Nhi13061 Toc

download Nhi13061 Toc

of 14

Transcript of Nhi13061 Toc

  • 8/13/2019 Nhi13061 Toc

    1/14

  • 8/13/2019 Nhi13061 Toc

    2/14

  • 8/13/2019 Nhi13061 Toc

    3/14

    TABLE OF CONTENTS

    VOLUME I

    1.1 OBJECTIVE OF THE LESSON 1

    1.2 HISTORICAL DEVELOPMENT 1

    1.2.1 Background 1

    1.2.2 Organization of Project 6

    1.2.2.1 RESEARCH TEAM 6

    1.2.3 Project Schedule 9

    1.2.4 Project Objectives 11

    1.3 SUMMARY OF RELIABILITY CONSIDERATION 14

    1.3.1 Overview of a Probability-Based Specification 14

    1.4 OVERVIEW OF THE CALIBRATION PROCESS 24

    1.4.1 Outline of the Calibration Process 24

    1.4.2 Development of a Sample Bridge Database 241.4.3 Extraction of Load Effects 28

    1.4.4 Development of the Simulated Bridge Set 29

    1.4.5 Calculated Reliability Indices and Selection of Target Value 29

    1.4.6 Load and Resistance Factors 30

    1.4.6.1 LOAD FACTORS 30

    1.4.6.2 RESISTANCE FACTORS 32

    1.4.6.3 RECOMMENDED LOAD AND RESISTANCE FACTORS 33

    REFERENCES 37

    2.1 OBJECTIVE OF THE LESSON 1

    2.2 LOCATION FEATURES 1

    2.3 FOUNDATION INVESTIGATIONS 2

    2.4 DESIGN OBJECTIVES 2

    2.4.1 Safety 3

    2.4.1.1 LIMIT STATES 3

    Service Limit States 3

    Fatigue and Fracture Limit States 3

    Strength Limit States 3

    Extreme Event Limit States 3

    Limit States Design Equation 4

    Ductility 4

    Redundancy 6Operational Importance 7

    2.4.1.2 LOAD FACTORS AND LOAD COMBINATIONS 7

    2.4.2 Serviceability 11

    2.4.3 Constructibility 13

    2.4.4 Bridge Aesthetics 13

  • 8/13/2019 Nhi13061 Toc

    4/14

    TABLE OF CONTENTS (Continued)

    2.4.5 Hydrology and Hydraulics 13

    3.1 OBJECTIVE OF THE LESSON 1

    3.2 DEVELOPMENT OF LRFD LIVE LOAD MODEL 1

    3.2.1 Background 1

    3.2.2 Selection of a Basis for Developing a Model 3

    3.2.3 Candidate Notional Loads 11

    3.2.4 Statistical Basis of Live Load Model 22

    3.2.4.1 INTRODUCTION 22

    3.2.4.2 TRUCK SURVEY DATA 23

    3.2.4.3 MEAN MAXIMUM TRUCK MOMENTS AND SHEARS 23

    3.2.4.4 ONE-LANE MOMENTS AND SHEARS 32

    3.2.4.5 GIRDER DISTRIBUTION FACTORS 39

    3.2.4.6 TWO-LANE MOMENTS AND SHEARS 42

    3.3 LIVE LOADS 43

    3.3.1 Notional Live Load Model 43

    3.3.2 Multiple Presence of Live Load 443.3.3 Application of Design Vehicular Live Loads 45

    3.3.4 Fatigue Requirements 46

    3.3.5 Tire Pressure 46

    3.3.6 Live Load Deflection Criteria 47

    3.3.7 Dynamic Load Allowance 47

    3.3.8 Miscellaneous Live Loads 54

    QUIZ 1

    WORK PERIOD #1: Live Loads on Multi-Span Bridges

    4.1 OBJECTIVE OF THE LESSON 1

    4.2 ICE LOADS 1

    4.2.1 General 1

    4.2.2 Design for Ice 2

    4.2.3 Static Ice Loads on Piers 4

    4.2.4 Hanging Dams and Ice Jams 4

    4.2.5 Vertical Forces due to Ice Adhesion 4

    4.2.6 Ice Accretion and Snow Loads on Superstructures 5

    4.3 EARTH LOADS 6

    4.3.1 General 6

    4.3.2 Compaction 12

    4.3.3 Earth Pressure 14

    4.3.3.1 AT-REST PRESSURE COEFFICIENT, ko 15

    4.3.3.2 ACTIVE PRESSURE COEFFICIENT, ka 164.3.3.3 EQUIVALENT FLUID PRESSURE 22

    4.3.4 Presence of Water 23

    4.3.5 Surcharge 24

    4.3.6 Effect of Earthquake 26

    4.3.7 Reduction due to Earth Pressure 29

    4.3.8 Downdrag 30

    4.3.9 Design of a Cantilever Retaining Wall 30

    Solution: 31

    Step 1: Calculate the Unfactored Loads with q = 1.0 31

  • 8/13/2019 Nhi13061 Toc

    5/14

    TABLE OF CONTENTS (Continued)

    Step 2: Determine the Appropriate Load Factors 36

    Step 3: Calculate the Factored Loads 37

    REFERENCES 39

    5.1 OBJECTIVE OF THE LESSON 1

    5.2 FORCE EFFECTS DUE TO SUPERIMPOSED DEFORMATIONS 1

    5.2.1 Uniform Temperature 1

    5.2.2 Temperature Gradient 2

    5.2.3 Differential Shrinkage 8

    5.2.4 Creep 8

    5.2.5 Settlement 9

    5.3 OTHER LIVE LOAD EFFECTS 9

    5.3.1 General 9

    5.3.2 Centrifugal Force 9

    5.3.3 Braking Force 9

    5.3.4 Vehicular Collision Forces 10

    5.4 WATER LOADS 10

    5.5 WIND LOADS 11

    5.5.1 General Wind Provisions 11

    5.5.2 Vertical Wind Pressure 13

    5.5.3 Aeroelastic Stability 13

    REFERENCES 19

    6.1 OBJECTIVE OF THE LESSON 1

    6.2 ACCEPTABLE METHODS OF STRUCTURAL ANALYSIS 1

    6.3 PRINCIPLES OF MATHEMATICAL MODELING 2

    6.3.1 Structural Material Behavior 2

    6.3.2 Geometry 3

    6.3.2.1 GENERAL 3

    6.3.2.2 APPROXIMATE METHODS 4

    6.3.2.3 REFINED METHODS 5

    6.3.3 Modeling Boundary Conditions 5

    6.4 STATIC ANALYSIS 6

    6.4.1 The Influence of Plan Geometry 6

    6.4.2 Approximate Methods for Load Distribution 7

    6.4.2.1 DECK SLABS AND SLAB-TYPE BRIDGES 7

    6.4.2.2 BEAM SLAB BRIDGES 76.4.2.2.1 General 7

    6.4.2:2.2 Influence of Truck Configuration 11

    6.4.2.2.3 Findings 12

    Level 3 Methods: Detailed Bridge Deck Analysis 12

    Level 2 Methods: Graphical and Simple Computer-

    Based Analysis 12

    Level 1 Methods: Simplified formulas 13

    6.4.2.2.3a Simplified Formulas for Beam-and-Slab

    Bridges 13

  • 8/13/2019 Nhi13061 Toc

    6/14

    TABLE OF CONTENTS (Continued)

    Moment Distribution to Interior Girders, Multi-Lane

    Loading 16

    Moment Distribution to Exterior Girders, Multi-Lane

    Loading 17

    Moment Distribution to Interior Girders, Single-Lane

    Loading 18

    Moment Distribution to Exterior Girders 19

    Shear Distribution 19

    Correction for Skew Effects 20

    6.4.2.2.3b Simplified Formulas for Box Girder

    Bridges 22

    Moment Distribution to Interior Girders 22

    Moment Distribution to Exterior Girders 23

    Shear Distribution 23

    Correction for Skew Effects 24

    6.4.2.2.3c Simplified Formulas for Slab Bridges 24

    Moment Distribution, Multi-Lane Loading 25

    Moment Distribution, Single-Lane Loading 25Correction for Skew Effects 25

    6.4.2.2.3d Simplified Formulas for Multi-Beam

    Decks which are Sufficiently Interconnected to

    Act as a Unit 25

    Moment Distribution to Interior Girders, Mufti-Lane

    Loading 26

    Moment Distribution to Interior Girders, Single-Lane

    Loading 27

    Moment Distribution to Exterior Girders 27

    Shear Distribution 28

    Correction for Skew Effects 28

    6.4.2.2.3e Simplified Formulas for Multi-Beam

    Decks which are not Sufficiently

    Interconnected to Act as a Unit 29

    6.4.2.2.3f Simplified Formulas for Spread Box Beam

    Bridges 30

    Moment Distribution to Interior Beams, Multi-Lane

    Loading 30

    Moment Distribution to Interior Beams, Single-Lane

    Loading 31

    Moment Distribution to Exterior Girders 31

    Shear Distribution 31

    Correction for Skew Effects 32

    6.4.2.2.3g Response of Continuous Bridges 32

    6.4.2.3 TRUSS AND ARCH BRIDGES 33

    6.4.2.3.1 General 33

    6.5 REFINED METHODS 34

    6.5.1 Deck Slabs 34

    6.5.2 Beam Slab Bridges 34

    6.5.3 Example of Modeling Errors 35

    6.5.4 Other Types of Bridges 40

    REFERENCES 42

  • 8/13/2019 Nhi13061 Toc

    7/14

    TABLE OF CONTENTS (Continued)

    7.1 MULTI-GIRDER BRIDGE 1

    7.2 LIVE LOAD DISTRIBUTION FACTOR FOR A TRUSS 12

    8.1 OBJECTIVE OF THE LESSON 1

    8.2 EFFECTIVE LENGTH FACTOR 1

    8.3 EFFECTIVE FLANGE WIDTH 3

    8.4 OVERVIEW OF EARTHQUAKE EFFECTS 3

    8.4.1 Background Information on the Development of the Seismic

    Specifications 3

    8.4.2 General Provisions 4

    8.4.2.1 OBJECTIVE AND PRINCIPLES 4

    8.4.2.2 APPLICABILITY 5

    8.4.2.3 PRELIMINARY PLANNING AND DESIGN 58.4.2.4 FLOW CHART FOR SEISMIC DESIGN 5

    8.4.3 Earthquake Design Loads (Article 3.10) 6

    8.4.3.1 ELASTIC SEISMIC RESPONSE COEFFICIENT 6

    8.4.3.2 FACTORS AFFECTING SEISMIC LOADS 8

    8.4.3.2.1 Acceleration Coefficient 8

    8.4.3.2.2 Seismic Performance Zones

    8.4.3.2.3 Bridge Importance Categories 9

    8.4.3.2.4 Site Effects 10

    8.4.3.2.4a Site Coefficient 10

    8.4.3.2.4b Soil Profile Types 10

    8.4.3.3 RESPONSE MODIFICATION FACTORS 11

    8.4.3.3.1 General 11

    8.4.3.3.2 Values 12

    8.4.3.3.3 Application 13

    8.4.3.4 COMBINATION OF SEISMIC FORCE EFFECTS 13

    8.4.3.5 CALCULATION OF DESIGN FORCES 14

    8.4.3.5.1 General 14

    8.4.3.5.2 Requirements for Seismic Zone 1 15

    8.4.3.5.3 Seismic Zone 2 16

    8.4.3.5.4 Seismic Zones 3 and 4 16

    8.4.3.5.5 Longitudinal Restrainers 17

    8.4.3.5.6 Hold-Down Devices 17

    8.4.4 Analysis of Earthquake Loads (Specification

    Article 4.7.4) 18

    8.4.4.1 MINIMUM ANALYSIS REQUIREMENTS 18

    8.4.4.2 ANALYSIS METHODS FOR MULTI-SPAN BRIDGES 20

    8.4.4.2.1 Single Mode Elastic Methods of Analysis 208.4.4.2.2 Multi-Mode Spectral Method 23

    8.4.4.2.3 Time-History Method 24

    8.4.4.3 MINIMUM DISPLACEMENT REQUIREMENTS 24

    APPENDIX A

    Acceleration Coefficient Maps

    9.1 OBJECTIVE 1

  • 8/13/2019 Nhi13061 Toc

    8/14

    TABLE OF CONTENTS (Continued)

    9.2 INTRODUCTION 1

    9.3 LIMIT STATES 1

    9.3.1 Service Limit State 1

    9.3.2 Fatigue Limit State 2

    9.3.3 Strength Limit State 4

    9.3.4 Extreme Event Limit State 5

    9.4 FLEXURE 5

    9.4.1 Limits of Reinforcement 5

    9.4.1.1 MAXIMUM REINFORCEMENT 5

    9.4.1.2 MINIMUM REINFORCEMENT 6

    9.4.2 Stress in Prestressing Steel at Nominal Flexural Resistance 7

    9.4.2.1 COMPONENTS WITH BONDED TENDONS 7

    9.4.2.2 COMPONENTS WITH UNBONDED TENDONS 8

    9.4.3 Flexural Resistance 9

    9.4.4 Crack Control 11

    9.5 STRUT-AND-TIE MODEL 11

    9.5.1 Structural Modeling 11

    9.5.2 Proportioning Compressive Struts 12

    9.5.2.1 STRENGTH OF STRUTS 12

    9.5.2.2 EFFECTIVE CROSS-SECTIONAL AREA OF STRUTS 12

    9.5.2.3 LIMITING COMPRESSIVE STRESS IN STRUTS 13

    9.5.3 Proportioning Tension Ties 14

    9.5.3.1 STRENGTH OF TIES 14

    9.5.3.2 ANCHORAGE OF TIES 15

    9.5.4 Proportioning Node Regions 15

    9.5.5 Crack Control Reinforcement 16

    9.6 PRESTRESSING 16

    9.6.1 Introduction 16

    9.6.2 Stress Limitations for Prestressing Tendons 17

    9.6.3 Stress Limitations for Concrete 19

    9.6.4 Loss of Prestress 19

    9.6.4.1 GENERAL 19

    9.6.4.2 INSTANTANEOUS LOSSES 21

    9.6.4.2.1 Anchorage Set 21

    9.6.4.2.2 Friction 21

    9.6.4.2.3 Elastic Shortening 24

    9.6.4.3 TIME-DEPENDENT LOSSES 25

    9.6.4.3.1 Simplified Lump Sum Estimate 25

    9.6.4.3.2 Refined Itemized Estimate 26

    9.6.4.3.2a Shrinkage 26

    9.6.4.3.2b Creep 279.6.4.3.2c Relaxation 28

    9.6.4.3.3 Rigorous Analysis 29

    9.7 SHEAR AND TORSION 29

    9.7.1 Introduction 29

    9.7.2 Sectional Model 30

    9.7.2.1 MODIFIED COMPRESSION FIELD THEORY 30

    9.7.2.2 NOMINAL SHEAR RESISTANCE 31

  • 8/13/2019 Nhi13061 Toc

    9/14

    TABLE OF CONTENTS (Continued)

    9.7.2.2.1 General 31

    9.7.2.2.2 Simplified Procedure for Non-prestressed

    Sections 32

    9.7.2.2.3 General Procedure 33

    9.7.2.3 LONGITUDINAL REINFORCEMENT 37

    9.8 DURABILITY 37

    9.9 DESIGN EXAMPLE - PRESTRESS CONCRETE 12BEAM 38

    10.1 OBJECTIVE 1

    10.2 SPECIFIC PROVISIONS FOR VARIOUS TYPE OF STRUCTURES 1

    10.2.1 Beams and Girders 1

    10.2.2 Segmental Construction 7

    10.2.3 Arches 21

    10.2.4 Slab Superstructures 23

    10.2.4.1 CAST-IN-PLACE SOLID SLAB SUPERSTRUCTURES 24

    10.2.4.2 CAST-IN-PLACE VOIDED SLAB SUPERSTRUCTURE 24

    10.2.4.3 PRECAST DECK BRIDGES 2710.2.5 Culverts 29

    10.3 SPECIFIC MEMBERS 30

    10.3.1 Deep Members 30

    General 30

    Diaphragms 30

    Brackets and Corbels 31

    Beam Ledges 31

    10.3.2 Footings 37

    10.3.3 Piles 40

    10.3.4 Provisions for Structure Types 42

    Beam and Girder Bridges 42

    11.1 OBJECTIVE OF THE LESSON 1

    11.2 GENERAL DESIGN REQUIREMENTS 1

    11.2.1 Interface Action 1

    11.2.2 Deck Drainage 2

    11.2.3 Concrete Appurtenances 2

    11.2.4 Edge Supports 2

    11.2.5 Stay-in-Place Formwork for Overhangs 3

    11.3 LIMIT STATES 3

    11.3.1 Service Limit State 3

    11.3.2 Fatigue and Fracture Limit State 3

    11.3.3 Strength Limit States 4

    11.3.4 Extreme Event Limit States 4

    11.4 ANALYSIS 4

    11.4.1 Approximate Methods of Analysis 4

    11.4.2 Refined Methods of Analysis 12

    11.4.3 Analysis of Cantilever Slabs 12

    11.5 DESIGN OF CONCRETE DECK SLABS 13

    11.5.1 General Design Requirements 13

    11.5.2 Design of Stay-in-Place Formwork 14

  • 8/13/2019 Nhi13061 Toc

    10/14

    TABLE OF CONTENTS (Continued)

    11.5.3 Provisions for Precast Deck Slabs 16

    11.5.4 Cast-In-Place Concrete Deck Design Example Conventional

    Design 16

    11.5.5 Cast-in-Place Concrete Deck Design Example - Empirical Method 40

    11.6 OVERVIEW OF METAL DECKS 41

    11.6.1 Metal Grid Decks 41

    11.6.2 Orthotropic Steel Decks 43

    11.7 OVERVIEW OF WOOD DECKS AND DECK SYSTEMS 44

    11.7.1 Design requirements 44

    11.7.2 Glued-Laminated Decks 45

    11.7.3 Stress-Laminated Decks 46

    11.7.4 Spike-Laminated Decks 48

    11.7.5 Plank Decks 50

    11.7.6 Wearing Surfaces for Wood Decks 50

    VOLUME II

    12.1 OBJECTIVE 1

    12.2 NEW PROVISIONS IN LRFD SPECIFICATION NOT CONTAINED IN LFD SPECIFICATION 1

    12.2.1 Deflection Limitations 1

    12.2.2 Fatigue 2

    12.2.2.1 GENERAL 2

    12.2.2.2 FATIGUE LOAD 3

    12.2.2.3 FATIGUE RESISTANCE 6

    12.2.2.4 SPECIAL REQUIREMENTS FOR GIRDER WEBS 7

    12.2.3 Resistance Factors 9

    12.2.4 Diaphragm Spacing 10

    12.2.5 Pins 10

    12.3 TENSILE RESISTANCE 10

    12.4 COMPRESSIVE RESISTANCE 14

    12.5 NON-COMPOSITE COMPRESSION MEMBERS 15

    12.6 COMPOSITE COMPRESSION MEMBERS 18

    12.7 I-SECTIONS IN FLEXURE 18

    12.7.1 General 18

    12.7.2 Compact Composite Sections 22

    12.7.3 Non-Compact Composite Sections 29

    Hybrid Factor 31Load Shedding Factors, Rb for Compression Flanges 34

    Lateral-Torsional Buckling 36

    12.7.4 Compact Non-Composite Sections 38

    12.7.5 Non-Compact Non-Composite Sections 39

    12.7.6 Shear Resistance 41

    12.7.6.1 GENERAL 41

    12.7.6.2 UNSTIFFENED WEBS 42

    12.7.6.3 STIFFENED WEBS 43

    12.7.7 Stiffeners 48

  • 8/13/2019 Nhi13061 Toc

    11/14

    TABLE OF CONTENTS (Continued)

    12.7.7.1 TRANSVERSE INTERMEDIATE STIFFENERS 48

    12.7.7.2 BEARING STIFFENERS 51

    12.7.7.3 LONGITUDINAL STIFFENERS 53

    12.7.8 Constructibility 55

    12.7.9 Inelastic Analysis Procedures 55

    12.7.10 Steel Plate Girder Design Example 55

    12.7.10.1 BRIDGE DESCRIPTION 55

    12.7.10.2 ASSUMPTIONS 57

    12.7.10.3 LIVE LOAD VEHICLES 57

    12.7.10.4 PLATE SIZES 57

    12.7.10.5 SECTION PROPERTIES 59

    12.7.10.6 DISTRIBUTION FACTORS 60

    12.7.10.7 GENERAL LOAD FACTORS,' (Articles S1.3.3, 51.3.4,

    S1.3.5) 61

    12.7.10.8 LOAD CALCULATIONS (Permanent and Live) 61

    12.7.10.9 LIVE LOAD DEFLECTION (Article 52.5.2.6) 65

    12.7.10.10 SPECIFICATION CHECKS 6612.7.10.10.1 Specification Check: Flexure 66

    12.7.10.10.2 Specification Check: Shear 81

    12.7.10.10.3 Specification Check: Fatigue 86

    12.7.10.10.4 Specification Check: Shear Connectors 91

    12.7.10.10.5 Specification Check: Transverse Stiffener

    Details 99

    12.7.10.10.6 Specification Check: Wind Loads 104

    REFERENCES 109

    QUIZ 2

    13.1 GENERAL 1

    13.2 FACTORED RESISTANCE 2

    13.2.1 General 2

    13.2.2 Slip Resistance 3

    13.2.3 Shear Resistance 7

    13.2.4 Bearing Resistance 8

    13.2.5 Tensile Resistance 10

    13.2.6 Resistance to Combined Shear and Tension 11

    13.3 BOLTED SPLICE DESIGN EXAMPLE 12

    14.1 OBJECTIVE OF LESSON 1

    14.2 SPREAD FOOTING FOUNDATION DESIGN 114.2.1 General Design Considerations 1

    14.2.2 Design Procedure 2

    14.2.3 Movement and Bearing Pressure at Service Limit State 4

    14.2.3.1 ANALYSIS OF FOOTING MOVEMENTS 4

    14.2.3.2 MOVEMENT CRITERIA 6

    14.2.4 Bearing and Sliding Resistance at the Strength Limit State 7

    14.2.4.1 RESISTANCE FACTORS 7

    14.2.4.2 BEARING RESISTANCE 8

  • 8/13/2019 Nhi13061 Toc

    12/14

    TABLE OF CONTENTS (Continued)

    14.2.4.3 LOAD ECCENTRICITY 16

    14.2.4.4 SLIDING RESISTANCE 18

    14.3 DRIVEN PILE FOUNDATIONS DESIGN 20

    14.3.1 General Design Considerations 20

    14.3.2 Design Procedure 20

    14.3.3 Movement at the Service Limit State 22

    14.3.3.1 ANALYSIS OF PILE DISPLACEMENTS 22

    14.3.3.2 TOLERABLE MOVEMENT CRITERIA 25

    14.3.4 Resistance at the Strength Limit State 25

    14.3.4.1 RESISTANCE FACTORS 25

    14.3.4.2 AXIAL LOADING 26

    14.3.4.3 LATERAL LOADING 30

    14.3.4.4 BATTER PILES 31

    14.3.4.5 GROUP BEHAVIOR 31

    14.3.4.6 STRUCTURAL DESIGN 33

    REFERENCES 35

    15.1 OBJECTIVE OF LESSON 1

    15.2 CONVENTIONAL RETAINING WALL AND ABUTMENT DESIGN 1

    15.2.1 General Design Considerations 1

    15.2.2 Design Procedure 1

    15.2.3 Movement at the Service Limit State 3

    15.2.3.1 ANALYSIS OF WALL DISPLACEMENTS 3

    15.2.3.2 TOLERABLE MOVEMENT CRITERIA 3

    15.2.4 Resistance at the Strength Limit State 3

    15.2.4.1 RESISTANCE FACTORS 4

    15.2.4.2 LOAD FACTORS 5

    15.2.4.3 OVERALL STABILITY 6

    15.2.4.4 LOCATION OF RESULTANT FORCE 6

    15.2.4.5 BEARING RESISTANCE 7

    15.2.4.6 SLIDING RESISTANCE 7

    15.2.4.7 CONTINUATION OF RETAINING WALL DESIGN

    EXAMPLE 7

    15.2.4.8 STRUCTURAL DESIGN 15

    15.3 ANCHORED RETAINING WALL DESIGN 16

    15.3.1 General Design Considerations 16

    15.3.2 Design Procedure 17

    15.3.3 Movement at the Service Limit State 19

    15.3.3.1 ANALYSIS OF WALL DISPLACEMENTS 1915.3.3.2 TOLERABLE MOVEMENT CRITERIA 20

    15.3.4 Resistance at the Strength Limit State 20

    15.3.4.1 RESISTANCE FACTORS 21

    15.3.4.2 ANCHOR PULLOUT 21

    15.3.4.3 PASSIVE AND BEARING RESISTANCE 24

    15.3.4.4 STRUCTURAL RESISTANCE OF VERTICAL WALL

    ELEMENTS 24

    15.3.4.5 FACING ELEMENTS 25

    15.3.4.6 OVERALL STABILITY 26

  • 8/13/2019 Nhi13061 Toc

    13/14

    TABLE OF CONTENTS (Continued)

    15.4 MECHANICALLY-STABILIZED EARTH RETAINING WALLS 26

    15.4.1 General Design Considerations 26

    15.4.2 Design Procedure 28

    15.4.3 Movement at the Service Limit State 30

    15.4.3.1 ANALYSIS OF WALL DISPLACEMENTS 30

    15.4.3.2 TOLERABLE MOVEMENT CRITERIA 30

    15.4.4 Resistance at the Strength Limit State 31

    15.4.4.1 RESISTANCE FACTORS 31

    15.4.4.2 SAFETY AGAINST SOIL FAILURE 32

    15.4.4.3 INTERNAL STABILITY OF REINFORCEMENTS 34

    Inextensible Reinforcements 34

    Extensible Reinforcements 36

    15.4.4.4 PULLOUT OF REINFORCING ELEMENTS 37

    15.4.4.5 DESIGN LIFE 39

    15.4.4.6 STRUCTURAL DESIGN OF FACE PANEL 41

    15.4.5 Example Problem - Mechanically Stabilized Earth (MSE) Wall 42

    REFERENCES 63

    WORK PERIOD #2 - CONCRETE BOX CULVERTS

    16.1 OBJECTIVE OF THE LESSON 1

    16.2 OVERVIEW OF RAILING SYSTEMS 1

    16.2.1 Traffic Railing 1

    16.2.1.1 RAILING SYSTEMS REQUIREMENTS 1

    16.2.1.2 PERFORMANCE LEVEL SELECTION CRITERIA 2

    16.2.1.3 RAILING DESIGN 3

    16.2.2 Pedestrian Railing 17

    16.2.3 Bicycle Railings 18

    16.2.4 Combination Railings 18

    16.2.5 Curbs and Sidewalks 19

    16.2.6 Deck Overhang Requirements 20

    Concrete Paraoets 20

    Post-Type Railings 22

    16.2.7 Design Examples 26

    16.3 OVERVIEW OF BRIDGE JOINTS 43

    16.3.1 General 43

    16.3.2 Selection 45

    16.3.3 Design Requirements 46

    16.3.4 Joint Types 47

    16.4 OVERVIEW OF BEARINGS 48

    16.4.1 Load and Movement Capabilities 48

    16.4.2 Forces in the Structure Caused by Restraint of Movement 5016.4.3 Overview of Special Design Provisions for Bearings 50

    16.4.3.1 METAL ROCKER AND ROLLER BEARINGS 50

    16.4.3.2 PTFE SLIDING SURFACES 51

    16.4.3.3 BEARINGS WITH CURVED SLIDING SURFACES 53

    16.4.3.4 POT BEARINGS 53

    16.4.3.5 STEEL REINFORCED ELASTOMERIC BEARINGS 54

    16.4.3.6 ELASTOMERIC PADS 61

  • 8/13/2019 Nhi13061 Toc

    14/14

    TABLE OF CONTENTS (Continued)

    16.4.3.7 BRONZE OR COPPER ALLOY SLIDING SURFACES 62

    16.4.3.8 DISC BEARINGS 63

    16.4.3.9 GUIDES AND RESTRAINTS 63

    16.4.3.10 OTHER BEARING SYSTEMS 63

    17A.1 OBJECTIVE OF THE LESSON 1

    17A.2 STRESS-LAMINATED DECK EXAMPLE 1

    17B.1 OVERVIEW OF VESSEL COLLISION PROVISIONS 1

    178.1.1 Background Information on the Development of Vessel Collision

    Guidelines 1

    17B.1.2 Background Information on the Main Factors Affecting the

    Vessel Collision Problem 2

    17B.1.2.1 VESSEL CHARACTERISTICS 2

    17B.1.2.1.1 Ships 2

    17B.1.2.1.2 Barges 3

    17B.1.2.2 WATERWAY CHARACTERISTICS 417B.1.2.3 BRIDGE CHARACTERISTICS 4

    17B.1.3 Initial Planning 4

    178.1.4 General Provisions 5

    17B.1.4.1 OBJECTIVE OF SPECIFICATIONS 5

    17B.1.4.2 FLOW CHART FOR THE DESIGN OF BRIDGE

    COMPONENTS FOR VESSEL COLLISION 5

    17B.1.4.3 APPLICABILITY OF SPECIFICATIONS 6

    17B.1.4.4 DATA COLLECTION 7

    17B.1.5 Minimum Impact Requirements 8

    17B.1.6 Design Vessel Selection 8

    17B.1.6.1 ACCEPTABLE ANNUAL FREQUENCY OF BRIDGE

    ELEMENT COLLAPSE 9

    17B.1.6.2 ANNUAL FREQUENCIES OF BRIDGE ELEMENT

    COLLAPSE 9

    17B.1.6.2.1 General Remarks 10

    1713.1.6.2.2 Vessel Traffic Distribution, N 10

    17B.1.6.2.3 Probability of Aberrancy, PA 11

    17B.1.6.2.4 Geometric Probability, PG 15

    178.1.6.2.5 Probability of Collapse, PC 17

    17B.1.7 Vessel Collision Loads 17

    17B.1.7.1 DESIGN VESSEL VELOCITY 17

    17B.1.7.2 VESSEL COLLISION ENERGY 18

    17B.1.7.3 SHIP COLLISION FORCE ON PIER 18

    17B.1.7.4 SHIP BOW DAMAGE LENGTH 19

    1713.1.7.5 SHIP COLLISION FORCE ON SUPERSTRUCTURE 19

    17B.1.7.6 BARGE COLLISION FORCE ON PIER 20

    178.1.7.7 APPLICATION OF IMPACT FORCES 2217B.1.8 Bridge Protection 25

    17B.2 EXAMPLE BRIDGE DESCRIPTION 25

    APPENDIX A

    Typical Ship Characteristics

    APPENDIX B

    Typical Barge Characteristics