ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener...

22
ME-409 Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1, MA3 Opt. Génie nucléaire MA1 Opt. Génie électrique et électronique MA1, MA3 Opt. Mineur en Design intégré, architecture et durabilité H Opt. Mineur en Energie H Opt. Sciences et ingénierie de l'environnement MA1, MA3 Opt. Language English Credits 3 Session Winter Semester Fall Exam Written Workload 90h Weeks 14 Hours 3 weekly Lecture 2 weekly Exercises 1 weekly Summary The goal of the lecture is to present the principles of the energy conversion for conventional and renewable energy resources and to explain the most important parameters that define the energy conversion efficiency, resources implications and economics of the energy conversion technologies. Content Overview of energy stakes Thermodynamic principles relevant for energy conversion systems, review of thermodynamic power cycles, heat pumps and refrigeration cycles, co-generation Carbon capture and sequestration Renewable energy vectors, their physical principles and essential equations: Solar (photovoltaics and thermal - collectors/concentrators), geothermal, biomass (a.o. gasification, biogases, liquid biofuels), hydro, wind Fuel cells and hydrogen as energy vector Storage of energy: Batteries, compressed air, pumped hydro, thermal storage Integrated urban systems Keywords Energy conversion, renewable energy Learning Prerequisites Required courses Physics I Physics II Important concepts to start the course Conservation principles (energy, mass, momentum) Some basis in thermodynamics Learning Outcomes By the end of the course, the student must be able to: • Quantify Quantify the efficiency and the main emission sources of energy conversion processes • Explain Explain the efficiency and the main emission sources of energy conversion processes • Model Model energy conversion systems and industrial processes • Draw Draw the energy balances of an energy conversion system • Elaborate Elaborate energy conversion scenarios • Describe Describe the principles and limitations of the main energy conversion technologies 2017-2018 COURSE BOOKLET Energy conversion and renewable energy Page 1 / 2

Transcript of ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener...

Page 1: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

ME-409 Energy conversion and renewable energyHaussener Sophia, Maréchal François, Van Herle Jan

Cursus Sem. Type

Energie et durabilité MA1, MA3 Opt.

Génie nucléaire MA1 Opt.

Génie électrique et électronique MA1, MA3 Opt.

Mineur en Design intégré, architecture etdurabilité

H Opt.

Mineur en Energie H Opt.

Sciences et ingénierie de l'environnement MA1, MA3 Opt.

Language EnglishCredits 3Session WinterSemester FallExam WrittenWorkload 90hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

The goal of the lecture is to present the principles of the energy conversion for conventional and renewable energyresources and to explain the most important parameters that define the energy conversion efficiency, resourcesimplications and economics of the energy conversion technologies.

Content

Overview of energy stakesThermodynamic principles relevant for energy conversion systems, review of thermodynamic power cycles, heatpumps and refrigeration cycles, co-generationCarbon capture and sequestrationRenewable energy vectors, their physical principles and essential equations: Solar (photovoltaics and thermal -collectors/concentrators), geothermal, biomass (a.o. gasification, biogases, liquid biofuels), hydro, windFuel cells and hydrogen as energy vectorStorage of energy: Batteries, compressed air, pumped hydro, thermal storageIntegrated urban systems

Keywords

Energy conversion, renewable energy

Learning Prerequisites

Required courses

Physics IPhysics II

Important concepts to start the course

Conservation principles (energy, mass, momentum)Some basis in thermodynamics

Learning Outcomes

By the end of the course, the student must be able to:

• Quantify Quantify the efficiency and the main emission sources of energy conversion processes

• Explain Explain the efficiency and the main emission sources of energy conversion processes

• Model Model energy conversion systems and industrial processes

• Draw Draw the energy balances of an energy conversion system

• Elaborate Elaborate energy conversion scenarios

• Describe Describe the principles and limitations of the main energy conversion technologies

2017-2018 COURSE BOOKLET

Energy conversion and renewable energy Page 1 / 2

Page 2: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

• Compare Compare energy conversion systems

Transversal skills

• Use a work methodology appropriate to the task.

• Demonstrate the capacity for critical thinking

• Write a scientific or technical report.

• Access and evaluate appropriate sources of information.

• Identify the different roles that are involved in well-functioning teams and assume different roles, including leadershiproles.

Teaching methods

ex cathedra courses 2 hours per week and 1 hour of exercice with teaching assistant

Expected student activities

• active partiicpation to the lecture

• exercice for the exam presentation

• a mini project consisting in writing a 6 page report on an energy scenario for Switzerland

Assessment methods

Written exam (66%) and a project report (34%).

Supervision

Office hours NoAssistants YesForum Yes

Resources

Notes/Handbook

Slides, videos and other documents are available on moodle

Websites

• http://moodle.epfl.ch

• http://www.energyscope.ch

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=15230

Videos

• http://available on moodle

2017-2018 COURSE BOOKLET

Energy conversion and renewable energy Page 2 / 2

Page 3: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

ME-453 Hydraulic turbomachinesAvellan François

Cursus Sem. Type

Energie et durabilité MA1, MA3 Opt.

Génie mécanique MA1, MA3 Opt.

Génie nucléaire MA1 Opt.

Mécanique Obl.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 3 weeklyExercises 1 weekly

Summary

Master lecture on Hydraulic Turbomachines: impulse and reaction turbines,pumps and pump-turbines.

Content

• Turbomachine equations, mechanical power balance in a hydraulic machines, moment of momentum balance appliedto the runner/impeller, generalized Euler equation.

• Hydraulic characteristic of a reaction turbine, a Pelton turbine and a pump, losses and efficiencies of a turbomachine,real hydraulic characteristics.

• Similtude laws, non dimensional coefficients, reduced scale model testing, scale effects.

• Cavitation, hydraulic machine setting, operating range, adaptation to the piping system, operating stability, start stoptransient operation, runaway.

• Reaction turbine design: general procedure, general project layout, design of a Francis runner, design of the spiralcasing and the distributor, draft tube role, CFD validation of the design, design fix, reduced scale model experimentalvalidation.

• Pelton turbine design: general procedure, project layout, injector design, bucket design, mechanical problems.

• Centrifugal pump design: general architecture, energetic loss model in the diffuser and/or the volute, volute design,operating stability.

Learning Prerequisites

Recommended courses

Incompressible Fluids MechanicsIntroduction to turbomachines

Learning Outcomes

By the end of the course, the student must be able to:

• Formulate the operating point of a hydraulic turbomachine

• Specify a type of hydraulic turbine

• Sketch the layout of a hydraulic turbomachine

• Select appropriately the dimensions of a hydraulic turbomachine

Transversal skills

• Use a work methodology appropriate to the task.

2017-2018 COURSE BOOKLET

Hydraulic turbomachines Page 1 / 2

Page 4: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

• Communicate effectively with professionals from other disciplines.

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

ex cathedra lectures with working case studies

Expected student activities

attendance at lectures completing exercises and reading written material

Assessment methods

written exam

Resources

Bibliography

P. HENRY: Turbomachines hydrauliques - Choix illustré de réalisation marquantes, PPUR, Lausanne,1992.Franc, Avellan et al., Cavitation, EDP Grenoble, 1994Handout and Scientifc Litterature from LMH, Industry, International Association

Ressources en bibliothèque

• Turbomachines hydrauliques / Henry

• Cavitation / Franc

Notes/Handbook

slides handout Handbook

Websites

• http://lmh.epfl.ch/teaching

Prerequisite for

Cavitation, Hydroacoustic, Master Project

2017-2018 COURSE BOOKLET

Hydraulic turbomachines Page 2 / 2

Page 5: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-455 Introduction to medical radiation physicsBochud François, Verdun Francis

Cursus Sem. Type

Génie nucléaire MA1 Opt.Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

This course covers the physical principles underlying medical imaging using ionizing radiation (radiography, fluoroscopy,CT, SPECT, PET). The focus is not only on risk and dose to the patient and staff, but also on an objective description ofthe image quality.

Content

Physics of radiography x-ray device, x-ray spectra, main image receptorsImage quality main challenge, signal theory, decision theoryPhysics of radiation therapy epidemiological data about cancer, general workflow, beam production andcharacterization, dose calculation, dose distribution, high-level treatment techniquesRadiopharmaceutical products types of radiopharmaceuticals in nuclear medicine, lab infrastructure, labelingapproaches, thin layer chromatographyPhysics of radioscopy radiography and fluoroscopy units, challenges of radiation protection, dose indicatorsPhysics of mammography mammography and radiography units, K-edge filter, 3D imagesPhysics of computer tomography (CT) principle of CT image acquisition, image quality, DECTPhysics of resonance magnetic imaging (MRI) MRI acquisition, proton density, localization of the signalPhysics of single-photon emission computed tomography (SPECT) gamma camera imaging, resolution andsensitivity, quantitative imagingPhysics of positron emission tomography (PET) coincidence detection, time-of-flight systems, resolution andsensitivity, quantitative imagingDose to the patient general method, dose estimation in radiodiagnostic, dose estimation in internal contaminationReceiver operating characteristics (ROC) meaning of a ROC curve, detection experiment, performancecommunicationModel observers in medical imaging and human vision objective image quality, ideal and anthropomorphicobservers, visual pathway, perception of a signal

Keywords

medical imaging, medical radiation

Learning Prerequisites

Recommended courses

This course has many synergies with the Radiation biology, protection and applications course where thebasics of radiation physics and some aspects of radiation protection are very useful to follow the presentcourse.

Teaching methods

Ex-cathedra with integrated individual exercises

Assessment methods

2017-2018 COURSE BOOKLET

Introduction to medical radiation physics Page 1 / 2

Page 6: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

oral exam

Resources

Bibliography

Course in general• William R. Hendee and E. Russell Ritenour, "Medical Imaging Physics",Wiley-Liss, 4th edition, 2002• The Essential Physics of Medical Imaging, Third Edition, Jerrold T. Bushberg

2017-2018 COURSE BOOKLET

Introduction to medical radiation physics Page 2 / 2

Page 7: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-448 Introduction to particle acceleratorsRivkin Leonid

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key featuresand limitations of these machines as used in accelerator driven sciences like high energy physics, materials and lifesciences.

Content

Overview, history and fundamentalsTransverse particle dynamics (linear and nonlinear)Longitudinal particle dynamicsLinear acceleratorsCircular acceleratorsAcceleration and RF-technologyBeam diagnosticsAccelerator magnetsInjection and extraction systemsSynchrotron radiation

Learning Outcomes

By the end of the course, the student must be able to:

• Design basic linear and non-linear charged particles optics

• Elaborate basic ideas of physics of accelerators

• Use a computer code for optics design

• Optimize accelerator design for a given application

• Estimate main beam parameters of a given accelerator

Transversal skills

• Communicate effectively with professionals from other disciplines.

• Use both general and domain specific IT resources and tools

Assessment methods

mainly written exambonus for submitting the solutions to the weekly problem sets and participation in the computer tutorials

2017-2018 COURSE BOOKLET

Introduction to particle accelerators Page 1 / 1

Page 8: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-443 NeutronicsHursin Mathieu, Pautz Andreas

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactorand, as such, the conditions for establishing and controlling a nuclear chain reaction.

Content

• Brief review of nuclear physics- Historical: Constitution of the nucleus and discovery of the neutron - Nuclear reactions and radioactivity - Crosssections - Differences between fusion and fission.

• Nuclear fission- Characteristics - Nuclear fuel - Introductory elements of neutronics.- Fissile and fertile materials - Breeding.

• Neutron diffusion and slowing down- Monoenergetic neutrons - Angular and scalar flux- Diffusion theory as simplified case of transport theory - Neutron slowing down through elastic scattering.

• Multiplying media (reactors)- Multiplication factors - Criticality condition in simple cases.- Thermal reactors - Neutron spectra - Multizone reactors - Multigroup theory and general criticality condition -Heterogeneous reactors.

• Reactor kinetics- Point reactor model: prompt and delayed transients - Practical applications.

• Reactivity variations and control- Short, medium and long term reactivity changes. Different means of control.

Learning Outcomes

By the end of the course, the student must be able to:

• Elaborate on neutron diffusion equation

• Systematize nuclear reaction cross sections

• Formulate approximations to solving the diffusion equation for simple systems

Transversal skills

• Access and evaluate appropriate sources of information.

• Collect data.

• Use both general and domain specific IT resources and tools

2017-2018 COURSE BOOKLET

Neutronics Page 1 / 2

Page 9: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

Teaching methods

Lectures, numerical exercises

Assessment methods

oral exam (100%)

2017-2018 COURSE BOOKLET

Neutronics Page 2 / 2

Page 10: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-445 Nuclear fusion and plasma physicsFasoli Ambrogio

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The goal of the course is to provide the physics and technology basis for controlled fusion research, from the mainelements of plasma physics to the reactor concepts.

Content

1) Basics of thermonuclear fusion2) The plasma state and its collective effects3) Charged particle motion and collisional effects4) Fluid description of a plasma5) Plasma equilibrium and stability6) Magnetic confinement: Tokamak and Stellarator7) Waves in plasma8) Wave-particle interactions9) Heating and non inductive current drive by radio frequency waves10) Heating and non inductive current drive by neutral particle beams11) Material science and technology: Low and high Temperature superconductor - Properties of material underirradiation12) Some nuclear aspects of a fusion reactor: Tritium production13) Licensing a fusion reactor: safety, nuclear waste14) Inertial confinement

Learning Prerequisites

Recommended courses

Basicknowledge of electricity and magnetism, and of simple concepts of fluids

Learning Outcomes

By the end of the course, the student must be able to:

• Design the main elements of a fusion reactor

• Identify the main physics challenges on the way to fusion

• Identify the main technological challenges of fusion

Teaching methods

Ex cathedra and in-class exercises

Assessment methods

2017-2018 COURSE BOOKLET

Nuclear fusion and plasma physics Page 1 / 2

Page 11: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

oral examen (100%)

Resources

Ressources en bibliothèque

• Introduction to Plasma Physcs / Chen

• Plasma Physics and Fusion Energy / Freidberg

Websites

• https://spcnet.epfl.ch/nuclfus/

2017-2018 COURSE BOOKLET

Nuclear fusion and plasma physics Page 2 / 2

Page 12: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-411 Physics of atoms, nuclei and elementary particlesNakada Tatsuya

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

In this lecture, symmetry and conservation law are applied to derive wave functions for elementary particles. Relativisticwave functions are analysed and applied for massive and massless particles. Different ideas on antiparticles areexplored.

Content

- Introduction to general concepts commonly used in atomic, nuclear and elementary particle physics.- Symmetry principles.- Description of forces.- Scaler, spinor and vector field- Relativic wave function

Learning Prerequisites

Required courses

Quantum MechanicsElectrodynamicsSpecial relativity

Recommended courses

Nuclear and particle physics

Important concepts to start the course

Symmetry and conservationLorentz invarianceSpin and statistics

Learning Outcomes

By the end of the course, the student must be able to:

• Sketch the basic concept of symmetry and conservation law

• Apply various hypothesises to a given problem

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

2017-2018 COURSE BOOKLET

Physics of atoms, nuclei and elementary particles Page 1 / 2

Page 13: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

Teaching methods

Ex cathedra, exercises in class and assignment presentation

Expected student activities

Solving problems given as excersises

Assessment methods

Evaluating the Interaction during the courses

Resources

Notes/Handbook

Lecture notes and problems are haded out prior to the course

2017-2018 COURSE BOOKLET

Physics of atoms, nuclei and elementary particles Page 2 / 2

Page 14: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-451 Radiation and reactor experimentsFrajtag Pavel, Hursin Mathieu, Lamirand Vincent Pierre

Cursus Sem. Type

Génie nucléaire MA1 Obl.Language EnglishCredits 4Withdrawal UnauthorizedSession WinterSemester FallExam During the

semesterWorkload 120hWeeksHours 56 weekly

Practicalwork

56 weekly

Summary

An introductory course in the basic concepts of radiation detection and interactions and energy deposition by ionizingradiation in matter, radioisotope production and its applications in medicine, industry and research. The course includespresentations, lecture notes, problem sets and seminars.

Content

• Basics: radiation sources and interaction with matter, radioisotope production using reactors and accelerators,radiation protection and shielding.

• Medical applications: diagnostic tools, radiopharmaceuticals, cancer treatment methodologies such as brachytherapy,neutron capture therapy and proton therapy.

• Industrial applications: radiation gauges, radiochemistry, tracer techniques, radioisotope batteries, sterilization, etc.

• Applications in research: dating by nuclear methods, applications in environmental and life sciences, etc.

Learning Outcomes

By the end of the course, the student must be able to:

• Explain the basic physics principles that underpin radiotherapy, e.g. types of radiation, atomic structure, etc.

• Explain the interaction mechanisms of ionizing radiation at keV and MeV energies with matter.

• Explain the principles of radiation dosimetry.

• Explain the principles of therapeutic radiation physics including X-rays, electron beam physics, radioactive sources,use of unsealed sources and Brachytherapy.

• Describe how to use radiotherapy equipment both for tumour localisation, planning and treatment.

• Define quality assurance and quality control, in the context of radiotherapy and the legal requirements.

• Explain the principles and practice of radiation protection, dose limits, screening and protection mechanisms.

• Explain the use of radiation in industrial and research applications.

Resources

Bibliography

Handouts will be distributed

• James E. Martin, "Physics for Radiation Protection", Wiley-VCH (2nd edition, 2006)

• F.M. Khan, "The Physics of Radiation Therapy", Lippincott, Williams & Wilkins, (4th edition, 2010)

2017-2018 COURSE BOOKLET

Radiation and reactor experiments Page 1 / 2

Page 15: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

• G.C. Lowenthal, P.L. Airey, "Practical Applications of Radioactivity and Nuclear Reactions", CambridgeUniversity Press (2001)

• K.H. Lieser, "Nuclear and Radiochemistry", Wiley-VCH (2nd edition, 2001)

Ressources en bibliothèque

• Physics for Radiation Protection / Martin

• The Physics of Radiation Therapy / Khan

• Practical Applications of Radioactivity and Nuclear Reactions / Lowenthal

• Nuclear and Radiochemistry / Lieser

2017-2018 COURSE BOOKLET

Radiation and reactor experiments Page 2 / 2

Page 16: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-450 Radiation biology, protection and applicationsBochud François, Damet Jerome, Frajtag Pavel

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

LangueCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 3 hebdo

Cours 2 hebdoExercices 1 hebdo

Résumé

Un cours d'introduction aux concepts de base de la détection des radiations et des interactions et des dépôts d'énergiepar rayonnement ionisant à la matière, la production des radioisotopes et de ses applications dans la médecine, del'industrie et de la recherche.

Contenu

• Les notions de base: sources de rayonnement et d'interaction avec la matière, production de radioisotopes enutilisant des réacteurs et des accélérateurs, la radioprotection et le blindage.

• Les applications médicales: les outils de diagnostic, les produits radiopharmaceutiques, les méthodes de traitementdu cancer tels que la brachythérapie, la thérapie par capture de neutrons et la protonthérapie.

• Les applications industrielles: indicateurs basées sur les radiations, la radiochimie, les techniques de traçage,les batteries de radioisotopes, la stérilisation, etc.

• Les applications de la recherche: la datation par des méthodes nucléaires, les applications en sciences del'environnement et de la vie, etc.

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Expliquer les principes fondamentaux de physique qui sous-tendent la radiothérapie, par exemple types derayonnement, la structure atomique, etc.

• Expliquer les mécanismes d'interaction des rayonnements ionisants à énergies en keV et MeV avec la matière.

• Expliquer les principes de la dosimétrie des rayonnements.

• Expliquer les principes de la physique des radiations thérapeutiques, y compris les rayons X, physique de faisceaud'électrons et des sources radioactives, l'utilisation de sources non scellées et la curiethérapie.

• Décrire comment utiliser les appareils de radiothérapie pour une tumeur à la fois la localisation, de la planification etde traitement.

• Définir assurance qualité et de contrôle de la qualité, dans le cadre de la radiothérapie et aux exigences légales.

• Expliquer les principes et la pratique de la radioprotection, les limites de dose, le dépistage et les mécanismes deprotection.

• Expliquer l'utilisation des rayonnements dans les applications industrielles et de recherche.

Méthode d'enseignement

Lectures, numerical exercises

Méthode d'évaluation

2017-2018 LIVRET DE COURS

Radiation biology, protection and applications Page 1 / 2

Page 17: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

oral exam

Ressources

Bibliographie

Les notes de cours seront distribuées

• James E. Martin, "Physics for Radiation Protection", Wiley-VCH (2nd edition, 2006)

• F.M. Khan, "The Physics of Radiation Therapy", Lippincott, Williams & Wilkins, (4th edition, 2010)

• G.C. Lowenthal, P.L. Airey, "Practical Applications of Radioactivity and Nuclear Reactions", CambridgeUniversity Press (2001)

• K.H. Lieser, "Nuclear and Radiochemistry", Wiley-VCH (2nd edition, 2001)

Ressources en bibliothèque

• Physics for Radiation Protection / Martin

• The Physics of Radiation Therapy / Khan

• Practical Applications of Radioactivity and Nuclear Reactions / Lowenthal

• Nuclear and Radiochemistry / Lieser

2017-2018 LIVRET DE COURS

Radiation biology, protection and applications Page 2 / 2

Page 18: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-452 Radiation detectionLamirand Vincent Pierre

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 3Session WinterSemester FallExam OralWorkload 90hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

The course presents the detection of ionizing radiation in the keV and MeV energy ranges. It introduces the physicalprocesses of radiation/matter interaction. It covers the several steps of detection, and the detectors, instrumentations andmeasurements methods commonly used in the nuclear field.

Content

• Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeVrange, ionisation, nuclear cross sections.

• Characteristics and types of detectors: gas detectors, semiconductor detectors, scintillators and optical fibers,fission chambers, meshed and pixel detectors

• Signal processing and analysis: types of electronics, signal collection and amplification, particle discrimination,spatial and time resolution

• Nuclear instrumentation and measurements: principle of measurements, spectrometry, common detectioninstrumentations, applications in nuclear engineering and R&D.

Keywords

radiation detection; radiation-matter interaction; ionizing radiation; detector; signal processing; nuclear instrumentation;measurement methods

Learning Outcomes

By the end of the course, the student must be able to:

• Explain interaction processes of ionising radiation and matter

• Describe the production of a detection signal and its processing

• Explain the operation of all types of commonly used detectors

• Assess / Evaluate the detection system and method required for a specific measurement

Transversal skills

• Communicate effectively with professionals from other disciplines.

Teaching methods

Lectures, exercices, presentations, practice.

Expected student activities

2017-2018 COURSE BOOKLET

Radiation detection Page 1 / 2

Page 19: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

Attendance at lectures and excercices, short presentations.

Assessment methods

Oral exam

Supervision

Assistants Yes

Resources

Bibliography

Radiation detection and measurement, Glenn F. Knoll. Wiley 2010Practical Gamma-Ray Spectrometry, Gordon R. Gilmore, Wiley & Sons 2008

Ressources en bibliothèque

• Radiation detection and measurement, Glenn F. Knoll

• Practical Gamma-Ray Spectrometry, Gordon R. Gilmore

2017-2018 COURSE BOOKLET

Radiation detection Page 2 / 2

Page 20: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-447 Reactor TechnologyPrasser Horst-Michael

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

Reactor core cooling, power limits and technological consequences due to fuel, cladding and coolant properties, mainprinciples of reactor and power plant design including auxiliary systems are explained. System technology of mostimportant thermal and fast reactor types is introduced.

Content

- Fuel rod, LWR fuel elements- Temperature field in fuel rod- Reactor core, design- Flux and heat source distribution, cooling channel- Single-phase convective heat transfer, axial temperature profiles- Boiling crisis and DNB ratio- Pressurized water reactors, design- Primary circuit design- Steam generator heat transfer, steam generator types- Boiling water reactors- Reactor design- LWR power plant technology, main and auxiliary systems- Breeding and transmutation, purpose of generation IV systems- Properties of different coolants and technological consequences- Introduction into gas-cooled reactors, heavy water moderated reactors, sodium and led cooled fast reactors, molten saltreactors, accelerator driven systems

Learning Outcomes

By the end of the course, the student must be able to:

• Assess / Evaluate the performance of reactor types

• Systematize reactor system components

• Formulate safety requirements for reactor systems

Transversal skills

• Access and evaluate appropriate sources of information.

• Collect data.

Teaching methods

Lectures, numerical exercises

2017-2018 COURSE BOOKLET

Reactor Technology Page 1 / 2

Page 21: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

Assessment methods

oral exam

2017-2018 COURSE BOOKLET

Reactor Technology Page 2 / 2

Page 22: ME-409 Energy conversion and renewable energy Energy conversion and renewable energy Haussener Sophia, Maréchal François, Van Herle Jan Cursus Sem. Type Energie et durabilité MA1,

PHYS-595 Stage d'ingénieur (master en Génie nucléaire)Profs divers *

Cursus Sem. Type

Génie nucléaire MA2, MA3 Obl.LangueCrédits 8Session Hiver, EtéSemestre PrintempsExamen Pendant le

semestreCharge 240hSemaines

Projet 320 hebdo

Résumé

The main objective of the 12-week internship is to expose master's students to the industrial work environment within thefield of nuclear energy.

Contenu

The main objective of the 12-week internship is to expose master's students to the industrial work environment within thefield of nuclear energy. During this period, students have the opportunity to be involved in on-going projects at the hostinstitution.

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.

Méthode d'évaluation

an oral presentation could be asked by the company, not compulsory

2017-2018 LIVRET DE COURS

Stage d'ingénieur (master en Génie nucléaire) Page 1 / 1