Laboratoire National Champs Magnétiques Intenses, Toulouse, France M. Fouché, Agathe Cadène, Paul...

22
Laboratoire National Champs Magnétiques Intenses, Toulouse, France M. Fouché , Agathe Cadène, Paul Berceau, Rémy Battesti, Carlo Rizzo The QED Vacuum Magnetic Birefringence (BMV) Experiment

Transcript of Laboratoire National Champs Magnétiques Intenses, Toulouse, France M. Fouché, Agathe Cadène, Paul...

Laboratoire National Champs Magnétiques Intenses, Toulouse, France M. Fouché, Agathe Cadène, Paul Berceau, Rémy Battesti, Carlo Rizzo

The QEDVacuum Magnetic Birefringence (BMV)

Experiment

E

Elliptic polarizationLinear polarization

Magnetic Birefringence

Epar

Eperp

x

y

E B

Linear polarization

Induced magnetic birefringence :

n = ( n// – n┴ ) α B2

This effect exists in any medium

n measurement to a few ppm

Pure QED test

Vacuum Magnetic BirefringenceQED theory predicts that this effect also exists in vacuum

• Due to the creation of virtual positron-electron pairs

nonlinear interaction between electromagnetic fields

• Calculated in the 70s :

0

2

54

32

4

251

15

2

B

cmn

e

At the lower orders in

2

24

T 1 10 00000500316994

B

n ..

O(3)

O(4)

O(5)

?

?

Fondamental constants : Codata 2010

Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. D 2, 2.34 (1970)V. I. Ritus, Sov.Phys. JETP 42, 774 (1975)

Experimental challenge

• BMV project

Development of a very sensitive ellipsometer in order to be able to observe this fundamental

prediction for the first time

• Extremely small Not yet experimentally observed

2CM Bkn 224

CM T 104 .kwith

The ellipsometer

A

P

It

Iext

BM2

M1

• P and A : polarisers crossed at maximum extinction

• Ellipticity :

• Key elements :

Magnetic field : special magnets developed at LNCMI to have a B2LB as high as possible

Fabry-Perot cavity : to increase the optical path in B

CMkλ

πΨ

π

F2BLB2

laser=1064 nm

LB

R. Battesti et al., EPJD 46, 323 (2008)

Pulsed transverse magnetic field

L = 25 cm

laser beam

Unconventional magnets developed at LNCMI

X coil geometry high transverse magnetic field

I

B1 B2

B

I

laser

R. Battesti et al., EPJD 46, 323 (2008)

Pulsed transverse magnetic fieldB

(T

)

time (ms)

I = 8300 AU = 4000 Vtpulse = 4 ms

B = 14.3 TB²Lmag = 28 T²m

E = 100 kJ

Pulses in vacuum:mT 75

T 5622

max

max

.

.

BLB

B

• Time evolution: • Longitudinal profile:

= 0.137 m

Hole to let the laser in

12mm

Coil in its cryostat

Immersion in liquid nitrogen to avoid consequences of heating

External reinforcement to contain the magnetic pressure

The Fabry-Perot cavity

Lc= 2.27 m

1’’

Ellipticity :

CMkλ

πΨ

π

F2BLB2

The Fabry-Perot cavity

Finesse :

• photon lifetime in the cavity (Lc = 2.27 m long) : = 1.08 ms

• flight distance in the cavity = 325 km

000 054cL

cF

One of the sharpest cavities of the world

Interferometers in the world

Lc 3 km 6.4 m 4 km 2.27 m

159 ms 442 ms 970 ms 1.08 ms

F = 50 70 000 230 450 000

= 1 kHz 360 Hz 164 Hz 147 Hz

aa

2LcF2LcF

LcLc

c τc τ

c c

high reflectivity mirrors work in a clean room

BMV experimental setup

• Increase of the path of light in the medium : Fabry-Perot cavity

• Pulsed transverse magnetic field B as high as possible

Data acquisition

Alignment of the cavity mirrors

Shot

Data analysis

TEM00 mode

Laser locked on the cavity

Data analysis

Both signals It and Iext are used:

A

P

It

Iext

B M2

M1

Ellipticity to be measured, proportional to B²(t)

polarizers extinction≈ 4.10-7

cavitywithout t

ext2

I

I

Cavity static ellipticity≈ 10-6

)( tI

Ψ2σI

22

t

ext for Ψ

22 ΓΨ(t)σI

t

ext I

Data analysis

)( tI

Ψ2σI

22

t

ext for Ψ

Ψ(t) Y(t) 22

t

e

I

I

with = sign of

CMCM2filteredCM 2

and BFL

ktBY

in T-2

takes into account the first order low pass filtering of the cavity

cutoff frequency: c=1/4 = 75 Hz

2filteredB

Y(t) fitted by tBCM2filtered

P. Berceau et al., Appl. Phys. B 100, 803 (2010)

Magnetic birefringence of nitrogen vs pressure

Results in N2

3.1×10-2

2.2×10-2

9×10-4

< 5×10-4

4×10-2

2×10-2

3.5×10-2

2.2×10-2

3×10-4

type A type B

Relative uncertainties

Pf

Ln

Bb

2sin

1

4 ISLCM

P. Berceau et al., Phys. Rev. A 85, 013837 (2012)

Group

PVLAS

Q&A

BMV

• measurements linear fit 1 confidence level

Results in vacuum

Ψ(t) Y(t)22

t

e

I

I

Pulses realized in same experimental conditions,

at 3 confidence level

Systematic effects

(rad

)

Ox

0

//B

-219CM T 101012 ..k

Systematic effects

Possible Cotton-Mouton effects:

• Residual gaz :

P<10-7 mbar

Gaz analyser: most important contributions come from N2 and O2

• CM effect of cavity mirrors

Bmirror = 150 T

kCM = (2.1 0.1) 10-19 T-2 at 3 confidence level

No Cotton-Mouton systematic effect

-223CM T 1051 .k

-224CM T 101 k

>0, B antiparallel to Ox

New data acquisition procedure

Using symmetry properties of Ψ(t) Y(t)22

t

e

I

I

4 new data series YB

Y(t) >0, B parallel to Ox

Y(t)Y(t)Y(t) <0, B parallel to Ox

<0, B antiparallel to Ox

We then derive a more general expression for Y(t)

SdScSbSa

SdScSbSa

SdScSbSa

SdScSbSa

Y

Y

Y

Y BS = function with a given symmetry

+ even parity- odd parity

Cotton-mouton effect S-+

New data acquisition procedure

• Symmetry functions can be measured with a linear combination of functions Y

• Allow to measure and to overcome systematic effects that might mimic the CM effect

at 3 confidence level

A. Cadène et al., arXiv:1302.5389 (2013)

-221CM T 107847 ..k

Comparison

BFRT Collaboration: R. Cameron et al., Phys. Rev. D 47, 3707 (1993)

PVLAS, 2008: E. Zavattini et al., Phys. Rev. D 77, 032006 (2008)

PVLAS, 2012: G. Zavattini et al., Int. J. of Mod. Phys. A 27, 1260017 (2012)

A. Cadène et al., arXiv:1302.5389 (2013)

Conclusion

Status

• Coupled high magnetic field and one the best Fabry-Perot cavities• Measurements performed on gases and in vacuum

Needed sensitivity improvement: almost 4 orders of magnitude

B2Lmag > 300 T2m

Future• Increase the transverse magnetic field : new XXL-coil

• Improvement of the ellipticity sensitivity (Decrease of 2 and 2 (10-8))