Lec 5 BJTBias2 11

download Lec 5 BJTBias2 11

of 35

Transcript of Lec 5 BJTBias2 11

  • 7/31/2019 Lec 5 BJTBias2 11

    1/35

    ESE319 Introduction to Microelectronics

    12009 Kenneth R. Laker, update 23Sep11

    BJT Biasing Cont.

    Biasing for DC Operating Point Stability

    BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design

  • 7/31/2019 Lec 5 BJTBias2 11

    2/35

    ESE319 Introduction to Microelectronics

    22009 Kenneth R. Laker, update 23Sep11

    Previous Simple Base BiasingSchemes

    What's wrong with these schemes?

  • 7/31/2019 Lec 5 BJTBias2 11

    3/35

    ESE319 Introduction to Microelectronics

    32009 Kenneth R. Laker, update 23Sep11

    Biasing for Operating Point StabilityA practical biasing scheme must be insensitive to

    changes in transistor and operating temperature!Negative feedback is one solution.

    IC

    IB

    IE RE

    RC

    VCC

    VB

  • 7/31/2019 Lec 5 BJTBias2 11

    4/35

    ESE319 Introduction to Microelectronics

    42009 Kenneth R. Laker, update 23Sep11

    ICISe

    VBE

    VT

    VBE=VBRE IE=VBREIC

    Basic relationships:

    IE=IBIC=1IB

    IE=1IC= 1

    IC

    Given the (DC bias) equations:

    Assume: VBE=0.7Vbe given andI

    Cbe specified. Then

    computeRE

    to obtain the specified

    collector currentIC:

    RE=VB0.7

    IC

    , Let: VB,VCC

  • 7/31/2019 Lec 5 BJTBias2 11

    5/35

    ESE319 Introduction to Microelectronics

    52009 Kenneth R. Laker, update 23Sep11

    Negative feedback makes the collector current insensitive to VBE,I

    S, and.

    IfIC

    increases due to an increase inIS

    then VBE

    will decrease; thus, limit-

    ing the magnitude of the change inIC.

    The equations that must be satisfied simultaneously are:

    Negative Feedback via RE

    IC=VBVBE

    1RE=

    VBVBERE

    VBE=VBREIC

    =VB

    1

    RE ICIC=ISe

    VBE

    VT and

    ifIS

    =>IC whenIC => VBE

    IC> V

    BE VBE

    insensitivityICVB

    RE=>

  • 7/31/2019 Lec 5 BJTBias2 11

    6/35

    ESE319 Introduction to Microelectronics

    62009 Kenneth R. Laker, update 23Sep11

    Scilab Analysis of IC Insensitivity to IS

    Simultaneous equations:

    IC=ISe

    VBE

    VT

    IC=VBVBE

    RE

    or: VBVBERE

    =ISe

    VBE

    VT

    If we plot the exponential function and the straight line function,the solution values ofI

    Cand V

    BEfor the circuit occur at their

    intersection.

    Let RE=4k VB=4.7Vand (want VB >> VBE)

  • 7/31/2019 Lec 5 BJTBias2 11

    7/35

    ESE319 Introduction to Microelectronics

    72009 Kenneth R. Laker, update 23Sep11

    Scilab Program

    //Calculate and plot npn BJT bias characteristicbeta=100;alpha=beta/(beta+1);VsubT=0.025;VTinv=1/VsubT;

    VBB=4.7;Re=4;vBE=0.0:0.01:1;iCline=alpha*(VBB-vBE)/Re;//mA.plot(vBE,iCline);iC=0.01:0.01:2; //mA.!IsubS =1E-16; //mA.

    for k= 1:1:8IsubS=10*IsubS;

    vBE2=VsubT*log(iC/IsubS);plot(vBE2,iC); //Current in mA.

    end

    IC=VBVBE

    RE

    VBE=VTlnIC

    IS

  • 7/31/2019 Lec 5 BJTBias2 11

    8/35

    ESE319 Introduction to Microelectronics

    82009 Kenneth R. Laker, update 23Sep11

    IC

    vs IS

    Results Plot

    IS=1011

    IS=1018

    IC0.1

    mA InsensitivetoIS!

    IC=VBVBE

    RE

    IC=ISe

    VBE

    VT

  • 7/31/2019 Lec 5 BJTBias2 11

    9/35

    ESE319 Introduction to Microelectronics

    92009 Kenneth R. Laker, update 23Sep11

    RE=VB0.7

    IC

    Example: =100

    VB=4.7V

    IC=1mA

    RE=0.994.70.7

    103

    =100

    1010.99

    IC=VB0.7

    RE

    =

    1103A

    WritingIC

    as a function of:

    Assume: 100200

    100

    101103=0.990mAIC

    200

    201103=0.995mA

    SoIC

    is insensitive to changes in !

    RE4000

    Insensitivity to Beta

  • 7/31/2019 Lec 5 BJTBias2 11

    10/35

    ESE319 Introduction to Microelectronics

    102009 Kenneth R. Laker, update 23Sep11

    Voltage Source With Internal Resistance

    IB

    IC

    VB=IB RBVBE1IBRE

    IB=VBVBE

    RB1RE

    IE=1IB

    IC=I

    B=

    RB1REV

    BV

    BE

    IC=IB

    1

    VBVBE

    RE=

    VBVBE

    RE

    If RB1RE

    IE

    RC

    RE

    RB

    VB

    VCC

    If RB1RE

    IC=IB

    RBVBVBE no feedback!

    IE

  • 7/31/2019 Lec 5 BJTBias2 11

    11/35

    ESE319 Introduction to Microelectronics

    112009 Kenneth R. Laker, update 23Sep11

    Biasing for Operating Point Stability

    Quick ReviewWhat is the purposeR

    E?

    What doesRB

    represent?

    What is the condition on thevalue ofV

    B?

    What is the condition on the

    value ofRE?

    What is our rule of thumb forachievingx >> y?

  • 7/31/2019 Lec 5 BJTBias2 11

    12/35

  • 7/31/2019 Lec 5 BJTBias2 11

    13/35

    ESE319 Introduction to Microelectronics

    132009 Kenneth R. Laker, update 23Sep11

    Emitter-Feedback Bias Design

    Voltage bias circuit Single power supply version

    R1

    R2

    VCC

    RC

    RE

    IC

    IE

    IB

    VB

    +

    -

  • 7/31/2019 Lec 5 BJTBias2 11

    14/35

    ESE319 Introduction to Microelectronics

    142009 Kenneth R. Laker, update 23Sep11

    RTh=RB=R1R2

    RTh

    VTh

    VTh=VB=R

    2

    R1R

    2

    VCC

    Thevenin Equivalent

  • 7/31/2019 Lec 5 BJTBias2 11

    15/35

    ESE319 Introduction to Microelectronics

    152009 Kenneth R. Laker, update 23Sep11

    Thevenin EquivalentUse Thevenin's theorem to simplifybase circuit:

    RTh=RB=R1R2=R1R2

    R1R

    2

    = R1

    1

    Since we will specify VCC

    , VB

    andRB

    , the inverse is needed

    for design:

    1

    1=

    VB

    VCC=

    R1

    R2

    =VCC

    VB1

    R1=1RB

    VB=1

    1VCC

    Let:

    R2=R

    1

    DesignEqs.

    IB0

    VTh=VB=R

    2

    R1R

    2

    VCC

    determine

    determineR1

    R1R

    2

    R1R

    2

    =R

    1

    1R

    2=

    R1

    determineR

    2

    I1

  • 7/31/2019 Lec 5 BJTBias2 11

    16/35

    ESE319 Introduction to Microelectronics

    162009 Kenneth R. Laker, update 23Sep11

    A Rule of Thumb for Single Supply Biasing1. ChooseR

    T= R

    1+ R

    2so that I

    1

  • 7/31/2019 Lec 5 BJTBias2 11

    17/35

    ESE319 Introduction to Microelectronics

    172009 Kenneth R. Laker, update 23Sep11

    IC

    R1

    R2

    RC

    RE

    VCCI

    E

    VCB+

    -

    VB

    +

    -

    +

    -

    VRc

    Three design goals so far

    RB1REVBVBE

    Constraint: VCC=VRcVCBVBTRADEOFF Increase V

    B=> Reduce V

    Rc+ V

    CB

    VRc

    too large => potential for saturation to reduce op-

    erating range (i.e. vC < vB).V

    Rctoo small => potential for cutoff to reduce operat-

    ing range (i.e. iC

    -> small or zero).

    NEED A COMPROMISE!

    An Unavoidable Design Tradeoff

    I1IC also I1IB

  • 7/31/2019 Lec 5 BJTBias2 11

    18/35

    ESE319 Introduction to Microelectronics

    182009 Kenneth R. Laker, update 23Sep11

    Another Useful Rule of Thumb1/3, 1/3, 1/3 Rule

    VB=VCC

    3VRc=IC RC=

    VCC

    3VCB=VCCVRcVB=

    VCC

    3

    VCC=VRcVCBVB

    RC=VRc

    IC=

    VCC

    3IC

    RE=VBVBE

    IE=

    VCC

    3 0.7V

    IE

    VCCR

    2

    R1R

    2

    =VB=VCC

    3

    Design Equations

    where

    IC

    R1

    R2

    RC

    RE

    VCCIE

    VCB+

    -

    VB

    +

    -

    +

    -

    VRc

    VB=V

    BEI

    EREI

    1R

    2

    VBE=0.7V

    VB

    >> VBE

    VCE=VRcVReVCC

    3

    VRe=IE RE

    or

    I1=

    VCC

    RT=

    IC

    10

    R2=RT V

    B

    VCC=13

    RT

    R1=RT1

    VB

    VCC=

    2

    3RT

    RT

    = R1

    + R2

    I1

  • 7/31/2019 Lec 5 BJTBias2 11

    19/35

    ESE319 Introduction to Microelectronics

    192009 Kenneth R. Laker, update 23Sep11

    Biasing for Operating Point Stability

    Quick ReviewWhat is the condition on the value ofV

    B?

    What is the condition on the value ofRE?

    What is the purpose forR1

    &R2?

    What happened toRB?

    What is the constraint on the value ofI1?

    What is the 1/3, 1/3, 1/3 Rule?

    IC

    R1

    R2

    RC

    RE

    VCCI

    E

    VCB+

    -

    VB

    +

    -

    +

    -

    VRc

    I1

    IB

  • 7/31/2019 Lec 5 BJTBias2 11

    20/35

    ESE319 Introduction to Microelectronics

    202009 Kenneth R. Laker, update 23Sep11

    Constant Emitter Current BiasThe current mirroris used to create a current source:

    1. A BJT collector is the cur-rent source:

    IC=ISe

    VBE

    VT

    IREF

    I

    2. A diode-connected transistor sets thecurrent.

    3. ChooseRref

    for the desired

    current:

    Rref=VCC0.7

    IREFVCC

    0.7

    IC1

    VBE2=VBE1

    IO

    IREF=IC1IB1IB2IC1IE1

    IREF=VCCVBE1

    Rref

    RrefVCC IC1

    IB1IB2

    VCE1=VBE1

    4. IfQ1 = Q2 thenIC2

    = IC1

    => IOIrefmatched

    IO=IC2

  • 7/31/2019 Lec 5 BJTBias2 11

    21/35

    ESE319 Introduction to Microelectronics

    212009 Kenneth R. Laker, update 23Sep11

    Constant Emitter Current

    IfQ1

    and Q2

    have the same saturation current:

    Now: VBE1

    = VBE2

    IS1=IS2

    And the transistors are at the same temperature: T1=T2

    The two collector currents set primarily by Rref

    are

    equal, as long as Q2 is not saturated.

    IO=IC2=IREFVCC0.7

    Rref

    VCE1

    VCE2

    , the Early Effect needs to be included in simulations.

  • 7/31/2019 Lec 5 BJTBias2 11

    22/35

    ESE319 Introduction to Microelectronics

    222009 Kenneth R. Laker, update 23Sep11

    Constant Emitter Current Early Voltage

    IC2=IO

    IB2

    IB1

    IC1

    Assume Q1 = Q2

    IO=IC2=ISeVBE/VT1

    VCE2

    VA

    Early Effect

    SinceIB

    is not effected by VA

    , i.e.

    IB2= ISeVBE/VT= IC2

    F

    For Q2:

    For Q1:IB1

    = IB2

    IREF=IC1IB1IB2=IC12 IB

    VBE2=VBE1=VCE1=VBE

    IREF=ISeVBE/VT1

    VCE1

    VA2

    IS

    e

    VBE

    VT

    F=1VCE2

    VAwhere

    ISeVBE/VT1

    VBE

    VA2

    IS

    e

    VBE

    VT=

    Solving for IS eVBE/VT

    IS eVBE/VT=

    IREF

    1VBE

    VA2

    IO=IC2=IREF

    1VCE2

    V A

    1VBE

    VA

    2

    (1) (2)

    Sub (2) into (1)

    RrefIREF

    VCC

  • 7/31/2019 Lec 5 BJTBias2 11

    23/35

    ESE319 Introduction to Microelectronics

    232009 Kenneth R. Laker, update 23Sep11

    Constant Emitter Current Early Voltage Cont.

    IO=IC2=IREF

    1VCE2

    V A

    1VBE

    VA

    2

    =>IO

    IREF=

    1VCE2

    VA

    1VBE

    VA

    2

    Let VA= => Early effect is negligibleIO

    IREF=

    1

    12

    1

    IO=IREF=>

    Let VA = finite and VA = 50 V, VBE= 0.7 V, =100

    IO

    IREF= fVCE2=

    10.02VCE21.034

    =0.9710.02VCE2

    If also =

    IREF

  • 7/31/2019 Lec 5 BJTBias2 11

    24/35

    ESE319 Introduction to Microelectronics

    242009 Kenneth R. Laker, update 23Sep11

    We thus can use a current mirrorto provide stable control of tran-sistor collector current.R

    refsets

    the emitter and collector currentsand the collector-ground voltageforQ

    amp.

    vin

    is the ac input voltage source.

    RB

    can be any reasonable value

    this is not voltage biasing!

    Rref

    Rref

    RB

    VB

    VCC

    vin

    Iref

    iE

    Qamp

    Q1

    Q2

    iEvin

    VCC

    RBRC

    BJT Emitter Current Source Bias

    RC

  • 7/31/2019 Lec 5 BJTBias2 11

    25/35

    ESE319 Introduction to Microelectronics

    252009 Kenneth R. Laker, update 23Sep11

    Summary Two practical methods for achieving stable

    bias for a BJT are:

    Use a dc voltage source in the base with afeedback resistance in the emitter circuit. Place a dc current source directly in the emitter

    circuit.

  • 7/31/2019 Lec 5 BJTBias2 11

    26/35

    ESE319 Introduction to Microelectronics

    262009 Kenneth R. Laker, update 23Sep11

    Emitter-Feedback Bias Design

    1. Use single supply for base bias and collector sources.2. Use theI

    C/10 rule for the currentI

    1through the base bias

    network (R1 andR2).3-1. Try less negative feedback using a smaller emitterresistorR

    Esaving more of the V

    CCsupply voltage for the

    RC

    voltage drop.

    or

    3-2. Use the 1/3, 1/3, 1/3 Rule.

  • 7/31/2019 Lec 5 BJTBias2 11

    27/35

    ESE319 Introduction to Microelectronics

    272009 Kenneth R. Laker, update 23Sep11

    I1=

    IC

    10

    Try 3-1 Emitter-Feedback Bias Design

    VCC=12V

    Complete the bias design giventhe following design values:

    IC=1mA VC=6V

    It follows:

    RC=VRc

    IC=VCCVC

    IC=6k

    I1= IC10=0.1mAR1R2=VCCI

    1

    = 1210

    4=120 k

    VC

    =100RC

    RE

    R1

    R2

    VCC

    VRc=6V

  • 7/31/2019 Lec 5 BJTBias2 11

    28/35

    ESE319 Introduction to Microelectronics

    282009 Kenneth R. Laker, update 23Sep11

    3-1 Emitter-Feedback Bias - Cont.

    Let's choose a small feedback voltage, sayV

    Re= 1 V. Ignoring the base current:

    RE=VRe

    IE1V

    IC=1 k

    Then the voltage across R2

    is 1.7 V

    R2=

    1.7V

    104

    A=17 k

    R1=120k17k=103 k

    RB=R1R214.5 k1

    101RE10 k

    I1

    = 0.1 mA

    IC=1mA

    R1R2=120

    k

    R1

    RE

    RB1

    101RERecall:

    VB=1.7V

    RC

    VCC

    RC

    = 6kPrevious

    slide

    R2

  • 7/31/2019 Lec 5 BJTBias2 11

    29/35

    ESE319 Introduction to Microelectronics

    292009 Kenneth R. Laker, update 23Sep11

    3-2 Emitter-Feedback 1/3, 1/3, 1/3 Rule Bias

    VRc=VB=VCC

    3=4V

    RC=VRc

    IC=

    4V

    103

    A=4 k

    RE= 4V0.7VIC=3.3 k

    Then the voltage acrossR2

    is VB

    = 4 V

    R2=

    4V

    104

    A=40 k

    4

    Let's choose

    R1=120k40k=80 kRB

    1

    101RERecall:

    RB=R1R226.7 k1

    101RE33 k

  • 7/31/2019 Lec 5 BJTBias2 11

    30/35

    ESE319 Introduction to Microelectronics

    302009 Kenneth R. Laker, update 23Sep11

    RECALL: Bias Stability Condition Argument

    IB

    IC VB=IBRBVBE1RE IB

    IB=VBVBE

    RB1RE

    IE=1IB

    IC=IB=

    RB1REVBVBE

    IC=IB

    1

    VBVBE

    RE=

    VBVBE

    RE

    RB1REif

    RC

    RE

    RB

    VB

    VCC

  • 7/31/2019 Lec 5 BJTBias2 11

    31/35

    ESE319 Introduction to Microelectronics

    312009 Kenneth R. Laker, update 23Sep11

    IC=IB=

    RB1REVBVBE

    RC

    RE

    RB

    VB

    RE

    IC

    IB

    VCC= 12VV

    B= 1.7 V

    VBE

    = 0.7 V

    IC

    = 1 mA

    = 100

    RC

    = 6k

    RE

    = 1 k

    RB

    = 14.5 k

    = 100; IC

    = 0.873 mA

    = 200; IC= 0.932 mA = ; I

    C= 1 mA

    = 100 & RB

    = 0 ; IC

    = 0.99 mA

    3-1 Emitter-Feedback Sensitivity

  • 7/31/2019 Lec 5 BJTBias2 11

    32/35

    ESE319 Introduction to Microelectronics

    322009 Kenneth R. Laker, update 23Sep11

    3-1 Emitter-Feedback IS

    Sensitivity

    //Rule of thumb BJT bias sensitivityBeta=100;VsubT=0.025;VB=1.7;Rb=14.5;BetaPlusRe=101;

    vBE=0.0:0.01:1;iCline=Beta*(VB-vBE)/(Rb+BetaPlusRe);//mA.plot(vBE,iCline);iC=0.01:0.01:2; //mA.!IsubS =1E-16; //mA.for k= 1:1:8

    IsubS=10*IsubS;vBE2=VsubT*log(iC/IsubS);plot(vBE2,iC); //Current in mA.

    end

    Sensitivity toIS

    //3-1 Bias Scheme with Re=1 K

    Re=1;IC=

    RB1REVBVBE

  • 7/31/2019 Lec 5 BJTBias2 11

    33/35

    ESE319 Introduction to Microelectronics

    332009 Kenneth R. Laker, update 23Sep11

    3-1 Scilab Plot (Zoomed)

    IS=1011

    IS=1018

    IC0.4mA

  • 7/31/2019 Lec 5 BJTBias2 11

    34/35

    ESE319 Introduction to Microelectronics

    342009 Kenneth R. Laker, update 23Sep11

    IS=1011

    IS=1018

    IC0.1mARB0

    or

    RB1RE

    Compare to IC

    vs IS

    Results Plot with Ideal

    Emitter Feedback (1/3,1/3,1/3 Rule)

  • 7/31/2019 Lec 5 BJTBias2 11

    35/35

    ESE319 Introduction to Microelectronics

    352009 Kenneth R. Laker, update 23Sep11

    Conclusion

    1/3, 1/3, 1/3 Rule Provides a Good Compromise BaseVoltage Bias Scheme