Modelling long-term electromagnetic emission of DC-DC ... · LAAS-CNRS / Laboratoire d’analyse et...

30
LAAS-CNRS / Laboratoire d’analyse et d’architecture des systèmes du CNRS Laboratoire conventionné avec l’Université Fédérale de Toulouse Midi-Pyrénées A. Boyer 1 , Manuel Gonzalez Sentis 1,2 , Chaimae Ghfiri 1,2 , Andre Durier 2 1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France 2 IRT Saint-Exupéry, 118 route de Narbonne, CS 44248, Toulouse, France Modelling long-term electromagnetic emission of DC-DC converter 1

Transcript of Modelling long-term electromagnetic emission of DC-DC ... · LAAS-CNRS / Laboratoire d’analyse et...

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    A. Boyer1, Manuel Gonzalez Sentis1,2, Chaimae Ghfiri1,2, Andre Durier2

    1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France2IRT Saint-Exupéry, 118 route de Narbonne, CS 44248, Toulouse, France

    Modelling long-term electromagnetic emission of DC-DC converter

    1

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Context

    Conducted emission

    Gradual degradation of components of the SMPS due to aging Impact on the parasitic electromagnetic emission ? Prediction by simulation of the evolution of emission ? Anticipate risk of non-compliance? Select the appropriate component?

    Two parts:1. Modeling of the conducted emission of a SMPS for aging study2. Study thermal aging impact on conducted emission, modeling and validation

    Switch-Mode Power Supply

    Conducted emission

    Radiated emission

    Aging (temperature, electrical stress, vibration)

    2

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    A. Boyer1, Manuel Gonzalez Sentis1,2, Chaimae Ghfiri1,2, Andre Durier2

    1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France2IRT Saint-Exupéry, 118 route de Narbonne, CS 44248, Toulouse, France

    Modeling methodology of the conducted emission of a DC-DC converter board

    3

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Outline

    1. Presentation of the case study2. Modelling approach of the equipment3. SMPS modelling4. EMC test bench modelling5. Common-mode impedance SMPS– reference plane6. Simulation of conducted emission

    4

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Presentation of the case study

    Buck synchronous converter,built around controller LT3800Input = 12 V, Output = 5 V, 10 A

    max, 200 kHz, burst mode.

    Simplified electrical diagram

    12 V

    +

    + To ext. load

    LT3800

    L

    D

    Out 5 V

    To ext. battery

    VBAT

    Vss0 V

    SW

    Vss

    Q1

    Q2

    10 µH

    2 x 100 µF

    100 µF 2 x 22 µF

    12 V input5V reg. output

    LT3800 controller

    NMOSFET (STB140NF75T4)

    Schottky (MBRB1660)

    59 mm

    55 mmNMOSFET (STB140NF75T4)

    ceramictantalum

    tantalum

    5

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Presentation of the case study

    Installation in a typical normative set-up for conducted emission

    DC-DC converter board

    Cable harness (L=1.2m, h = 50

    mm)LISN

    12 V

    Reference ground plane

    Dum

    my

    load

    (4.7

    Ω)VBAT

    VSS_in

    Out

    VSS_loadVSS_Ref

    I DM

    mea

    s.

    I CMm

    eas.

    V BAT

    LISN

    m

    eas.

    V SS

    LISN

    m

    eas.

    ZCM board

    6

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Modelling approach of the equipment

    Bottom-up approachConstruction of white or grey box model of

    componentsExtraction of component models from

    measurementsExtraction of PCB model from simulation

    ₋ Less accurate and more complex extraction than a full black-box approach

    ₊ Components model appear explicitly component’s aging model can be included₊ EMC prediction prior fabrication of the equipment₊ Influence of design choice can be simulated (e.g. component change, load, placement)

    Active devices

    PCB

    Connectors

    Passives

    7

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    SMPS modelling – Definition of terminals

    VBAT

    VSS_in

    VSS_Ref SW

    Out

    VSS_load

    Physical port (connectors)Non physical port (common-mode path)

    Large Vss plane Large dv/dt

    DC-DC converter board model

    8

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    SMPS modelling – Passives models

    2 ports VNA measurements (Z(f))

    Extract equivalent RLC model

    e.g. 100 µF Tantalum capacitor (Vishay TR3C107K010)

    I(V) and C(V) measurements for Schottky diode SPICE model extraction

    9

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Gate command (V(t))

    Vss

    SMPS modelling – Power MOSFET model

    Extracting a model from measurements is a complex task due to non-linear behaviorChoice of model is a compromise between accuracy and model complexityHybrid proposed approach:

    Sakurai Newton model (I(V), Rdson)

    Junction capacitance (C(V))

    Body diode (I(V), C(V))

    source

    gate

    drain

    Ross (Z(f))

    Package inductance (Z(f))

    10

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    SMPS modelling – PCB model

    Touchstone file export Black-box model

    Small boardMain effect to include is the parasitic inductance along the resonant loop formed by Schottky

    diode, MOSFETs and input capacitor

    12 V

    +

    + To ext. load

    LT3800

    L

    D

    Out 5 VTo ext. battery

    VBAT

    Vss0 V

    SW

    Vss

    Q1

    Q2

    10 µH

    2 x 100 µF

    100 µF 2 x 22 µF

    Resonant loop

    Typical approach:3D electromagnetic

    simulator

    11

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    EMC test bench modelling

    Cable, LISN and dummy load modeling of common/differential-mode propagation is criticalMixed-mode S parameters is a suitable format to understand CM-DM issues :

    Port 1

    [ ] [ ][ ][ ] 1−=

    = TST

    SSSS

    S SECCCD

    DCDDMM

    [ ]

    −=

    1111

    21T

    conversion

    12

    DUT

    [SSE]

    Ref

    Port 2

    Ref

    V1

    V2

    I1

    I2

    Single-ended representation

    Port Diff+

    DUT

    [SMM]

    VDiff

    VCM

    IDiff

    ICM

    Mixed-mode representation

    Port Diff-

    Port CM+

    Port CM-

    Example: LISN model – Construction from Mixed-mode Z parameter measurements:

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Common-mode impedance SMPS – reference plane

    Impedance Vss board plane – ref. plane: floating rectangular plane capacitve behaviour

    SS

    hS

    CCC riPCM+

    +=+=π

    εεε 00 7.151.1

    hLCM 0µ=22395

    =λhRCM

    Impedance SW node – ref. plane: complex shape electromagnetic simulation

    Port1 (SW)

    Port2 (Vss plane)

    ≈ 3 pF

    ≈ 0.15 pF

    13

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Simulation of conducted emission

    Simulation in time and frequency domain (receiver bandwidth taken into account in simu.)Case 1: 4.7 Ω load and floating Vss plane

    Ripple amplitude : OKTime-domain profile + 34 MHz oscillation : OK

    CE LISN CE currentprobe

    Good correlation up to 30 MHz (validity of LISN model)

    Resonance at 34 MHz modeledCM current strongly dependent on capacitance with SW node14

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Simulation of conducted emission

    Two extra cases in simulation

    1 Ω + floating Vss plane 4.7 Ω + shorted Vss plane

    15

    CM c

    urre

    nt

    on c

    able

    CE o

    n LI

    SN

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Conclusion

    Satisfying approach to predict the global trend and the maincharacteristics of conducted emission spectrum produced by DC-DCconverter

    Black-box modeling approach would certainly provide a betteraccuracy since it is based on measurement results

    The effect of change of load, component or equipment mounting onthe EMC test bench can be simulated.

    The influence of aging of components should be simulated.

    16

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    A. Boyer1, Manuel Gonzalez Sentis1,2, Chaimae Ghfiri1,2, Andre Durier2

    1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France2IRT Saint-Exupéry, 118 route de Narbonne, CS 44248, Toulouse, France

    Study of the thermal aging effect on the conducted emission of a synchronous buck converter

    17

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Context

    Conducted emission

    Gradual degradation of components of the SMPS due to aging Impact on the parasitic electromagnetic emission ? Prediction by simulation of the evolution of emission ? Anticipate risk of non-compliance? Select the appropriate component?

    Two parts:1. Modeling of the conducted emission of a SMPS for aging study2. Study thermal aging impact on conducted emission, modeling and validation

    Switch-Mode Power Supply

    Conducted emission

    Radiated emission

    Aging (temperature, electrical stress, vibration)

    18

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Outline

    1. Modeling approach of aging impact2. Effect of aging on conducted emission3. Characterization of components after aging4. Passive device model extraction5. Simulation of effect of aging on conducted

    emission

    19

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Modelling approach of aging impact

    Individual accelerated thermal aging of components mounted on the DC-DC converterboard

    Accelerated thermal aging of DC-DC converter boards (150°c, 3 weeks max.) I(V), C(V), Z(f) characterization of components during the stress period Identification of most degraded components Extraction of equivalent models before / after stress Comparison between measurement and simulation of evolution of conducted emission

    for validation purpose

    Name Reference Type ValueCin1 Murata GRM32ER71E226K 25 V X7R ceramic capacitor 22 µFCin2 Vishay TR3C107K010 25 V Tantalum capacitor 100 µFCout Vishay TR3W107K025 10 V Tantalum capacitorC1 Panasonic EEEFP1E470AP 25 V Aluminum capacitor 47 µFLout Vishay IHLP5050FDER100 Shield powder iron inductor 10 µH

    L1 Coiltronics HC9-220High temperature powder inductor 22 µH

    Lf Murata BLM21PG600SN1D Chip ferrite bead 60 Ω @ 100 MHzD Fairchild MBRB1660 Schottky rectifier 16 A max

    Q1, Q2 ST STB140NF75T4 Power NMOSFETRDSon = 6.5 mΩ 120 A

    TVS LittelFuse SMDJ11CA Bidirectional TVS diode VBR = +/- 13 V

    20

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Effect of aging on conducted emission

    Conducted emission measurement before/after aging (150°c - 330h) Measurements done on 5 identical boards same trends.

    12 V

    +

    + To ext. load

    LT3800

    Lout

    D

    Out 5 VTo ext. battery

    VBAT

    Vss0 V

    SW

    Vss

    Q1

    Q2 Cout (x2)

    Cin1 Cin2 (x2)

    Increase above 3 MHzNo increase

    Shield powder iron inductor

    Tantalum capa.

    Tantalum capa.

    Ceramic capa.

    At the input side: At the output side:

    21

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Characterization of components after aging

    Name Type Stress effectCin1 25 V X7R ceramic capacitor NoneCin2 25 V Tantalum capacitor ModerateCout 10 V Tantalum capacitorC1 25 V Aluminum capacitor HighLout Shield powder iron inductor HighL1 High temperature powder inductor NoneLf Chip ferrite bead ModerateD Schottky rectifier ModerateQ1, Q2 Power NMOSFET ModerateTVS Bidirectional TVS diode Moderate

    Summary:

    22

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Characterization of components after aging

    Characterization results

    Aluminum capacitor (gradual increase of ESR)

    Iron powder inductor (gradual increase of core loss)

    Ferrite bead (slight decrease of real part of impedance)

    Schottky diode (slight increase of Ron)

    TVS diode (slight increase of Ron and VBR)

    MOSFET (sligth increase of VTH, Ron not affected)

    23

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Passive device model extraction

    Typical capacitor model

    Thermal stress↓

    Co↓ and ESR↑

    ESR model (parallel R-C cells)

    Impact of aging on capacitors (Aluminum and tantalum)

    Extraction of capacitor models after each stress period (optimization of C0 andRC cells)

    24

    ESR

    ESL

    C0

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Passive device model extraction

    Thermal overstress↓

    Rp↓ and Cp↑

    Impact of aging on iron powder inductor

    25

    RDC

    L0

    CP

    RP

    Typical inductor model

    Extraction of inductor models after each stressperiod (optimization of L0 and RP)

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Simulation of effect of aging on conducted emission

    Initial configuration (tantalum capacitor at input/output and iron powder inductor)Measurement

    Correct simulation of the increase of conducted emission at the output side (filtering inductance) and the invariability of the conducted emission at the input side (robustness of tantalum capacitor)

    Simulation

    Inpu

    t sid

    eO

    utpu

    t sid

    e

    26

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Simulation of effect of aging on conducted emission

    Simulation of extra cases:1. Only aluminum capacitors mounted + iron powder inductor

    important rise of the input and output CE up to 20 MHz due to weak robustness of aluminium capacitors.

    Role of the degradation of iron powder inductor above 20 MHz

    Input side Output side

    27

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Simulation of effect of aging on conducted emission

    Simulation of extra cases:2. Only tantalum capacitors mounted + high temperature inductor

    Small increase (+ 2 dB) around the fundamental frequency due to the slight increase of the ESR of tantalum capacitors

    No increase of the conducted emission at the output side due to the excellent robustness of the high temperature inductor

    Input side Output side

    28

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Conclusion

    High temperature stress affects conducted emission produced bySMPS (in buck configuration in this study, but simulations confirm that thesame effects arise in other configurations)Role of the degradation of passive devices (especially electrolytic

    capacitors and iron powder inductors)Simulation of the long-term evolution of conducted emission is feasible

    if the evolution of the impedance vs. aging condition is performed

    Perspectives: Accelerated-aging test set-up to cover all stressconditions (design of experiments) and reliability calculation tool toextrapolate emission level drift in other stress conditions (e.g.MSTORM model [1]).

    [1]: J. B. Bernstein, E. Bender and A. Bensoussan: “Reliability Prediction with MTOL”. IEEE Transactions on Device and Materials Reliability (2016)

    29

  • LAAS-CNRS/ Laboratoire d’analyse et d’architecture des systèmes du CNRS

    Laboratoire conventionnéavec l’Université Fédérale

    de Toulouse Midi-Pyrénées

    Thank you for your attention

    Слайд номер 1Слайд номер 2Слайд номер 3Слайд номер 4Слайд номер 5Слайд номер 6Слайд номер 7Слайд номер 8Слайд номер 9Слайд номер 10Слайд номер 11Слайд номер 12Слайд номер 13Слайд номер 14Слайд номер 15Слайд номер 16Слайд номер 17Слайд номер 18Слайд номер 19Слайд номер 20Слайд номер 21Слайд номер 22Слайд номер 23Слайд номер 24Слайд номер 25Слайд номер 26Слайд номер 27Слайд номер 28Слайд номер 29Слайд номер 30