lez14d

download lez14d

of 19

Transcript of lez14d

  • 7/29/2019 lez14d

    1/19

    V.M. Sglavo CerSciTech - UNITN 2011

    Mechanical properties!Structural ceramics

  • 7/29/2019 lez14d

    2/19

    V.M. Sglavo CerSciTech - UNITN 2011

    Flexural strength!

    alumina

    f =KIC

    c

    KIC

    $ G

    influence of grain size

    liquid phase sintering (SiO2)(purity 80-99%)

    solid state sintering(purity 99-100%)

    hot-pressing

    Mechanical properties of ceramics, J. B. Watchman, J. Wiley & sons, 1996!

  • 7/29/2019 lez14d

    3/19

    V.M. Sglavo CerSciTech - UNITN 2011

    alumina at high temperature

    glassy phase softening, creep, plastic deformation

    Mechanical properties of ceramics, J. B. Watchman, J. Wiley & sons, 1996!

  • 7/29/2019 lez14d

    4/19

    V.M. Sglavo CerSciTech - UNITN 2011

    silicon nitride

    flexuralstrength

    0 400 800 1200 1600

    silicon nitride!

    silicon carbide!

    alumina!

    T (C)

    maximum temperature for structural uses

    T (C)

    Si3N4 reaction bonded 1300sintered 900hot pressed 1200

    SiC reaction bonded 1300

    sintered 1200hot pressed 1400

    Al2O3 99% 120090% 800

    liquid phase sintering (SiO2, Y2O3, Al2O3 )(purity 90-99%) - SSN

    hot-pressing(purity 99-100%) - HPSN

    reaction bonding (Si + NH3) - RBSN

    liquid phase sintering (SiO2, Al2O3 )(purity 90-99%) - SSC

    hot-pressing(purity 99-100%) - HPSC

    reaction bonding (Si + CO / C +Si) - RBSC

    silicon carbide

    Ceramics and Glasses, Engineered Materials Handbook, vol. 4, ASM international, USA, 2000!

  • 7/29/2019 lez14d

    5/19

    V.M. Sglavo CerSciTech - UNITN 2011

    Reaction bonding!preform (Si powder)

    NH3

    T1400C

    Si3N4 (RBSN)

  • 7/29/2019 lez14d

    6/19

    V.M. Sglavo CerSciTech - UNITN 2011

    preform (Si powder)

    CO

    T1400C

    SiC (RBSC)

    preform (C powder)

    liquid Si

    T1500C

    SiC (RBSC)

  • 7/29/2019 lez14d

    7/19

    V.M. Sglavo CerSciTech - UNITN 2011

    mechanical strength

    defects (c)

    microstructure (KIC)

    f=KIC

    c

    fabrication and finishing!

    material and processing!

    interaction between defects and microstructure!

    Ceramic materials:! theoretical strength (10 GPa)E

    10

    mechanical strength

  • 7/29/2019 lez14d

    8/19

    V.M. Sglavo CerSciTech - UNITN 2011

    KC1

    K

    c0.5c00.5

    f1

    KC2

    f2

    KC constant! KC increasing with c

    !

    K

    c0.5c00.5

    f1

    KC(c)

    f

    stable growth!

    f depending on c f independent from c

    Toughening mechanical strength

    R- or T-curve effect

  • 7/29/2019 lez14d

    9/19

    V.M. Sglavo CerSciTech - UNITN 2011

    Thoughening mechanisms

    dislocations

    microcracks

    phase transformation

    ductile particles

    grain interlocking

    fibres

    whiskers

    ductile particles

    (a) (b)

    (a) process zone (frontal wake)

    weakening of the material in front of the crack tip

    s

    eeT

    sCGC 2CTh

    (b) bridging zone (bridged interface)

    crack closure stress (t)

    GC 2 t(u)0

    u*

    du

    volume fraction of toughening agent

    surface fraction of the bridges

  • 7/29/2019 lez14d

    10/19

    V.M. Sglavo CerSciTech - UNITN 2011

    Process zone mechanisms

    Transformation toughening!

    zirconia (ZrO2)

    allotropic phases: cubic (c), tetragonal (t), monoclinic (m)

    martensitic trasformation (MS1200C - 600C)

    V4%, ij1-7%

    MS decreases with:

    presence of stabilizing oxides (MgO, CaO, Y2O3, CeO2) (grain size)-1 compression stresses (matrix) tphase metastable at room T!

    temperature

  • 7/29/2019 lez14d

    11/19

    V.M. Sglavo CerSciTech - UNITN 2011

    System ZrO2 - Y2O3

    tetragonal zirconia polycrystals (TZP)(only t, g 0.5 - 2 m)

    partially stabilized zirconia (PSZ)

    (tin c, g 30 - 60 m)

    c

    t

  • 7/29/2019 lez14d

    12/19

    V.M. Sglavo CerSciTech - UNITN 2011

    t m

    Thoughening mechanism

    c

    Tr

  • 7/29/2019 lez14d

    13/19

    V.M. Sglavo CerSciTech - UNITN 2011

    KC= 0.22E

    1 T h

    asymptotic increment of fracture toughness:

    fraction of grains t

    Typical systems (Kc 20 MPa m0.5):!

    partially stabilized zirconia (PSZ)!

    zirconia toughened alumina (ZTA)!

    **

    Journal of the American Ceramic Society, 1990!

  • 7/29/2019 lez14d

    14/19

    V.M. Sglavo CerSciTech - UNITN 2011

    KC = Cy

    yR

    asymptotic increment of fracture toughness:

    yielding

    Sistems:!

    alumina with Ni or Al particles (Kc 25 MPa m0.5)!

    Bridging mechanisms

    1. Bridging with ductile particles!

    particles radius

  • 7/29/2019 lez14d

    15/19

    V.M. Sglavo CerSciTech - UNITN 2011

    weak interface (if)

    high friction coefficient

    2. Bridging with fibres or whiskers!

    Journal of the American Ceramic Society, 1990!

  • 7/29/2019 lez14d

    16/19

    V.M. Sglavo CerSciTech - UNITN 2011

    matrix: aluminafibres: alumina-mullite

    interfacce: monazite (LaPO4)

    matrix: SiCfibres: SiC

    interface: porous SiC

  • 7/29/2019 lez14d

    17/19

    V.M. Sglavo CerSciTech - UNITN 2011

    matrix: C

    fibres: SiCinterface: C

  • 7/29/2019 lez14d

    18/19

    V.M. Sglavo CerSciTech - UNITN 2011

    asymptotic increment of fracture toughness:

    (for long fibres)

    fibre radius

    fibres strengthinterface fracture toughness

    differential thermal deformation

    friction between fibre-matrix

    pull-out length

    Sistems:!

    alumina with SiC whiskers (Kc 9 MPa m0.5)!

    silicon nitride with SiC whiskers (Kc 11 MPa m0.5)!

    SiC-SiCfor C-SiCfcomposites (Kc 30 MPa m0.5)

    !

    GC = df

    2

    EET( )

    2

    +

    4iR1 ( )

    '

    (

    ))

    *

    +

    ,,+

    2 hp2

    R

  • 7/29/2019 lez14d

    19/19

    V.M. Sglavo CerSciTech - UNITN 2011

    requirement: intergranular fracture Sistems:!

    alumina (Kc 8 MPa m0.5)!

    silicon nitride (Kc 10 MPa m0.5)!

    silicon carbide (Kc 8 MPa m0.5)!

    3. Bridging grains!

    KC > 0 (200 - 300%)

    Journal of the American Ceramic Society, 1990!

    KC=

    E

    6(12)2wa

    r

    2

    grain boundary friction

    volumetric fraction of effective grains

    length of effective grains

    geometric factor of effective grains