La Spectrométrie de Masse d'Ions Secondaires (SIMS): un...

45
Henri-Noël Migeon Département “Science et Analyse des Matériaux” CRP-Gabriel Lippmann 41, rue du Brill L-4422 Belvaux La Spectrométrie de Masse d'Ions Secondaires (SIMS): un outil majeur pour l'étude de notre système solaire, les recherches biomédicales et le développement des nanomatériaux

Transcript of La Spectrométrie de Masse d'Ions Secondaires (SIMS): un...

  • Henri-Noël Migeon

    Département “Science et Analyse des Matériaux”

    CRP-Gabriel Lippmann

    41, rue du Brill

    L-4422 Belvaux

    La Spectrométrie de Masse d'Ions Secondaires

    (SIMS):

    un outil majeur pour l'étude de notre système

    solaire, les recherches biomédicales et le

    développement des nanomatériaux

  • The nanometer scale

    100 microns

    Luxembourg/Nancy: 117 km

    100 microns / 100 km = 10-9

    1nm / 1 m= 10-9

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • Secondary lon MassSpectrometry (SIMS) is basedupon the sputtering of a fewatomic layers from the surface of asample induced by a “primaryion” bombardment. A primary ionimpact triggers a cascade ofatomic collisions. Atoms, moleculefragments and ions are ejected

  • C60 bombardment - animation

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    Sensitivity

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • Primary

    ionsEjected

    particles

    Chemical analysis

    (elemental and isotopic)

    Target

    Mass spectrometerSeparation by mass to charge ratio

    (m/z)

    Secondary ions emission

    Neutrals (majority)

    Charged particles

    electrons

    Secondary ions

    positive ions

    negative ions

    Radiations

    Secondary Ion Mass Spectrometry

  • Georges Slodzian

    Université Paris-Sud Orsay

    Raimond Castaing

    (1921 – 1998)

    André Guinier est né à Nancy où son père Philibert Guinier,membre de l’Académie des Sciences dans la section d’économierurale, était directeur de l’École Forestière. Il entre à l’ÉcoleNormale Supérieure en 1930 et prépare une thèse encristallographie. Ses premiers travaux sont consacrés à laconception et à la réalisation d’une chambre de diffraction desrayons X qui permet d'étudier la diffusion des rayons X auvoisinage immédiat du faisceau incident.C'est en étudiant les défauts cristallins que Guinier découvre (enmême temps que Preston) ce que l'on a appelé les “zones deGuinier-Preston”, zones de concentration de l’un des typesd’atomes composant un alliage (le premier exemple fut Al-Cu). Ces“zones G-P” ont un grand intérêt en métallurgie.Après sa thèsesoutenue en 1939, il propose le sujet de thèse de Raimond Castaingqui donnera lieu à la Microsonde de Castaing.

    Alfred Benninghoven

    Université de Münster

    Static SIMS

    Dynamic SIMS

    Electron microprobe

  • Direct image ion microscope

    Georges Slodzian, Thèse (1964))

    Si+ Mg+

    Al+

    Radius # B-1 (m/q)

  • Claude Allègre,prix Crawford (= prix Nobel de Géologie)

    membre

    correspondant

    Georges Slodzian

  • IMS 1280

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • 1,00E+01

    1,00E+02

    1,00E+03

    1,00E+04

    1,00E+05

    1,00E+06

    1,00E+07

    1,00E+08

    1,00E+09

    20 22 24 26 28 30

    Masse (amu)

    cnt

    23Na+

    24Mg+ 28Si+

    29Si+ 30Si+25Mg+

    Mass Spectrometry

    26Mg+

  • 100 200 300 400 500 600

    0

    5000

    10000

    15000

    Ab

    on

    da

    nce

    (i.a

    .)

    m / z

    Fingerprint of the polymer

    Detection of elements

    Detection of additives :- Poly(ethyleneglycol)dibenzoate

    - Poly(ethyleneglycol)monobenzoate

    Mass Spectrometry

  • Mass Spectrometry

  • Ion imaging

  • Masse 3

    1

    Masse 1

    2Ma

    sse 2

    6

    Masse 127

    Ions

    secondaires

    12C- 12C14N- 31P- 127I-

    Echantillon

    Ions

    primaires

    2 m

    NanoSIMS 50 :MulticollectionMulticollection

    Ion imaging

  • Carbure detungstène

    1E+04

    1E+05

    1E+06

    0 2 4 6 8

    μmIn

    tensit

    é C

    (coups)

    12C

    Vérification de l’homogénéité du liantDiffusion dans le liant

    12C

    12C14N

    12C

    2,3μm

    0,78μm

    Ion imaging

  • Depth profiling

  • - roughening effectroughening effectss (non-flat bottom crater)

    High depth resolution requires

    low impact energylow impact energy (250eV to

    1keV) and convenientconvenient primary

    beam incidence angleincidence angle

    The depth resolution is limited by:

    - - collision cascades collision cascades (target atoms mixing)

    - crater edge effect- crater edge effectss (crater walls)

    Depth profiling

  • CAMECA IMS6f GVB sans rotation

    1,E-01

    1,E+00

    1,E+01

    1,E+02

    1,E+03

    1,E+04

    1,E+05

    1,E+06

    1,E+07

    1,E+08

    1,E+09

    0 10 20 30 40 50 60 70 80Profondeur en nm

    Inte

    nsit

    é e

    n c

    /s

    133Cs

    133Cs48Ti

    133Cs64Zn

    133Cs107A

    g 133Cs2

    Depth profiling

  • 3D analysis

  • Carbon in a Thin-Film Superconductor RAE (IMS 3f)Carbon in a Thin-Film Superconductor RAE (IMS 3f)

    3) Imaging + sputtering= 3D

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • Trace element mapping

    GOLD ANALYSIS IN ARSENOPYRITE

    Au- ion image

    Field of view 100 x 100 m2

    Arsenopyrite: FeAsS

  • 4) Isotopic ratio measurements

    Geochronology

  • 3.896

    3.900

    3.904

    0 2 4 6 8 10

    Spot #

    11B

    /10B

    Counting statistics error : 0.08 per mil

    Experimental error (1 ) : 0.08 per mil

    error bar : +/-1

    -10.0

    0.0

    10.0

    20.0

    0 5 10 15 20 25 30

    Spot #

    Delt

    a 1

    8O

    (p

    er

    mil)

    kim5-grain#1

    mog_grain#1

    kim5-grain#2

    kim5-grain#3

    Counting statistics error : 0.12 per mil

    Experimental error (1s) : 0.17 per mil

    25

    27

    29

    31

    0 1 2 3 4 5 6 7 8 9 10 11

    Spot #

    Delt

    a 3

    0S

    i (p

    er

    mil)

    Counting statistics error : 0.40 per milExperimental error (1 ) : 0.45 per mil

    Error bar : +/-1

    SILICON ISOTOPES IN GLASS BORON ISOTOPES IN TOURMALINE

    OXYGEN ISOTOPES IN ZIRCON

    Geochronology

  • Geochronology: Zircon radiodating

    Zircon is one of the most useful

    geochronometers.

    Courtesy of NORSIMS

    Zircon: ZrSiO4

    remarquably resistant material

    two clocks:

    235U 235U 207Pb 207Pb (( ~ 0.7 billion ~ 0.7 billion yearsyears))

    238U 238U 206Pb 206Pb (( ~ 4.4 billion ~ 4.4 billion yearsyears))

    Oldest zircon: ~4.40 billion years (Australia)

    Age of the Earth: ~4.55 billion years

  • O2- primary ions , w/o

    oxygen flooding

    Geochronology

    sample

    primary beam

    secondary beam

    O2 jet

    O2- primary ions , with

    oxygen flooding

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • Radiotoxicology

    / Nuclear medecine:

    Imaging 127I/ 129I

    distribution in thyroid

    Raster 60x60 m2

    1212CC1414NN 3131PP

    129129II127127II

    J. L. Guerquin-Kern , Curie Institute, Paris

    Bio Med

  • Field of view:10 m x 10 m

    Incorporation of BrdU (bromodeoxyuridine), IdU (iododeoxyuridine) and5FU (5-fluorouracile) compounds in the same cell.

    The last four images are collected simultaneously from same sputtered volume (multi-collection).

    Sample from Pr. P. Galle, S.C. 27 INSERM, Faculté de Médecine, Créteil, France

    32S

    31P

    127I

    12C

    14N

    -

    81Br

    19F

    MCF-7 mammary carcinoma cell:use of halogenous markers

    Bio Med

  • Bio Med

    12C14N

    31P31P

    127I

    0.5 m

    NanoSIMS

    Pharmaco-toxicology:Targeting melanin cells

    • CN :proteins

    • P :DNA

    morphology

    I

    General Structure of BZA

    J. L. Guerquin-Kern , Curie Institute, Paris

  • Bio Med

    E.coli labelled with 15N

    at time t = t1

    Natural abundance14N 99,7%15N 0,3%

    E.coli labelled with 15N

    at time t = t2 > t1

    Bacteria destroyed by immune

    system

    12C14N 12C15N

    Analyzed area : (12 x 12) μm2

    12C14N 12C15N

    Bacteria

  • Incorporation of an isotopically (D) labelled

    active molecule in human hair

    Analyzed area : (80 x 80) m2

    1H 2H

    Molecule CxDy

    Biology, Cosmetic

    Courtesy of L’Oreal

    Bio Med

  • Hairs from St Hélène …….

    Reference Hair Hairs from St Hélène

  • 14N 15N

    15N / 14N

    (20x20) μm2

    1,6μm

    M.Challot, INRA, Nancy.

    Identification of specific sites for N fixationHigh levels 15N

    Mushroom cells cultured in 15N enrichedmedia, 15 min

    15N: stable isotope tracer used in vegetal cells

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysi

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • Nanomaterials

    R&D in Semi conductors

  • Image Image depthdepth profile in N-MOS profile in N-MOS gategate::

    Oxygen Silicium Phosphorous Boron Arsenic

    Depth = 0 nm

    Depth = 300 nm

    Depth = 650 nm

    3) Imaging + sputtering= 3D

    Nanomaterials

  • 1. Ion/matter interaction : impinging andoutgoing particles

    2. Instrumentation

    3. General capabilitiesElemental range

    Ion imaging

    Depth profiling

    3D analysis

    4. ApplicationsGeochronologyBiomedNanomaterials

    5. Future developments

    Outline

  • High resolution NanoSIMS 50 images of 12C14N and13C15N of double-labelled Bacillus subtilis DNA combed on

    wafers without Cs deposition (top) and with prior Cs

    deposition (bottom).

    Field of view : (15x15) μm2

  • Centre de Recherche Public – Gabriel LippmannBelvaux, LUXEMBOURG

    4 departments: EVA / IST / SAM / REA