Lec4[1]PlanoTangente y AproxLineal

download Lec4[1]PlanoTangente y AproxLineal

of 13

Transcript of Lec4[1]PlanoTangente y AproxLineal

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    1/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    MATH 209Calculus, III

    Volker Runde

    University of Alberta

    Edmonton, Fall 2011

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    2/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    The tangent plane problem, I

    TaskPut a tangent plane to the surface given by z=f(x, y) atP(x0, y0, z0).

    Approach

    The tangent plane Phas the form

    A(x x0) +B(y y0) +C(z z0) = 0.

    Suppose that C= 0, then

    z z0 = A

    C

    =a

    (x x0)B

    C

    =b

    (y y0)

    =a(x x0

    ) +b(y y0

    ).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    3/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    The tangent plane problem, II

    Approach (continued)

    Intersect the tangent plane with the plane y=y0:

    z z0 =a(x x0).

    Hence: a is the slope of the tangent line at P(x0, y0, z0) toz=f(x, y) in the direction of the x-axis, i.e.,

    a=fx(x0,

    y0).

    Similarly:b=fy(x0, y0).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    4/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    The tangent plane problem, III

    Theorem

    Suppose that f has continuous partial derivatives. Then thetangent plane to the surface z=f(x, y) at P(x0, y0, z0) isgiven by

    z z0 =fx(x0, y0)(x x0) +fy(x0, y0)(y y0).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    5/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Examples, I

    ExampleFind the tangent plane to z=x2 + 3y2 at P(2,1, 7).We have:

    z

    x = 2x and

    z

    y = 6y,

    so that

    z

    x(2,1) = 4 and

    z

    y(2,1) = 6.

    We thus have the tangent plane equation:

    z 7 = 4(x 2) 6(y+ 1) = 4x 8 6y 6,

    i.e.,

    z= 4x 6y 7.

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    6/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Linearization

    Idea

    Use the tangent plane to approximate f.In the previous example, set

    L(x, y) = 4x 6y 7.

    Then L(x, y) f(x, y) if (x, y) (2,1).

    Definition

    Thelinearizationoff at (a, b) is the function

    L(x, y) =f(a, b) +fx(a, b)(x a) +fy(a, b)(y b).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    7/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Differentiability, I

    Notation

    Set:

    x= increment ofx,

    y= increment ofy,z=f(a+ x, b+ y) f(a, b).

    Definition

    Ifz=f(x, y), then f isdifferentiableat (a, b) if

    z=fx(a, b)x+fy(a, b)y+1x+2y

    with 1 0 and 2 0 as (x, y) (0, 0).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    8/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Differentiability, II

    Idea

    f is differentiable at (a, b) if and only ifL, i.e., the tangentplane, approximates f very well at (a, b).

    Theorem

    If fx and f y arecontinuousat(a, b), then f is differentiable at

    (a, b).

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    9/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    The differential of a function

    Definition

    Thedifferentialofz=f(x, y) is defined to be

    dz=fx(x, y)dx+fy(x, y)dy

    with dx and dybeing independent variables.

    Idea

    Ifdx= x=x a and dy= y=y b, linearapproximation becomes

    f(x, y) f(a, b) +dz.

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    10/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Examples, II

    Example

    Letz=f(x, y) =x2 + 3xy y2,

    so that

    z

    x = 2x+ 3y and

    z

    y = 3x 2y.

    and thus dz= (2x+ 3y)dx+ (3x 2y)dy.

    Suppose that xchanges from 2 to 2.05 and ychanges from 3to 2.96.

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    11/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Examples, III

    Example (continued)

    Set x= 2, y= 3, dx= x= 0.05, and dy= y= 0.04.Then

    dz= (4 + 9)0.0.5 + (6 6)(0.04) = 13(0.05) = 0.65

    andz=f(2.05, 2.96) f(2, 3) = 0.6449.

    Idea

    z dz, but dz is easier to compute.

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    12/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Examples, IV

    Example

    Let Vbe the volume of a circular cone with height h and base

    radius r, i.e.,V =

    3r2h,

    so that

    dV =

    V

    r dr+

    V

    hdh=

    2

    3rh dr+

    3 r2

    dh.

  • 8/13/2019 Lec4[1]PlanoTangente y AproxLineal

    13/13

    MATH 209

    Calculus,III

    Volker Runde

    Tangent

    planes

    Linearization

    and differen-tiability

    Differentials

    Examples, V

    Example (continued)

    Suppose that r= 10 cm andh= 25 cm, so thatV 2618 cm3.

    Suppose that there is an error in measurement of 0.1 cm, i.e.,dr=dh= 0.1.Then

    |dV| 500

    3

    |0.1| +100

    3

    |0.1| = 20 63,

    i.e., the maximum error in V is 63cm3.