobie),premier avion suborbital, pNASA

Le X-43A (sans pilote) propulsé par un statoréacteur(aérobie), le plus rapide jamais construit, pNASA

I Principe : Une propulsioncombinant une motorisationaérobie (turbine,statoréacteur,super-statoréacteur) etanaérobie (moteur-fusée)permettrait le vol orbital

I Bénéfices : u0 ↗I Risques : Par où

commencer ?I TRL : 5

Page 50: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références I

[1] Commercial aircraft MRO : Total market size & growth.URL http://www.bga-aeroweb.com/Commercial-Aircraft-MRO.html

[2] High temperature coatings.URL http://www.virginia.edu/ms/research/wadley/high-temp.html

[3] STRAIR aircraft maintenance repair and overhaul marketstudy

[4] Global Commercial Aero Turbofan Engine Market, SupplyChain and Opportunities : 2012-2017.Lucintel (2012)

[5] Statistical review of world energy 2014 (2014).URL http://bp.com/statisticalreview

Page 51: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références II

[6] Becker, R., Schaefer, M., Reitenbach, S. : Assessment of theefficiency gains introduced by novel aero engine concepts(2013)

[7] Bondiou-Clergerie, A., Fournier, G., Lignet, C., Jeuland, N.,Chkioua, C., Bringtown, S. : De nouvelles ailes pour Icare -Transport aérien et biocarburants (2014).URL https://www.gifas.asso.fr/sites/default/files/video/brochure_biocarburants_gifas_2013.pdf

[8] Coroneos, R.M., Gorla, R.S.R. : Structural analysis andoptimization of a composite fan blade for future aircraftengine (2012)

Page 52: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références III

[9] Felder, J.L., Kim, H.D., Brown, G.V. : Turboelectricdistributed propulsion engine cycle analysis forhybrid-wing-body aircraft.In : 47th AIAA Aerospace Sciences Meeting, Orlando, FL,January, pp. 5–8 (2009)

[10] Guynn, M.D., Berton, J.J., Hendricks, E.S., Tong, M.T.,Haller, W.J., Thurman, D.R. : Initial assessment of open rotorpropulsion applied to an advanced single-aisle aircraft.In : Proceedings of the 11th AIAA Aviation Technology,Integration, and Operations Conference, Virginia Beach, VA,September, pp. 20–22 (2011)

Page 53: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références IV[11] Halbig, M.C., Jaskowiak, M.H., Kiser, J.D., Zhu, D. :

Evaluation of ceramic matrix composite technology foraircraft turbine engine applications.In : 51st AIAA Aerospace Sciences Meeting including the NewHorizons Forum and Aerospace Exposition, pp. 07–10 (2013)

[12] Han, J., Dutta, S., Ekkad, S. : Gas Turbine Heat Transfer andCooling Technology, Second Edition.CRC Press (2012).URL https://books.google.fr/books?id=E4TNBQAAQBAJ

[13] Han, J.C., Wright, L.M. : The Gas Turbine Handbook, chap.4-2-2-2.U.S. National Energy Technology Laboratory (2007)

[14] Hubbard, H.H. : Aeroacoustics of flight vehicles : Theory andpractice. volume 1. noise sources, chap. 1.DTIC Document (1991)

Page 54: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références V

[15] Hughes, C., Van Zante, D.E., Heidmann, J.D. : Aircraftengine technology for green aviation to reduce fuel burn.AIAA Paper (2011-3531) (2011)

[16] Johnson, D.B., Robinson, J.S. : X-43d conceptual design andfeasibility study.AIAA/CIRA 13 th International Space Planes andHypersonics Systems and Technologies p. 2005 (2005)

[17] Kaplan, B., Nicke, E., Voss, C. : Design of a highly efficientlow-noise fan for ultra-high bypass engines.In : ASME Turbo Expo 2006 : Power for Land, Sea, and Air,pp. 185–194. American Society of Mechanical Engineers(2006)

Page 55: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références VI

[18] Koff, B.L. : Gas turbine technology overview - a designer’sperspective.In : AIAA/ICAS International Air and Space Symposium andExposition : The Next 100 Years. Dayton, Ohio (2003)

[19] Kurzke, J. : Fundamental differences between conventionaland geared turbofans.In : ASME Turbo Expo 2009 : Power for Land, Sea, and Air,pp. 145–153. American Society of Mechanical Engineers(2009)

[20] Kyprianidis, K.G., Grönstedt, T., Ogaji, S.O., Pilidis, P.,Singh, R. : Assessment of future aero-engine designs withintercooled and intercooled recuperated cores.Journal of Engineering for Gas Turbines and Power 133(1),011,701 (2011)

Page 56: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références VII

[21] Mankins, J.C. : TECHNOLOGY READINESS LEVELS : AWhite Paper.Nasa (1995)

[22] Plas, A., Sargeant, M., Madani, V., Crichton, D., Greitzer, E.,Hynes, T., Hall, C. : Performance of a boundary layeringesting (BLI) propulsion system.In : 45th American Institute of Aeronautics and AstronauticsAerospace Sciences Meeting and Exhibit, Reno, NV, January,pp. 8–11 (2007)

[23] Pluviose, M. : Machines à fluides : principes etfonctionnement.Ellipses (2002)

Page 57: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références VIII[24] Spakovszky, Z.S., Greitzer, E.M., Waitz, I.A. : 16.unified :

Thermodynamics and propulsion.URL http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/notes.html

[25] Spittle, P. : Gas turbine technology.Physics education 38(6), 504 (2003)

[26] Tacina, R., Wey, C., Laing, P., Mansour, A. : A low NOxlean-direct injection, multipoint integrated module combusterconcept for advanced aircraft gas turbines (2002)

[27] Uranga, A., Drela, M., Greitzer, E.M., Titchener, N.A., Lieu,M.K., Siu, N.M., Huang, A.C., Gatlin, G.M., Hannon, J.A. :Preliminary experimental assessment of the boundary layeringestion benefit for the D8 aircraft.In : 52th AIAA Aerospace Sciences Meeting, National Harbor,MD, pp. 13–17 (2014)

Page 58: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Références IX

[28] Wilfert, G., Sieber, J., Rolt, A., Baker, N., Touyeras, A.,Colantuoni, S. : New environmental friendly aero engine coreconcepts.Paper No. ISABE 1120 (2007)

[29] Xu, L., Bo, S., Hongde, Y., Lei, W. : Evolution of rolls-royceair-cooled turbine blades and feature analysis.Procedia Engineering 99(0), 1482 – 1491 (2015).2014 Asia-Pacific International Symposium on AerospaceTechnology, {APISAT2014} September 24-26, 2014Shanghai, China

[30] Yungster, S., Trefny, C.J. : Analysis of a new rocket-basedcombined-cycle engine concept at low speed.National Aeronautics and Space Administration, GlennResearch Center (1999)

Page 59: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Questions ?

Page 60: Spécificités des moteurs aéronautiques de nouvelle génération

. . . . . .

Informations concernant les droits et licences ICette présentation est placée sous licence Creative Commons -Paternité - Partage à l’identique cba3.0 dont les termes sontdisponibles sur le site Internet de l’organisation Creative Commons.

Les pictogrammes présents en légende des images indiquent leurrégime de licence :

I p : image non-couverte par des droits d’auteur, il s’agit enl’occurrence d’images produites par la NASA (voir politiquede droits d’auteur de la NASA)

I c : l’utilisateur est libre de copier et distribuer le documentselon certaines conditions définies par les autres pictogrammes(licence Creative Commons) :

I b : l’utilisateur doit citer le nom de l’auteur (Paternité)I a : si l’utilisateur modifie l’objet couvert par cette licence il ne

peut la redistribuer que sous une licence similaire (partage àl’identique)