Mécanique quantique I - Département de physique...

26
Alain Blondel Mecanique quantique I 23-25 Fev 2010 Mécanique quantique I 2010 1. Quelques points pratiques 2. Introduction: > 2.1 du continu au discret > 2.2 des prédictions certaines aux prédictions probabilistes > 2.3 les interférences, diffraction de lumière, de photons, d’électrons et autres particules

Transcript of Mécanique quantique I - Département de physique...

Page 1: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Mécanique quantique I2010

1. Quelques points pratiques

2. Introduction:

> 2.1 du continu au discret

> 2.2 des prédictions certaines aux prédictions probabilistes

> 2.3 les interférences, diffraction de lumière, de photons, d’électrons et autres particules

Page 2: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Informations pratiques

Professeur: Alain Blondel [email protected] Particules

Assistants: Bertand Martin dit La Tour [email protected] ParticulesJason Hancock [email protected] Matière condenséePavel Sekatski [email protected] Optique quantique

Cours: mardi 10-12 jeudi 10-12 une semaine sur deux.

Exercices mercredi 16-18 jeudi 10-12 une semaine sur deux

Page 3: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Contrôle des connaissances:

-- series d’exercices à rendre d’une semaine sur l’autre

Une note moyenne > 4 doit être obtenue pour valider les exercicesBonus entre 0 et 1 point à valoir sur la note d’examen écritIl est extrêmement important de faire en sorte de b ien faire tous les exercices dès le début du semestre!

-- examen écrit : en quatre heures. En général 3 problèmes. Barême établi de telle sorte que finir deux problèmes *justes* donne l’examen avec une bonne note (5)

-- examen oral : une question sur le cours tirée au sort -- on peut rejeter le premier choix, le second choix est alors définitif.+ 30 minutes pour préparer un exposé de 15 minutes sur ce sujet.

Session en Juin et en Septembre (max: deux passages)

Page 4: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Documentation:

Nous suivons le cours de mécanique quantique de l’Ecole Polytechnique (Basdevant, Dalibard) leçons I à 14.Environ une leçon par semaine. La bibliothèque en possède quelques exemplaires. Il inclut des exercices en fin de chaque chapitre -- les faire.

Vous pouvez aussi vous référrer au classique: mécanique quantique de Cohen-Tannoudji – Delanoë

Il y a quelques éléments de mathématiques qui sont importants: notions de probabilité, transformée de Fourier, distributions, (Appendices A et B du cours). On traitera de façon minimale des espaces de Hilbert.

Page 5: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Chapitre I Les bases de la mécanique quantique

Passage du continu au discret quantique

Prédecesseurs: Démocrite et les AtomesNewton et la nature corpusculaire de la lumière1895 Bequerel découvre le rayonnement radioactif des isotopes de l’Uranium et du Thorium1900 Max Planck propose la théorie des quantas pour décrire le rayonnement du corps noir1905 L’effet photo-electrique est expliqué par Einstein pour démontrer le caractère quantifié de la lumière -photons (1926). 1909 Expérience de Millikan: la quantification de la charge éléctrique déposée sur des micro-gouttes d’huile1909 Expérience de Rutherford collisions de particules alpha sur la matière indique l’existence de noyaux atomiques

Page 6: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Page 7: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Les quantas (Max Planck 1900)Max Planck étudie le rayonnement du corps noir (loi de Wien qui décrit l’intensité de l’émission électromagnétique en fonction de la fréquence) en utilisant les lois de la thermodynamique statistique. Il montre que les résultats expérimentaux peuvent être expliqués en supposant que “tout se passe comme si” l’émission était générée par des oscillateurs harmoniques dont l’énergie est liée à la fréquence émise par la relation:

E = n hν (quantification de l’énergie)

ν est la fréquence du rayonnement = dn(oscillations)/dt

h est la constante de Planck

cette relation entre énergie et fréquence est fondamentale. Elle nous rappelle la relation entre énergie et temps des équations canoniques

,,, Ht

Hq

p

Hp

q

Hi

ii

i

&&& ==−=∂

∂∂∂

∂∂

Page 8: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

E = n hν peut aussi s’écrire E.T/h = n

En 1905 Einstein écrit un papier célèbre ou il explique que l’effet photo-electrique

En 1839, Antoine Becquerel et son fils présentent pour la première fois un effet photoélectrique. Leur expérience permet d'observer le comportement électrique d'électrodes émergées dans un liquide, modifié par un éclairage.

Il a été compris et présenté en 1887 par Heinrich Rudolf Hertz qui en publia les résultats dans la revue scientifique Annalen der Physik[1].

Albert Einstein fut le premier à en proposer une explication, en utilisant le concept de particule de lumière ou quantum, appelé aujourd'hui photon, initialement introduit par Max Planck dans le cadre de l'explication qu'il proposa lui-même pour l'émission du corps noir.

Albert Einstein a expliqué que ce phénomène était provoqué par l'absorption de photons, les quanta de lumière, lors de l'interaction du matériau avec la lumière.

Page 9: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Page 10: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Effet photoélectrique1. Les électrons ne sont émis que si la fréquence de la lumière est suffisamment

élevée et dépasse une fréquence limite appelée fréquence seuil

2. Cette fréquence seuil dépend du matériau et est directement liée à l'énergie de liaison des électrons qui peuvent être émis,

3. Le nombre d'électrons émis lors de l'exposition à la lumière, qui détermine l'intensité du courant électrique, est proportionnel à l'intensité de la source lumineuse,

4. L'énergie cinétique des électrons émis dépend linéairement de la fréquence de la lumière incidente.

5. Le phénomène d'émission photoélectrique se produit dans un délais extrêmement petit inférieur à 10-9 s après l'éclairage, ce qui rend le phénomène quasi instantané.

L’effet photo-électrique s’explique par le fait qu’un photon doit avoir une énergie E=hv supérieure au niveau d’énergie atomique pour libérer l’électron de l’atome. L’énergie qui reste résul te en énergie cinétique des électrons

Page 11: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

La longueur d’onde λ de la lumière, est liée à la fréquence et àla pulsation par la vitesse c de l’onde

c = λ /T = λνpar définition de la longueur d’onde, et donc à la pulsation

ω = 2π /Tet au nombre d’onde k (radian de phase par unité de longueur)

k = 2π /λ

Une onde plane s’écrivant: A(x,t) = A0e−iωt + ikx

Page 12: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

la relation de Planck, E=hv, qui permet d’expliquer l’effet photo-électrique,

permet aussi de relier l’énergie d’un photon et sa pulsation:

E = hν = hω /2π = hωavec h = h /2πh = 6,6261 10-34 Joule.seconde

on préférera utiliser

hc =197,327MeV . fm ≈ 200MeV . fermi

1fermi= 1 femto. mètre=1fm=10-15m

Page 13: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

on se rapellera que la quantité de mouvement d’un photon est donnée par E=p.c, d’où l’on dérive que

E = hν = hc /λ = hkc

p = h /λ = hksoit

la longueur d’onde d’un photon est inversement proportionnelle à son énergie ou sa quantité de mouvement.

p = hk sera souvent utilisée par la suite

Page 14: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

λ

E

km m mm µm nm pm fm

eV keV MeV GeVondes radio radar visible X gammas γ

Ondes visibles : 0.4 ---- 0.8 µmniveaux d’énergie: vibrations absorption particulesmoléculaires atomique élémentaires

nucléaire

Page 15: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

la manifestation des photons est très différente selon leur énergie:

en dessous de ~1 eV on ne peut détecter que des phénomènes électromagnétiques (ondes) collectifs

vers 1 eV on peut détecter la lumière visible… ou par effet photoelectrique 1 photon à la fois (dans un photomultiplicateur par ex ou les nouveaux siPM)

À plus hautes énergies on détecte uniquement les photons individuels.

Page 16: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

MRS APD

One pixel ~ 40 x 40 µµµµm2

Page 17: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Multi-Pixel-Photon-CounterOperation

Page 18: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

au dessus de E0>= 1 MeV ~2. mec2, un photon peut créer une paire électron + positon. γ + atome → e++e-+ atome

γ e-

e+

γ

e+

e-

ici dans une chambre à bullesune particule incidente interagitet produit diverses particules secondaires dont un π0→γγ

Noter que la distance parcourue par les deux photons est différente!

L

dNdL

∝ exp(-L/X0) = p(L)

X X

Page 19: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

L

dNdL

∝ exp(-L/X0) = p(L)

X X

La mécanique quantique prédit la courbe (distribution) qui peut être obtenue comme résultat d’un grand nombre d’observations

mais elle ne prédit pas la valeur de la longueur au bout de laquelle un photon donné se matérialisera.

Page 20: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

On peut arbitrairement transformer un photon ‘quantique’ de haute energie en photon de basseénergie par une transformation de Lorentz

2

1

1

=

=

c

v

c

v

γ

β

E

cp

cp

cp

z

y

x

Rappel: Quadrivecteur energie impulsion:

Transformation de Lorentz à vitesse v le long de l’axe des x:

v

γ

E

E

0

0Photon le long de Ox: E=pxc, py=pz=0

=

=

E

E

E

E

0

0

00

0100

0010

00

'

0

0

'

γβγ

βγγE’=γ(1+β)E

Page 21: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

E’=γ(1+β)E

Ex: γ=5000 � β~ ±1-1/2γ2

~ +1 et E’= 10000 E~ -1 et E’= E/10000

On peut changer l’énergie de façon arbitraire par une transformation de Lorentz

photons de haute énergie: nature individuelle (particule)

photons de basse énergie: manifestations collectives (ondes)

Mais ce sont les mêmes objets physiques!

Page 22: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Phénomènes diffractifs et interférences

Diffraction de la lumière par une fente:

x

a

Théorème d’Huygens: on intègre de [0,a] les ondes sphériquesIssues des points infinitésimaux de l’ouverture tous considéréscomme sources.

“Onde plane”Onde plane = approximation d’une ondeissue d’une source très éloignée

Écran récepteur

Page 23: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Diffraction de la lumière par une fente:

x

a

“Onde plane”

Écran récepteur

u

0L

θ

r

r0

Page 24: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

Page 25: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010

f

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

f

θ

Page 26: Mécanique quantique I - Département de physique ...dpnc.unige.ch/users/blondel/mecanique-quantique/cours-I.pdf · Alain Blondel Mecanique quantique I – 23 -25 Fev 2010 Informations

Alain Blondel Mecanique quantique I – 23-25 Fev 2010