Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de...

36
Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn- Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie Chimique, École Polytechnique P.O. Box 6079, Station "Downtown" Montréal, Québec H3C 3A7 Canada

Transcript of Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de...

Page 1: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

Modelingshort-range ordering(SRO) in solutions

Arthur D. Pelton and Youn-Bae Kang

Centre de Recherche en Calcul Thermochimique,Département de Génie Chimique,

École PolytechniqueP.O. Box 6079, Station "Downtown"

Montréal, Québec H3C 3A7Canada

Page 2: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

2

Enthalpy of mixing in liquid Al-Ca solutions. Experimental points at 680° and 765°C from [2]. Other points from [3]. Dashed line from the optimization of [4] using a Bragg-Williams model.

Page 3: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

3

Binary solution A-B

Bragg-Williams Model(no short-range ordering)

ln lnconfigurationalA A B B

A B BW

iiBW A B

EA B BW

S R X X X X

H X X

L X X

S X X

Page 4: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

4

Enthalpy of mixing in liquid Al-Sc solutions at 1600°C. Experimental points from [5]. Thick line optimized [6] with the quasichemical model. Dashed line from the optimization of [7] using a BW model.

Page 5: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

5

Partial enthalpies of mixing in liquid Al-Sc solutions at 1600°C. Experimental points from [5]. Thick line optimized [6] with the quasichemical model. Dashed line from the optimization of [7] using a BW model.

Page 6: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

6

Calculated entropy of mixing in liquid Al-Sc solutions at 1600°C, from the quasichemical model for different sets of parameters and optimized [6] from experimental data.

Page 7: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

7

Associate ModelA + B = AB ; AS

AB “associates” and unassociated A and B are randomly distributed over the lattice sites.Per mole of solution:

,

ln ln ln

exp

A A AB

B B AB

AB

A B

configA A B B AB AB

A A A B AB

AB AS

AB A B AS

X n n

X n n

n

n n A B

S R n X n X n X

X n n n n

H X

K X X X RT

where : moles of associates

moles of unassociated and

where :

Page 8: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

8

Enthalpy of mixing for a solution A-B at 1000°C calculated from the associate model with the constant values of AS shown.

Page 9: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

9

Configurational entropy of mixing for a solution A-B at 1000°C calculated from the associate model with the constant values of AS shown.

Page 10: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

10

Quasichemical Model (pair approximation)A and B distributed non-randomly on lattice sites

(A-A)pair + (B-B)pair = 2(A-B)pair ; QM

ZXA = 2 nAA + nAB

ZXB = 2 nBB + nAB

Z = coordination numbernij = moles of pairs

Xij = pair fraction = nij /(nAA + nBB + nAB)

The pairs are distributed randomly over “pair sites”

2 2ln ln ln 2

ln ln

configAA AA A BB BB B AB AB A B

A A B B

S R X X X X X X X X X X

R X X X X

This expression for Sconfig is: mathematically exact in one dimension (Z = 2) approximate in three dimensions

2

2

" " 4exp

AB QM

AB AA BB QM

H X

K X X X RT

Page 11: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

11

Enthalpy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with the constant values of QM shown with Z = 2.

Page 12: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

12

Configurational entropy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with the constant values of QM shown with Z = 2.

Page 13: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

13

The quasichemical model with Z = 2 tends to give H and Sconfig functions with minima which are too sharp. (The associate model also has this problem.)

Combining the quasichemical and Bragg-Williams models

2" " 4expAB AA BB QMK X X X RT

Sconfig as for quasichemical model

2QM AB BW A BH X X X

Term for nearest-neighbor interactions

Term for remaining lattice interactions

Page 14: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

14

Enthalpy of mixing in liquid Al-Sc solutions at 1600°C. Experimental points from [5]. Curves calculated from the quasichemical model for various ratios (BW/QM) with Z = 2, and for various values of with Z = 0.

Page 15: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

15

Enthalpy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with the constant parameters BW and QM in the ratios shown.

Page 16: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

16

Configurational entropy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with the constant parameters BW and QM in the ratios shown.

Page 17: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

17

The quasichemical model with Z > 2 (and BW = 0)

This also results in H and Sconfig functions with minima which are less sharp.

The drawback is that the entropy expression is now only approximate.

Page 18: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

18

Enthalpy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with various constant parameters QM for different values of Z.

Page 19: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

19

Configurational entropy mixing for a solution A-B at 1000°C calculated from the quasichemical model with various constant parameters QM for different values of Z.

Page 20: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

20

Displacing the composition of maximum short-range ordering

Associate Model:– Let associates be “Al2Ca”– Problem arises that partial

no longer obeys Raoult’s Law as XCa 1.

Quasichemical Model:

Let ZCa = 2 ZAl

ZAXA = 2 nAA + nAB

ZBXB = 2 nBB + nAB

Raoult’s Law is obeyed as XCa 1.

configCaS

Page 21: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

21

Prediction of ternary properties from binary parameters

Example: Al-Sc-MgAl-Sc binary liquids exhibit strong SRO

Mg-Sc and Al-Mg binary liquids are less ordered

Page 22: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

22

Optimized polythermal liquidus projection of Al-Sc-Mg system [18].

Page 23: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

23

Bragg-Williams Model

0 0

0

A B B C C ABW A B BW B C BW C A

BW A B BW B C

BW C A

H X X X X X X

If while

positive deviations result along the AB-C join.

The Bragg-Williams model overestimates these deviations because it neglects SRO.

Page 24: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

24

Al2Sc-Mg join in the Al-Mg-Sc phase diagram. Experimental liquidus points [19] compared to calculations from optimized binary parameters with various models [18].

Page 25: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

25

Associate Model

Taking SRO into account with the associate model makes things worse!

Now the positive deviations along the AB-C join are not predicted at all. Along this join the model predicts a random mixture of AB associates and C atoms.

Page 26: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

26

Quasichemical Model

AB BC CAQM A B QM B C QM C AH X X X

Correct predictions are obtained but these

depend upon the choice of the ratio (BW /QM)

with Z = 2, or alternatively, upon the choice of

Z if BW = 0.

Page 27: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

27

Miscibility gaps calculated for an A-B-C system at 1100°C from the quasichemical model when the B-C and C-A binary solutions are ideal and the A-B binary solution has a minimum enthalpy of -40 kJ mol-1 at the equimolar composition. Calculations for various ratios (BW /QM) for the A-B solution with Z = 2. Tie-lines are aligned with the AB-C join.

Page 28: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

28

Miscibility gaps calculated for an A-B-C system at 1100°C from the quasichemical model when the B-C and C-A binary solutions are ideal and the A-B binary solution has a minimum enthalpy of -40 kJ mol-1 at the equimolar composition. Calculations for various values of Z. Tie-lines are aligned with the AB-C join.

Page 29: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

29

Binary Systems

Short-range ordering with positive deviations from ideality (clustering)

Bragg-Williams model with BW > 0 gives miscibility gaps which often are too rounded. (Experimental gaps have flatter tops.)

Page 30: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

30

Ga-Pb phase diagram showing miscibility gap. Experimental points from [14]. Curves calculated from the quasichemical model and the BW model for various sets of parameters as shown (kJ mol-1).

Page 31: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

31

Quasichemical Model

With Z = 2 and QM > 0, positive

deviations are predicted, but

immiscibility never results.

Page 32: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

32

Gibbs energy of mixing for a solution A-B at 1000°C calculated from the quasichemical model with Z = 2 with positive values of QM.

Page 33: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

33

With proper choice of a ratio (BW / QM)

with Z = 2, or alternatively, with the

proper choice of Z (with BW = 0),

flattened miscibility gaps can be

reproduced which are in good agreement

with measurements.

Page 34: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

34

Ga-Pb phase diagram showing miscibility gap. Experimental points from [14]. Curves calculated from the quasichemical model and the BW model for various sets of parameters as shown (kJ mol-1).

Page 35: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

35

Enthalpy of mixing curves calculated at 700°C for the two quasichemical model equations shown compared with experimental points [15-17].

Page 36: Modeling short-range ordering (SRO) in solutions Arthur D. Pelton and Youn-Bae Kang Centre de Recherche en Calcul Thermochimique, Département de Génie.

36

Miscibility gaps calculated for an A-B-C system at 1000°C from the quasichemical model when the B-C and C-A binary solutions are ideal and the A-B solution exhibits a binary miscibility gap. Calculations for various ratios (BW(A-B) /QM(A-B)) with positive parameters BW(A-B) and QM(A-B) chosen in each case to give the same width of the gap in the A-B binary system. (Tie-lines are aligned with the A-B edge of the composition triangle.)