Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular...

13
Lasers and Synergetics A Colloquium on Coherence and Self-organization in Nature Editors: R.Graham and A.Wunderlin With 114 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo

Transcript of Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular...

Page 1: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

Lasers and Synergetics A Colloquium on Coherence and Self-organization in Nature

Editors: R.Graham and A.Wunderlin

With 114 Figures

Springer-Verlag Berlin Heidelberg NewYork

London Paris Tokyo

Page 2: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

Professor Dr. Robert Graham Fachbereich 7, Universitäts-Gesamthochschule, Postfach 103764, D-4300 Essen, Fed.Rep.of Germany

Dr. Arne Wunderlin Institut für Theor. Physik, Universität, Pfaffenwaldring 57/IV, D-7000 Stuttgart 80, Fed.Rep.of Germany

ISBN 3-540-17940-2 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-17940-2 Springer-Verlag NewYork Berlin Heidelberg

Library of C o n g r e s s Ca ta log ing- in -Pub l i ca t ion Data. L a s e r s and syne rge t i c s . (Spr inger p r o c e e d i n g s in p h y s i c s ; 19) "Ex tended vers ions of the cont r ibut ions to a s y m p o s i u m in h o n o u r of the 60th b i r thday of Hermann Haken to be he ld in 1987 at the University of Stuttgart" - Pref. Inc ludes index. 1. L a s e r s -C o n g r e s s e s . 2 . S y s t e m theory - C o n g r e s s e s . 3 . C o h e r e n c e (Opt ics) - C o n g r e s s e s . 4 .Se l f -o rgan iz ing sys tems - C o n g r e s s e s . 5. Haken , H. I. G raham,R . (Robert), 1942 - . II. Wunde r l i n ,A . (Arne), 1947 - . III. Haken , H. IV. Se r ies . Q C 6 8 5 . L 3 6 1987 535 .5 '8 8 7 - 1 2 1 3 5

Th is work is sub jec t to copyr ight . Al l r ights are reserved, whe ther the w h o l e or part of the material is c o n c e r n e d , spec i f i ca l l y the r ights of t ranslat ion, reprint ing, reuse of i l lustrat ions, reci tat ion, b r o a d c a s t i n g , reproduct ion on microf i lms or in other ways , and storage in d a t a b a n k s . Dup l i ca t i on of th is pub l i ca t ion or parts thereof is on ly permit ted under the p rov is ions of the G e r m a n Copy r igh t L a w of S e p t e m b e r 9, 1965 , in its vers ion of J u n e 2 4 , 1 9 8 5 , and a copyr igh t fee must a lways be pa id . V io la t ions fall u n d e r the p rosecu t i on act of the Ge rman Copyr igh t Law.

©Spr inge r -Ve r l ag Ber l in He ide lbe rg 1987 Pr inted in G e r m a n y

The use of regis tered names , t rademarks, etc. in this pub l ica t ion d o e s not imply, even in the a b s e n c e of a spec i f i c statement, that s u c h names are exempt from the relevant protect ive laws and regu la t ions a n d the re ­fore free for genera l use .

Offset pr int ing: Weiher t -Druck G m b H , D-6100 Darmstadt B o o k b i n d i n g : J .Schäf fer G m b H & C o . K G . , D-6718 Grünstadt 2 1 5 3 / 3 1 5 0 - 5 4 3 2 1 0

Page 3: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

Contents

P a r t I Introduction

C o n t r i b u t i o n s of H e r m a n n H a k e n to O u r U n d e r s t a n d i n g of Coherence a n d S e l f o r g a n i z a t i o n in N a t u r e . B y R . G r a h a m 2

P a r t II Instabilities in Lasers

L a s e r P h y s i c s : Yes terday a n d T o d a y B y F . T . A r e c c h i ( W i t h 4 F igures ) 14

Recent A d v a n c e s i n L a s e r Ins tab i l i t i e s . B y L . A . L u g i a t o , L . M . N a r d u c c i , D . K . B a n d y , J . R . Tred i c ce , and P . R u ( W i t h 14 F i g u r e s ) 24

I n s t a b i l i t i e s , S p a t i a l a n d T e m p o r a l P a t t e r n s in Pass ive O p t i c a l S y s t e m s

B y L . A . L u g i a t o , L . M . N a r d u c c i , a n d R . Lefever ( W i t h 11 F igures ) . 53

O p t i c a l I n s t a b i l i t i e s in S e m i c o n d u c t o r s B y H . H a u g ( W i t h 13 F igures ) 72

P a r t III Fluctuations in Quantum Optics

T h e P o l a r i z a t i o n S y m m e t r i c L a s e r B y S. G r o ß m a n n a n d W . K r a u t h ( W i t h 6 F igures ) 90

Decay of U n s t a b l e E q u i l i b r i a . B y F . H a a k e ( W i t h 3 F igures ) 99

P a r t I V After-Dinner Speech

Synerget i c s a n d W e l t a n s c h a u u n g . B y G . C a g l i o t i ( W i t h 8 F igures ) . 112

P a r t V Methods of Synergetics

B o l t z m a n n - G i b b s E n t r o p y as a M e a s u r e of O r d e r i n S e l f - O r g a n i z i n g (Synerget i c ) S y s t e m s . B y Y u . L . K l i m o n t o v i c h 126

IX

Page 4: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

O n the S l a v i n g P r i n c i p l e . B y A . W u n d e r l i n 140

So lut ions of F o k k e r - P l a n c k E q u a t i o n s in Terms of M a t r i x C o n t i n u e d F r a c t i o n s . B y H . R i s k e n ( W i t h 8 F igures ) 148

P a r t V I Coherence and Structure in Physical Systems

U l t r a f a s t Coherent R a m a n Spectroscopy B y W . Z i n t h a n d W . K a i s e r ( W i t h 6 F igures ) 166

Coherence in the T r a n s p o r t of a Q u a n t u m P a r t i c l e B y P . Re ineker a n d K . K a s s n e r ( W i t h 4 Figures) 175

S t r u c t u r e F o r m a t i o n in P o l y m e r Systems B y G . S t r o b l ( W i t h 13 F i g u r e s ) / 191

P a r t V I I Selforganization in Biological Systems

A G e n e r a l A p p r o a c h to C o m p l e x Systems in B i o h o l o n i c s B y H . S h i m i z u ( W i t h 8 F i g u r e s ) 204

T o w a r d a P h y s i c a l (Synerget ic ) T h e o r y of B io l og i ca l C o o r d i n a t i o n B y J . A . S . K e l s o a n d G . Schöner ( W i t h 4 F igures ) 224

Synerget ics a n d Soc ia l Science. B y W . Weid l i ch ( W i t h 12 F igures ) . 238

H e r m a n n H a k e n ' s P u b l i c a t i o n s 257

Index of C o n t r i b u t o r s 271

X

Page 5: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

Ultrafast Coherent Raman Spectroscopy W. Zinth and W. Kaiser

P h y s i k D e p a r t m e n t E l l , Technische Universität München, D-8000 München, F e d . R e p . o f G e r m a n y

1. I n t r o d u c t i o n

D u r i n g the past decade, time r e s o l v e d c o h e r e n t methods have a t t r a c t e d

much i n t e r e s t f o r the s t u d y of f a s t dynamic p r o c e s s e s . In p a r t i c u l a r ,

time r e s o l v e d c o h e r e n t Raman s c a t t e r i n g a l l o w e d to measure - i n the

time domain - r a p i d d e p h a s i n g p r o c e s s e s o f m o l e c u l a r v i b r a t i o n s i n

l i q u i d s and e l u c i d a t e d v a r i o u s l i n e - b r o a d e n i n g mechanisms /1-4/. It i s

the aim o f t h i s paper to f o c u s a t t e n t i o n on two more r e c e n t s u b j e c t s .

W hile time r e s o l v e d Raman s c a t t e r i n g i s a method working i n the time

domain, i t a l l o w s to o b t a i n v a l u a b l e i n f o r m a t i o n i n the f r e q u e n c y

domain /5,6/. The r e s u l t s of c o h e r e n t e x p e r i m e n t s i n the time domain

have to be t r a n s f o r m e d by a p p r o p r i a t e methods, e.g. by F o u r i e r t r a n s ­

f o r m a t i o n , to show p r o p e r t i e s o f the i n v e s t i g a t e d system i n the

f r e q u e n c y domain. We p r e s e n t here two d i f f e r e n t approaches to r e l a t e

time and f r e q u e n c y domain: ( i ) A time r e s o l v e d c o h e r e n t Raman e x p e r i ­

ment i s pe r f o r m e d and the s pectrum of the c o h e r e n t l y s c a t t e r e d l i g h t i s

r e c o r d e d , ( i i ) A n u m e r i c a l t r a n s f o r m a t i o n i s a p p l i e d to c o h e r e n t d a t a

o f h i g h time r e s o l u t i o n g i v i n g p r e c i s e v a l u e s o f f r e q u e n c y d i f f e r e n c e s

o f v i b r a t i o n a l modes s e p a r a t e d by s e v e r a l t e r a h e r t z . Both t e c h n i q u e s

g i v e - when a p p l i e d i n an a p p r o p r i a t e way - r e s u l t s s u p e r i o r to s t e a d y -

s t a t e spontaneous s p e c t r o s c o p y .

A f t e r a s h o r t t h e o r e t i c a l d e s c r i p t i o n of the b a s i c i d e a s o f the two

t e c h n i q u e s we g i v e e x p e r i m e n t a l r e s u l t s . Measurements are p r e s e n t e d

where c o n g e s t e d s p e c t r a l r e g i o n s c o n s i s t i n g of s e v e r a l o v e r l a p p i n g

bands are r e s o l v e d and the v i b r a t i o n a l t r a n s i t i o n f r e q u e n c i e s of the

d i f f e r e n t components are d e t e r m i n e d . We a l s o show that t e r a h e r t z

quantum b e a t s can be measured w i t h advanced e x p e r i m e n t a l systems; they

g i v e p r e c i s e v a l u e s f o r the f r e q u e n c y d i f f e r e n c e s between v i b r a t i o n a l

t r a n s i t i o n s s e p a r a t e d by more than 200 cm- 1

.

2. Theory

Time r e s o l v e d c o h e r e n t Raman s c a t t e r i n g i s commonly t r e a t e d under the

f o l l o w i n g a s s u m p t ions / ! / : L i g h t f i e l d s are d e s c r i b e d by Maxwell's

e q u a t i o n and the v i b r a t i o n a l t r a n s i t i o n s are r e p r e s e n t e d by t w o - l e v e l

s y s t e m s . Changes i n the p o p u l a t i o n o f the two m o l e c u l a r l e v e l s are

n e g l e c t e d (weak Raman i n t e r a c t i o n ) . Important i s the c o h e r e n t a m p l i t u d e

<q>, i . e . the e x p e c t a t i o n v a l u e o f the v i b r a t i o n a l a m p l i t u d e . F i r s t we

d i s c u s s a s i n g l e homogeneously broadened t r a n s i t i o n w i t h d e p h a s i n g

time T 2 . We use the a n s a t z of p l a n e waves f o r the c o h e r e n t a m p l i t u d e

<q> = ( i / 2 ) Q exp(-io)q t + ikq x) + c . c . and assume an i s o t r o p i c Raman

t e n s o r f o r the i n v e s t i g a t e d v i b r a t i o n . The c o h e r e n t a m p l i t u d e of a

Raman a c t i v e mode at f r e q u e n c y wq i s e x c i t e d v i a t r a n s i e n t s t i m u l a t e d

Raman s c a t t e r i n g by a p a i r of l i g h t p u l s e s , the l a s e r p u l s e E L and the

Stokes p u l s e ^ E s /1,7/. The e l e c t r i c f i e l d s are c o n s i d e r e d to be p l a n e

waves, e.g. E L = 1/2 E L exp ( - i COL t + i k L x ) + c . c . w i t h the wave v e c t o r k L

166

Page 6: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

and f r e q u e n c y U L f o r the l a s e r f i e l d . The d r i v i n g f o r c e F ( x , t ) f o r the

co h e r e n t a m p l i t u d e Q i s p r o p o r t i o n a l to the pr o d u c t o f the l a s e r and

the Stokes f i e l d , F ( x , t ) « E L E S * ; as a r e s u l t the c a r r i e r f r e q u e n c y of

the e x c i t a t i o n f o r c e i s W L - C O S . The l i n e a r r e s p o n s e t h e o r y a p p l i e d to

the e x c i t a t i o n p r o c e s s l e a d s to the f o l l o w i n g e q u a t i o n f o r the c o h e r e n t

a m p l i t u d e Q:

t

0 ( t ) — K / d t * E L (t ' )Es* ( f ) e x p [ ( t * - t ) / T 2 - i A w t ' ] -

The c o n s t a n t tc i s d e f i n e d i n R e f . / l / and c o n t a i n s m a t e r i a l parameters

such as Raman c r o s s s e c t i o n and v i b r a t i o n a l f r e q u e n c y w q . T 2 s t a n d s f o r

the d e p h a s i n g time o f the t r a n s i t i o n . D e t u n i n g between e x c i t a t i o n f r e ­

quency and v i b r a t i o n a l mode i s g i v e n by Aw = w L - w s - w q . The c o h e r e n t

a m p l i t u d e <q> under the a c t i o n o f a s h o r t e x c i t i n g f o r c e e v o l v e s as

f o l l o w s : <q> r i s e s to a maximum w i t h the e x c i t i n g f o r c e and, subse­

q u e n t l y , decays e x p o n e n t i a l l y w i t h the d e p h a s i n g time T 2 . D u r i n g the

f r e e e x p o n e n t i a l decay the m o l e c u l e s o s c i l l a t e at t h e i r r e sonance

f r e q u e n c y coq . In the e x p e r i m e n t s d e s c r i b e d h e r e , the l a r g e bandwidth of

the s h o r t d r i v i n g f o r c e a l l o w s to e x c i t e s e v e r a l v i b r a t i o n a l modes

s i m u l t a n e o u s l y . The a d d i t i o n a l modes may be t r e a t e d w i t h the same

a n s a t z , i n t r o d u c i n g the i n d i v i d u a l r e s o n a n c e f r e q u e n c i e s wqj , a m p l i ­

tudes Qj , and phase f a c t o r s <j>j .

In a time r e s o l v e d c o h e r e n t Raman experiment the a m p l i t u d e <q>,

g e n e r a t e d at time z e r o , i s m o n i t o r e d by c o h e r e n t Raman s c a t t e r i n g o f a

d e l a y e d p r o b i n g p u l s e E L 2 . We i n v e s t i g a t e the a n t i - S t o k e s p a r t of the

sp e c t r u m , which i s g e n e r a t e d by the n o n l i n e a r p o l a r i s a t i o n P N L A S :

P N L A S = Y < q> E L 2 + X < 3 ) N R E L E S * E L 2 . ( 2 )

The c o h e r e n t s i g n a l c o n s i s t s o f two p a r t s . The f i r s t p a r t on the r . h . s .

o f Eq.(2) d e s c r i b e s the c o h e r e n t Raman s i g n a l s c a t t e r e d from the ex­

c i t e d v i b r a t i o n a l mode. The c o n s t a n t y c o n t a i n s the Raman c r o s s s e c t i o n

o f the mode. T h i s p a r t o f the c o h e r e n t s i g n a l i s e m i t t e d at the r e s o n a n t

a n t i - S t o k e s f r e q u e n c y W A S = coL2+ioq and c o n t a i n s i n f o r m a t i o n on the

dynamic p r o p e r t i e s o f the i n v e s t i g a t e d mode. The second p a r t on the

r . h . s . of Eq.(2) i s caused by the nonresonant n o n l i n e a r s u s c e p t i b i l i t y

X ( 3 ) N R , which i s r e l a t e d to o f f - r e s o n a n t modes and e l e c t r o n i c c o n t r i ­

b u t i o n s . E s p e c i a l l y d i s t a n t e l e c t r o n i c t r a n s i t i o n s d e t e r m i n e t h i s

s i g n a l /8/. The nonr e s o n a n t p a r t o f the s i g n a l g i v e s an i n s t a n t a n e o u s

r e s p o n s e , i . e . i t f o l l o w s the p r o d u c t E L E S * E L 2 and decays very r a p i d l y

w i t h the time r e s o l u t i o n o f the e x p e r i m e n t . The re s o n a n t p a r t , on the

o t h e r hand, shows the s l o w e r r e s p o n s e o f the r e s o n a n t l y e x c i t e d mode.

The nonresonant p a r t o f the c o h e r e n t s i g n a l does not p r o v i d e any i n f o r ­

m ation on the i n v e s t i g a t e d modes. I t has to be s e p a r a t e d from the

r e s o n a n t s i g n a l . T h i s f a c t i s not p o s s i b l e i n the s t e a d y - s t a t e c o h e r e n t

a n t i - S t o k e s Raman s p e c t r o s c o p y (CARS). In the t i m e - r e s o l v e d c o h e r e n t

a n t i - S t o k e s e x p e r i m e n t s d e s c r i b e d here the s e p a r a t i o n i s p o s s i b l e .

M e a s u r i n g at l a t e r d e l a y times a l l o w s to o b t a i n i n f o r m a t i o n on the

r e s o n a n t p a r t of the s i g n a l a l o n e , w h i l e the nonresonant p a r t has

v a n i s h e d at t h a t t i m e .

The two t i m e - r e s o l v e d s p e c t r o s c o p i c t e c h n i q u e s d i s c u s s e d next a p p l y the

same t r a n s i e n t e x c i t a t i o n p r o c e s s , but d i f f e r i n the way the p r o b i n g

p r o c e s s i s p e r f o r m e d .

2.1 Short E x c i t a t i o n and P r o l o n g e d I n t e r r o g a t i o n s p e c t r o s c o p y

We i n t r o d u c e the s o - c a l l e d s j i o r t e x c i t a t i o n p r o l o n g e d i n t e r r o g a t i o n

(SEPI) s p e c t r o s c o p y . P e r f o r m i n g t h i s t e c h n i q u e one uses a s h o r t and

167

Page 7: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

b r o a d - b a n d e x c i t a t i o n p r o c e s s f o l l o w e d - at l a t e r d e l a y times - by a

c o h e r e n t s c a t t e r i n g p r o c e s s u s i n g a l o n g p r o b i n g p u l s e / 5 , 9 - H / . The

f r e q u e n c y s p ectrum o f the c o h e r e n t l y s c a t t e r e d s i g n a l i s d e t e c t e d . In

o r d e r to g a i n optimum s p e c t r a l r e s o l u t i o n , a l o n g and p o s s i b l y G a u s s i a n

shaped p r o b i n g p u l s e E L 2 i n t e r r o g a t e s the c o h e r e n t m a t e r i a l e x c i t a t i o n

at a l a t e d e l a y time tp a f t e r the peak of the e x c i t i n g f o r c e . At t h a t

time the c o h e r e n t a m p l i t u d e decays e x p o n e n t i a l l y and the nonresonant

c o n t r i b u t i o n to the c o h e r e n t s i g n a l X ( 3 ) N R has d i s a p p e a r e d . The a n t i -

S t o k e s spectrum becomes

S A S ( Ö ) « | E A S ( ß ) |2

« i T d t e i ß t E A s ( t ) | * = i T d t e i ( ö " W L 2 " W q ) t K L 2 ( t ) Q ( t ) |2

. ( 3 ) — CO — CO

The a n t i - S t o k e s s i g n a l i s c e n t e r e d at the a n t i - S t o k e s f r e q u e n c y

U À = o ) L 2 + c j q , p r o v i d e d t h a t the p r o b i n g l i g h t f i e l d does not e x h i b i t

phase m o d u l a t i o n . E q . ( 3 ) r e p r e s e n t s the F o u r i e r t r a n s f o r m o f the

p r o d u c t ( p r o b i n g f i e l d E L . 2 times the c o h e r e n t a m p l i t u d e Q), i . e . the

F o u r i e r t r a n s f o r m o f the p r o d u c t o f a G a u s s i a n f u n c t i o n times an expo­

n e n t i a l f u n c t i o n . T h i s p r o d u c t i s a g a i n a G a u s s i a n f u n c t i o n of the same

w i d t h , which i s s h i f t e d i n t i m e . In o t h e r words, the width of the a n t i -

S t okes spectrum i s d e t e r m i n e d by the G a u s s i a n shape of the p r o b i n g

f i e l d E L 2 , which may become v e r y narrow p r o v i d e d one works w i t h l o n g

( i . e . s p e c t r a l l y narrow) p r o b i n g p u l s e s . When the p r o b i n g p u l s e s are

s u f f i c i e n t l y l o n g , tP > 1 . 4 T 2 , the o b s e r v e d SEPI l i n e i s narrower than

the spontaneous Raman band w i t h A v s p o n t - 1 / T T T 2 . As a consequence, the

a n t i - S t o k e s f r e q u e n c y may be d e t e r m i n e d w i t h h i g h a c c u r a c y . Of s p e c i a l

i n t e r e s t i s the a p p l i c a t i o n o f the SEPI t e c h n i q u e to c o n g e s t e d s p e c t r a l

r e g i o n s made up o f o v e r l a p p i n g v i b r a t i o n a l bands. In t h i s c a s e , the

n a r r o w i n g o f the d i f f e r e n t t r a n s i t i o n s below the spontaneous w i d t h

a l l o w s to r e s o l v e i n d i v i d u a l t r a n s i t i o n s b u r i e d under a broad inhomo-

geneous s p e c t r u m .

2.2 F o u r i e r T r a n s f o r m Raman S p e c t r o s c o p y

In a second a p p r o a c h we r e c o r d the c o h e r e n t s i g n a l f o r a l o n g time

p e r i o d i n a pure time-domain e x p e r i m e n t . In o r d e r to have optimum

te m p o r a l r e s o l u t i o n p u l s e s of v e r y s h o r t d u r a t i o n f o r the e x c i t i n g and

p r o b i n g l a s e r f i e l d s a r e r e q u i r e d . Under these c o n d i t i o n s the e x p e r i ­

ment d e t e c t s the t i m e - i n t e g r a t e d c o h e r e n t s i g n a l as a f u n c t i o n of the

d e l a y time between e x c i t i n g and p r o b i n g p r o c e s s :

+ 00

S ( t o ) « / d t | E A S ( t , t o ) I2

— CO

+ 00 + 00

« / d t | PN L

A s ( t , t o ) I2

= / d t | y < q > E L 2 + X ( 3 > M R E L E S * E L 2 | 2 . ( 4 )

_co — œ

For s h o r t e x c i t i n g and p r o b i n g p u l s e s t h i s experiment measures the

component due to X ( 3 ) N R at time z e r o and, most i m p o r t a n t , the time

dependence o f the c o h e r e n t a m p l i t u d e . When s e v e r a l modes are e x c i t e d

s i m u l t a n e o u s l y , the s i g n a l decay i s complex. It c o n t a i n s c o n t r i b u t i o n s

o f the d i f f e r e n t v i b r a t i o n a l modes. It can be shown t h a t f o r s h o r t

d r i v i n g and p r o b i n g p u l s e s the c o h e r e n t s i g n a l i s e q u i v a l e n t to the

a b s o l u t e s q u a r e o f the F o u r i e r t r a n s f o r m of the spontaneous Raman

spectrum /5,6/. As a c o n s e q u e n c e , f r e q u e n c y domain i n f o r m a t i o n may be

o b t a i n e d from time r e s o l v e d d a t a by F o u r i e r t r a n s f o r m a t i o n .

168

Page 8: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

The two t e c h n i q u e s i n t r o d u c e d here a n a l y z e the m o l e c u l a r system i n a

s i m i l a r way. In the F o u r i e r - t r a n s f e r m s p e c t r o s c o p y the m a n i p u l a t i o n of

the measured d a t a p r i o r t o the t r a n s f o r m a t i o n may l e a d to improved

s p e c t r a l r e s o l u t i o n . In the SEPI experiment the h a n d l i n g o f the

i n f o r m a t i o n s t a r t s w i t h the p r o l o n g e d p r o b i n g p r o c e s s u s i n g G a u s s i a n

shaped p u l s e s . In t h i s way, the e x p o n e n t i a l decay o f the s i g n a l due to

the d e p h a s i n g p r o c e s s - c o r r e s p o n d i n g to the homogeneous L o r e n t z i a n

l i n e shape i n spontaneous s p e c t r o s c o p y - i s removed p r i o r to the

s p e c t r a l a n a l y s i s . T h i s p r o c e d u r e i s e q u i v a l e n t to a n u m e r i c a l

f i l t e r i n g of the time r e s o l v e d d a t a i n the F o u r i e r t r a n s f o r m Raman

s p e c t r o s c o p y / 6 / .

3 . The E x p e r i m e n t a l System

An e x p e r i m e n t a l s e t - u p used s u c c e s s f u l l y i n v a r i o u s c o h e r e n t Raman

i n v e s t i g a t i o n s i s d e p i c t e d s c h e m a t i c a l l y i n F i g . l . A pumping l a s e r

s o u r c e g e n e r a t e s s y n c h r o n i z e d e x c i t i n g and p r o b i n g l i g h t f i e l d s at the

f r e q u e n c i e s C O L , C O L 2 , and u s i n s e v e r a l dye l a s e r s . The d u r a t i o n s o f the

v a r i o u s l a s e r p u l s e s a r e d e t e r m i n e d by the s p e c i a l type o f the l a s e r .

For the SEPI e x p e r i m e n t we use a p i c o s e c o n d ( s y n c h r o n o u s l y pumped) dye

l a s e r e m i t t i n g p u l s e s E L and E L 2 w i t h W L = I O L 2 of d u r a t i o n tp - 12 ps

and a second p i c o s e c o n d dye l a s e r (pumped by the same mode-locked Ar-

i o n l a s e r ) to pr o d u c e the Stokes p u l s e Es ( tP - 5 ps) /12/. For the

Pumping Laser

Frequency Convertors

Optical Delay

Polarization Control

Sample

Polarization and Wavelength Filter

Spectrometer

Detection

F i g . l S c h ematic of the e x p e r i m e n t a l

system used to s t u d y time r e s o l v e d

c o h e r e n t Raman s p e c t r o s c o p y . A mode-

l o c k e d A r - i o n l a s e r s y n c h r o n o u s l y

pumps dye l a s e r s as f r e q u e n c y con­

v e r t o r s . The c o h e r e n t l y s c a t t e r e d

s i g n a l i s r e c o r d e d by a h i g h l y sen­

s i t i v e d e t e c t i o n system

169

Page 9: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

F o u r i e r - t r a n s f o r m c o h e r e n t Raman experiment one works w i t h the same

Stokes p u l s e s , but the e x c i t i n g and p r o b i n g l a s e r p u l s e s a r e v e r y

s h o r t , namely 60 f s . The l a t t e r a r e produced i n a femtosecond u n i ­

d i r e c t i o n a l r i n g dye l a s e r /13/. The e x c i t i n g Stokes and l a s e r p u l s e s

a r e f o c u s e d i n t o the sample g e n e r a t i n g the coh e r e n t m a t e r i a l e x c i t a t i o n .

The p r o b i n g p u l s e s are d e l a y e d r e l a t i v e to the e x c i t i n g p u l s e s i n the

o p t i c a l d e l a y OD and then t r a v e r s e ( a t the phase-matching a n g l e ) the

e x c i t e d volume o f the sample. The weak c o h e r e n t l y s c a t t e r e d l i g h t i s

s e p a r a t e d from the i n c o m i n g p u l s e s v i a diaphragms, p o l a r i z e r s , and

a p p r o p r i a t e s p e c t r o m e t e r s . In the case of SEPI s p e c t r o s c o p y a h i g h -

r e s o l u t i o n s p e c t r o g r a p h ( A X / A = 1 0 ~ 5

) s e r v e s to observe t h e a n t i - S t o k e s

s p e c t r u m . The d e t e c t i o n system i s a h i g h l y s e n s i t i v e c o o l e d photo-

mult i p l i e r .

4. S h o r t E x c i t a t i o n and P r o l o n g e d I n t e r r o g a t i o n S p e c t r o s c o p y o f

Hydrogen-bonded A g g r e g a t e s

With the SEPI t e c h n i q u e m i x t u r e s o f l i q u i d p y r i d i n e and methanol were

s t u d i e d . In the s e m i x t u r e s hydrogen bonds between p y r i d i n e and methanol

o c c u r , s t r o n g l y i n f l u e n c i n g the spontaneous Raman s p e c t r a . In F i g . 2 the

spontaneous Raman d a t a o f p y r i d i n e : methano1 m i x t u r e s are d e p i c t e d f o r

the s p e c t r a l range o f 980 cm"1

to 1030 cm- 1

. In neat p y r i d i n e ( l o w e s t

t r a c e i n F i g . 2 ) the v i mode o c c u r s at 990.5 cm- 1

. When methanol i s

added to p y r i d i n e , an a d d i t i o n a l b r o a d band appears around 1000 cm- 1

,

which s h i f t s w i t h i n c r e a s i n g methanol c o n c e n t r a t i o n /14/. S h o u l d e r s i n

the spontaneous Raman s p e c t r u m i n d i c a t e t h a t t h i s band i s made up o f

s e v e r a l components. The s p o n t a n e o u s Raman data do not a l l o w to d e t e r ­

mine the number, the f r e q u e n c y p o s i t i o n s , and the a m p l i t u d e s o f the

d i f f e r e n t components. In F i g . 3 b and 3c we p r e s e n t SEPI d a t a taken o f

two m i x t u r e s . For each m i x t u r e a dozen s p e c t r a were r e c o r d e d . The l a s e r

f r e q u e n c y COL was kept c o n s t a n t and d i f f e r e n t a n t i - S t o k e s s p e c t r a were

measured, when t u n i n g the S t o k e s f r e q u e n c y i n s t e p s o f 1 c m- 1

. Of

s p e c i a l i n t e r e s t a r e the narrow SEPI s p e c t r a around 1000 c m- 1

. One

f i n d s two d i s t i n c t bands at 997.3 cm- 1

and at 1000 cm- 1

, and a weaker

component at 1001 cm- 1

. The t h r e e f r e q u e n c y p o s i t i o n s a r e marked i n

F i g . 3 by v e r t i c a l d a s h - d o t t e d l i n e s . The r e l a t i v e a m p l i t u d e s o f the two

major components change c o n s i d e r a b l y w i t h c o n c e n t r a t i o n . W h i l e the com­

ponent at 1000 cm- 1

i s s t r o n g e s t at xpy = 0.33 molar f r a c t i o n ( F i g . 3 b ) ,

one f i n d s the component at 997.3 cm- 1

to dominate at xpy - 0.66 molar

f r a c t i o n ( F i g . 3 c ) . A l a r g e number of SEPI s p e c t r a was ta k e n f o r

P y r i d i n e : M e t h a n o l

990 1000 Raman Shift C c m _ , J

F i g . 2 Spontaneous Raman s p e c t r a o f

pure p y r i d i n e ( l o w e s t t r a c e ) and o f

m i x t u r e s of p y r i d i n e and m e t h a n o l .

In the m i x t u r e s a new band a p p e a r s

around 1000 cm- 1

, which i s due to

complexes of p y r i d i n e and m e t h a n o l .

The band i s r e s o l v e d by SEPI s p e c t r o ­

scopy i n t o t h r e e l i n e s (see F i g . 3 )

170

Page 10: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

E ̂

990 995 lOOO 1005

-n I — T- 1 r

» 0.5

,1000

"1000

F_:Lß.:...Ii Raman s p e c t r a of p y r i d i n e : methanol

m i x t u r e s , (a) P o l a r i z e d spontaneous Raman

spectrum measured at a p y r i d i n e concen­

t r a t i o n of 0.33 molar f r a c t i o n taken w i t h

a s t a n d a r d Raman s p e c t r o m e t e r of s p e c t r a l

r e s o l u t i o n o f 0.5 cm- 1

, (b) and (c) Sh o r t

e x c i t a t i o n and p r o l o n g e d i n t e r r o g a t i o n

(SEPI) s p e c t r a o b t a i n e d f o r a s e t o f ex­

c i t a t i o n f r e q u e n c i e s V L - V S at two p y r i ­

d i n e c o n c e n t r a t i o n s , x p y - 0.33 molar

f r a c t i o n (b) and x p y = 0.66 molar

f r a c t i o n ( c ) . The s p e c t r a , taken at ex­

c i t a t i o n f r e q u e n c i e s V L - V S < 994 cm- 1

,

are drawn w i t h reduced a m p l i t u d e s [x0.25

in (b) and x().()2 i n ( c ) ] . The SEPI

s p e c t r a r e s o l v e t h r e e Raman l i n e s o f

d i f f e r e n t hydrogen-bonded a g g r e g a t e s

h i d d e n under the broad band o f the spon­

taneous Raman spectrum (see dash d o t t e d

l i n e s )

o c CO

CL LU (J)

990 995 R a m a n Shif t

F i g . 4 C o n c e n t r a t i o n dependences o f the

a m p l i t u d e s of the two SEPI l i n e s at

997.3 cm"1

and 1000 cm"1

4) N

"o 6 O Z

0.5

v=997.3cm 1

v* = 1000cm"

Pyri di ne 0.5 1

Concentrat ion

p y r i d i n e c o n c e n t r a t i o n s between x p y =

0.1 and 1.0 molar f r a c t i o n . The

c o n c e n t r a t i o n dependence of the a m p l i t u d e s i s shown i n F i g . 4 f o r the

two SEPI l i n e s at 997.3 cm"1

( f u l l p o i n t s ) and 1000 cm"1

( c i r c l e s ) . The

band at 997.3 cm- 1

r i s e s to a peak v a l u e at x p y - 0.5 molar f r a c t i o n ,

w h i l e the band at 1000 cm- 1

shows a maximum at h i g h e r methanol concen­

t r a t i o n s w i t h x p y = 0.25 molar f r a c t i o n .

Our d a t a suggest the f o l l o w i n g p i c t u r e o f the hydrogen bonded complexes:

( i ) There e x i s t at l e a s t t h r e e d i s t i n c t complexes o f p y r i d i n e and

m e t h a n o l , ( i i ) The s p e c i e s at 997.3 cm- 1

c o n s i s t s of one p y r i d i n e and

one methanol m o l e c u l e (PM). T h i s complex has i t s h i g h e s t c o n c e n t r a t i o n

when p y r i d i n e and methanol are at e q u a l numbers i n the s o l u t i o n , ( i i i )

The component at 1000 cm-1 appears to be made up of one p y r i d i n e and

two or - more p r o b a b l y - f o u r methanol m o l e c u l e s ( P M 2 or P M 4 ) . I n d i ­

c a t i o n s f o r the l a t t e r complex are found i n the l i t e r a t u r e ; s e l f -

a s s o c i a t i o n of methanol i s r e p o r t e d to o c c u r at h i g h methanol concen­

t r a t i o n s w i t h a predominance o f methanol t e t r a m e r s /15/. ( i v ) The

component at 1001 cm- 1

i s t e n t a t i v e l y a s s i g n e d t o complexes PMn w i t h

n > 4.

171

Page 11: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

5. F o u r i e r T r a n s f o r m Raman S p e c t r o s c o p y of T r a n s i t i o n s w i t h

T e r a h e r t z F r e q u e n c y d i f f e r e n c e s

H i g h - r e s o l u t i o n F o u r i e r t r a n s f o r m c o h e r e n t Raman s p e c t r o s c o p y was f i r s t

r e p o r t e d by G r a e n e r and L a u b e r e a u , who worked w i t h l i g h t p u l s e s o f

twenty p i c o s e c o n d d u r a t i o n . The a u t h o r s s t u d i e d v i b r a t i o n a l - r o t a t i o n a l

t r a n s i t i o n s i n C H 4 s e p a r a t e d by l e s s than 1 cm- 1

w i t h h i g h r e s o l u t i o n

o f 10~3

cm"1

. The d a t a were taken i n a time i n t e r v a l o f 12 n s .

In t h i s paper p r e c i s e measurements are d i s c u s s e d of f r e q u e n c y

d i f f e r e n c e s between v i b r a t i o n a l modes i n l i q u i d s which a r e s e p a r a t e d by

t e n s to hundreds o f wavenumbers. These l a r g e f r e q u e n c y d i f f e r e n c e s

may be s t u d i e d i n e x p e r i m e n t s which r e v e a l the r e l a t e d b e a t i n g

phenomena. For example, a f r e q u e n c y d i f f e r e n c e o f 200 cm- 1

p r o d u c e s a

b e a t i n g p a t t e r n w i t h peaks s e p a r a t e d by 167 f s . In o r d e r to r e s o l v e

t h i s v e r y s h o r t phenomenon, one has to work w i t h femtosecond l i g h t

p u l s e s . L i g h t p u l s e s o f a p p r o x i m a t e l y 50 f s d u r a t i o n became a v a i l a b l e

o n l y r e c e n t l y . We p r e s e n t two examples of t i m e - r e s o 1ved c o h e r e n t

Raman s p e c t r o s c o p y w i t h f e mtosecond time r e s o l u t i o n /16/. F i r s t we show

d a t a of pure l i q u i d p y r i d i n e .

L i q u i d p y r i d i n e has Raman a c t i v e v i b r a t i o n s at f r e q u e n c i e s 991 cm- 1

and

1030 cm- 1

. They a r e a s s i g n e d to two Ai r i n g modes /II/. Both v i b r a t i o n s

have s i m i l a r s p e c t r a l w i d t h (2.2 cm- 1

) and s i m i l a r Ramn c r o s s s e c t i o n s ;

t h e y are s e p a r a t e d by 39 cm- 1

. In the Raman e x c i t a t i o n p r o c e s s a

f r e q u e n c y d i f f e r e n c e o f ( IOL-cos ) / 2T T C = 1010 cm- 1

between the l a s e r and

the Stokes f r e q u e n c i e s i s a p p l i e d . Due to the broad s p e c t r a l w i d t h o f

the femtosecond e x c i t i n g f o r c e o f 200 cm- 1

b o t h p y r i d i n e modes a r e

s i m u l t a n e o u s l y e x c i t e d i n the e x p e r i m e n t . F i g . 5 a shows the o b s e r v e d

a n t i - S t o k e s s i g n a l p l o t t e d as a f u n c t i o n o f the time d e l a y between

la) P y r i d i n e V , (py ) = 991 cm" v 6 | p y ) » 1030cm- '

o

c

<

(b) P y r i d i n e : C y c l o h e x a n e 1:1 by vol

v 5 {eye ) = 602 c m ' '

V , (py ) = 991 cm 1

10 0 2 A D e l a y T i m e C p s J

6

F i g.5 T i m e - r e s o l v e d c o h e r e n t Raman

s c a t t e r i n g u s i n g femtosecond time

r e s o l u t i o n . (a) Beat p a t t e r n r e ­

s u l t i n g from pure p y r i d i n e a f t e r

e x c i t a t i o n o f the two p y r i d i n e

modes at 991 cm- 1

and 1030 c m- 1

,

(b) Beat p a t t e r n r e c o r d e d from a

m i x t u r e of p y r i d i n e and c y c l o h e x a n e .

B e a t i n g of t h r e e m o l e c u l a r modes i s

o b s e r v e d

172

Page 12: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

e x c i t i n g and p r o b i n g p u l s e s . D u r i n g the e x c i t a t i o n p r o c e s s , at time

z e r o , the c o h e r e n t s i g n a l r i s e s t o a pronounced peak. I t s u b s e q u e n t l y

decays q u i c k l y o v e r more than an o r d e r o f magnitude. L a t e r , the s i g n a l

r e c o v e r s and shows s t r o n g o s c i l l a t i o n s . The m o d u l a t i o n depth exceeds a

f a c t o r o f t e n . Two f e a t u r e s of the c o h e r e n t s i g n a l are of s p e c i a l

i n t e r e s t h e r e .

( i ) The p e r i o d o f o s c i l l a t i o n i s 0.85 p s . C o n s e q u e n t l y , the f r e q u e n c y

d i f f e r e n c e between the two modes i s 1.175+0.015 THz or

A v = A v / c = 39.2+0.5 c m- 1

. We emphasize t h a t A v may be d e t e r m i n e d w i t h

h i g h p r e c i s i o n , m a i n l y d e p e n d i n g on the s i g n a l - t o - n o i s e r a t i o o f the

e x p e r i m e n t and the a c c u r a c y o f the o p t i c a l d e l a y l i n e .

( i i ) The e n v e l o p e o f the peaks o f the o s c i l l a t i o n decays e x p o n e n t i a l l y

w i t h the decay time T 2 / 2 * 2.55+0.15 ps. The depths of the o s c i l l a t i o n s

s l i g h t l y d e c r e a s e f o r l o n g o b s e r v a t i o n t i m e s , i n d i c a t i n g a s l i g h t

d i f f e r e n c e o f 20% between the d e p h a s i n g times o f the two modes.

In F i g . 5 b we p r e s e n t an a m a z i n g l y c o m p l i c a t e d but p e r f e c t l y r e p r o ­

d u c i b l e a n t i - S t o k e s p a t t e r n . A m i x t u r e o f c y c l o h e x a n e and p y r i d i n e (1:1

by volume) was i n v e s t i g a t e d w i t h femtosecond l i g h t p u l s e s . (Note, t h a t

t h e r e a r e no hydrogen bonded a g g r e g a t e s i n t h i s m i x t u r e ) . In t h i s case

t h r e e v i b r a t i o n a l modes w i t h s i m i l a r T 2 v a l u e s beat t o g e t h e r ; they a r e :

one c y c l o h e x a n e mode at 802 cm"1

/18/ and the two p y r i d i n e modes at 991

cm- 1

and 1030 c m- 1

. We f i n d a r i c h b e a t i n g s t r u c t u r e o r i g i n a t i n g from

the i n t e r f e r e n c e o f the t h r e e modes.

The f r e q u e n c y d i f f e r e n c e s o f the i n v e s t i g a t e d modes were d e t e r m i n e d by

the f o l l o w i n g p r o c e d u r e . The e x p o n e n t i a l decay was removed by m u l t i ­

p l y i n g the s i g n a l w i t h an e x p o n e n t i a l r i s i n g f u n c t i o n . An a p p r o p r i a t e

window f u n c t i o n was i n t r o d u c e d to remove the i n f l u e n c e o f the b o u n d a r i e s

o f the time r a n g e . A f t e r t h e s e a r i t h m e t i c a l m a n i p u l a t i o n s a F o u r i e r

t r a n s f o r m a t i o n o f the time dependent data gave the r e s u l t s shown i n

F i g . 6 . Three s h a r p and pronounced peaks a r e found at 39 cm"1

, 189 cm- 1

,

and 228 cm- 1

, which c o r r e s p o n d to the f r e q u e n c y d i f f e r e n c e s between the

t h r e e modes e x c i t e d i n the m i x t u r e .

P y r i d i n e : C y c l o h e x a n e 1:1 by vol.

A V = 39 cm" 1

v 6 (py ) - v, (py)

F r e q u e n c y v Cerri"1.]

F i g . 6 D i f f e r e n c e spectrum o f p y r i d i n e and c y c l o h e x a n e o b t a i n e d by

n u m e r i c a l F o u r i e r t r a n s f o r m a t i o n o f the time r e s o l v e d d a t a from F i g . 5 b .

Note the s t r o n g peaks at 39 cm'1

, 189 cm- 1

, and 228 cm- 1

, which

c o r r e s p o n d t o the d i f f e r e n c e s between the t h r e e e x c i t e d modes. The

h i g h e s t d i f f e r e n c e f r e q u e n c y o b s e r v e d i s A v = 6.84 THz.

173

Page 13: Lasers and Synergetics - uni-muenchen.de · systems. Changes in the population of the two molecular levels are neglected (weak Raman interaction). Important is the coherent amplitude

An i m p o r t a n t a s p e c t remains to be d i s c u s s e d here: In o r d e r to improve

s p e c t r a l r e s o l u t i o n i n the time-domain e x p e r i m e n t , the c o h e r e n t s i g n a l

has to be measured over d e l a y times as l o n g as p o s s i b l e . T a k i n g i n t o

a ccount the e x p o n e n t i a l decay o f the s i g n a l , o n e i m m e d i a t e l y f i n d s t h a t

the s p e c t r a l r e s o l u t i o n i s d i r e c t l y r e l a t e d to the s i g n a l - t o - n o i s e r a t i o

o f the e x p e r i m e n t . The f o l l o w i n g numbers s h o u l d i l l u s t r a t e the s i t u a t i o n

For d e p h a s i n g times o f a p p r o x i m a t e l y T 2 = 3 ps and w i t h e x p e r i m e n t a l

d a t a of the c o h e r e n t Raman s i g n a l a v a i l a b l e over t h r e e o r d e r s of magni­

t u d e , one e s t i m a t e s an a c c u r a c y of the A v v a l u e s of a p p r o x i m a t e l y

0 . 3 cm-1

.

6. C o n c l u s i o n s

We have shown that time r e s o l v e d c o h e r e n t Raman measurements p r o v i d e

s p e c t r a l i n f o r m a t i o n h a r d l y o b t a i n e d from s t e a d y - s t a t e spontaneous

s p e c t r a or from coherent s t e a d y - s t a t e s p e c t r o s c o p y . We have p r e s e n t e d

two d i f f e r e n t t e c h n i q u e s which a r e o f v a l u e i n t h e i r own r i g h t s . The

sho r t e x c i t a t i o n and p r o l o n g e d i n t e r r o g a t i o n (SEP1) t e c h n i q u e i s w e l l

adapted to r e s o l v e c o n g e s t e d s p e c t r a l r e g i o n s ; l i n e s s e p a r a t e d by

a few wavenumbers are r e s o l v e d . On the o t h e r hand, F o u r i e r - t r a n s f o r m

c o h e r e n t Raman s p e c t r o s c o p y u s i n g femtosecond l i g h t p u l s e s i s w e l l

s u i t e d to measure a c c u r a t e l y f r e q u e n c y d i f f e r e n c e s o f modes s e p a r a t e d

by more than 200 c m1

.

Acknowledgement

The a u t h o r s acknowledge v a l u a b l e c o n t r i b u t i o n s by M.C.Nuss,

R.L e o n h a r d t , W. H o l z a p f e l , and R. Hackl at v a r i o u s s t a g e s o f t h i s work.

R e f e r e n c e s

1. A. L a u b e r e a u , W. K a i s e r : Rev. Mod. Phys. 50, 607 (.1978);

A. P e n z k o f e r , A. L a u b e r e a u , W. K a i s e r : P r o g r . Quant. E l e c t r o n .

6 55 (1979)

2. D. von der L i n d e , A. L a u b e r e a u , W. K a i s e r : Phys. Rev. L e t t .

26 954 (1971)

3. S. V e l s k o , J . T r o u t , R.M. H o c h s t r a s s e r : J . Chera. Phys.

79, 2114 (1983)

4. G.M. G a l e , P. G u y o t - S i o n n e s t , W.Q. Zheng: O p t i c s Commun.

58, 395 (1986)

5. W. Z i n t h , W. K a i s e r : In O r g a n i c M o l e c u l a r A g g r e g a t e s , e d s .

R . R e i n e c k e r , H.Haken, H.C.Wolf, S o l i d S t a t e S c i e n c e , V o l . 4 9 ,

( S p r i n g e r , New York 1983) p.124

6. H. G r a e n e r , A. Laubereau: O p t i c s Commun. ^4, 141 (1985)

7. R.L. Carman, I. S h i m i z u , C S . Wang, N. Bloembergen:

Phys. Rev. A2, 60 (1970)

8. W. Z i n t h , A. L a u b e r e a u , W. K a i s e r : O p t i c s Commun. 5_7, 457 ( 1978)

9. W. Z i n t h : O p t i c s Commun. 34, 479 (1980)

10. W. Z i n t h , M.C. Nuss, W. K a i s e r : Chem. Phys. L e t t . 88, 257 (1982)

11. M.A. C o l l i n s , P.A. Madden, A.D. Buckingham: Chem. Phys.

24, 291 (1985)

12. W. Z i n t h , M.C. Nuss, W. K a i s e r : Phys. Rev. A30, 1139 (1984)

13. J . D o b l e r , H.H. S c h u l z , W. Z i n t h : O p t i c s Commun. 57, 407 (1986)

14. H. T a k a h a s h i , K. Mamola, E.K. P l y l e r , J . M o l . S p e c t r o s c .

21, 217 (1966) B.P. A s t h a n a , H. T a k a h a s h i , W. K i e f e r : Chem. Phys.

L e t t . 94. 41 (1983)

15. W.B. Dixon: J . Phys. Chem. 74, 1396 (1970); A.N. F l e t c h e r , i b i d .

75, 1808 (1971)

16. R. L e o n h a r d t , W. H o l z a p f e l , W. Z i n t h , W. K a i s e r : Chem. Phys. L e t t . ,

to be p u b l i s h e d 1987

17. D.A. Long, F.S. M u r f i n , E.L. Thomas, T r a n s . F a r a d . S o c .

59, 12 (1963)

18. K.B. W i b e r g , A. Shrake: S p e c t r o c h i m . A c t a 27A, 1139 (1971)

174