La génétique des populations Diversité génétique Allèle ...

34
Introduction : La génétique des populations est une branche de la génétique qui se focalise sur l’étude des lois sur la distribution des gènes, les modèles génétiques et les modalités de distributions des génotypes et phénotypes au sein d’une population. En général l'étude de la distribution et des changements de la fréquence des versions d'un gène (allèles) dans les populations d'êtres vivants, est sous l'influence des « pressions évolutives » (sélection naturelle, dérive génétique, recombinaison, mutations, et migration). La génétique des populations a des applications en épidémiologie où elle permet de comprendre la transmission des maladies génétiques, mais aussi en agronomie, où des programmes de sélection modifient le patrimoine génétique de certains organismes pour créer des races ou variétés plus performantes, ou plus résistantes à des maladies. Elle permet également de comprendre les mécanismes de conservation et de disparition des populations et des espèces (Génétique de la conservation). C'est une discipline des sciences de la vie faisant un fort usage d'outils mathématiques Problématique : 1) Qu'est-ce qu’une population et quelles sont ses caractéristiques génétiques ? 2) Quelles lois statistiques sont adoptées dans l’étude de la transmission des traits génétiques dans la population ? 3) Quels sont les facteurs impliqués dans la diversité génétique de la population et par quels mécanismes interviennent-ils ? 4) Que veut-on dire par spéciation ? et quels sont les critères distinctifs d’une éspèce en génétique évolutive? La génétique des populations

Transcript of La génétique des populations Diversité génétique Allèle ...

Page 1: La génétique des populations Diversité génétique Allèle ...

Introduction :

La génétique des populations est une branche de la génétique qui se focalise sur l’étude des lois sur la distribution des gènes, les modèles

génétiques et les modalités de distributions des génotypes et phénotypes au sein d’une population.

En général l'étude de la distribution et des changements de la fréquence des versions d'un gène (allèles) dans les populations d'êtres vivants, est sous l'influence des « pressions évolutives » (sélection

naturelle, dérive génétique, recombinaison, mutations, et migration).

La génétique des populations a des applications en épidémiologie où elle permet de comprendre la transmission des maladies génétiques, mais

aussi en agronomie, où des programmes de sélection modifient le patrimoine génétique de certains organismes pour créer des races ou variétés plus performantes, ou plus résistantes à des maladies.

Elle permet également de comprendre les mécanismes de conservation

et de disparition des populations et des espèces (Génétique de la conservation). C'est une discipline des sciences de la vie faisant un fort usage d'outils mathématiques

Problématique :

1) Qu'est-ce qu’une population et quelles sont ses caractéristiques génétiques ?

2) Quelles lois statistiques sont adoptées dans l’étude de la transmission des traits

génétiques dans la population ?

3) Quels sont les facteurs impliqués dans la diversité génétique de la population et

par quels mécanismes interviennent-ils ?

4) Que veut-on dire par spéciation ? et quels sont les critères distinctifs d’une

éspèce en génétique évolutive?

La génétique des populations

Page 2: La génétique des populations Diversité génétique Allèle ...

En génétique mendélienne le

croisement suivi est choisi par

l’expérimentateur ainsi que les

phénotypes intervenant dans l’étude

ou bien dans le cas de génétique

humaine les génotypes étudiés sont

déduits des arbres phyllogénétiques

En génétique des populations les

croisements entre les individus sont

aléatoires, le nombre de cas étudiés

est plus conséquent, aussi la

fréquence des différents génotypes

dépend du nombre total des individus

composant une population

Si la génétique mendélienne est basée sur des croisements axés sur

l'expérimentation, celle des populations se base sur les ratios de

génotypes parmi un groupe d’individus issus de croisement parentaux

non dirigés. C'est une application de la génétique mendélienne au

niveau d’une population avec une approche statistique.

AA

aa

Aa AA

aa

Aa

Aa

AA AA

Aa Aa

½ Aa ¼ AA ¼ aa

Page 3: La génétique des populations Diversité génétique Allèle ...

I – La population et le pool génétique : quelques notions de base

1- la population : exemples et définitions 1-1 Schéma explicatif

Les organismes vivants vivent généralement sous forme de communautés au sein des

écosystèmes, où ils se nourrissent et se reproduisent entre eux, formant ainsi une

population. Cette population est caractérisée en fonction des propriétés du milieu,

ainsi que les spécificités de l’espèce étudiée comme le démontre le schéma suivant :

A partir de ce schéma donner une définition sommaire de la population

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..……………………………………..…

…………………………………..………………………………………..………………………………………..……………………………………..……

………………………………..………………………………………..………………………………………..……………………………………..………

……………………………..………………………………………..………………………………………..……………………………………..…………

…………………………..………………………………………..………………………………………..……………………………………..……………

………………………..………………………………………..………………………………………..……………………………………..………………

……………………..………………………………………..………………………………………..……………………………………..…………………

…………………..………………………………………..………………………………………..……………………………………..……………………

………………..………………………………………..………………………………………..……………………………………..………………………

……………..………………………………………..………………………………………..……………………………………..…………………………

…………..………………………………………..………………………………………..……………………………………..……………………………

………..………………………………………..………………………………………..……………………………………..………………………………

……..………………………………………..………………………………………..……………………………………..…………………………………

…..………………………………………..………………………………………..……………………………………..……………………………………

..………………………………………..………………………………………..……………………………………..……………………………………..

………………………………………..………………………………………..……………………………………..……………………………………..…

……………………………………..………………………………………..……………………………………..……………………………………..……

…………………………………..………………………………………..……………………………………..……………………………………..………

………………………………..………………………………………..……………………………………..……………………………………..…………

……………………………..………………………………………..………………………………………………………………………………………….

Page 4: La génétique des populations Diversité génétique Allèle ...

1-2 Population : critères et définition

La population est un groupe d'individus appartenant à la même espèce. Un groupe qui

vit dans une zone géographique particulière, où ils peuvent se reproduire et avec

n’importe quel autre membre du groupe.

La population n'est pas une entité rigide, mais au contraire une structure dynamique

caractérisée par le flux d'individus à travers:

• L'arrivée de nouveaux individus résultant de naissances et de la migration de

membres de l'espèce vers cette population.

• Perte d'individus due à la mort et à la migration de membres de l'espèce en dehors

de la zone de répartition de la population .

Donc une population est définie essentiellement par deux critères majeurs :

Critère écologique : Membres de la même espèce, Ils vivent et se reproduisent

dans une Zone géographique spécifique

Critère génétique : individus partageant les mêmes gènes avec possibilité de

passation par reproduction

2-le pool génique :

Le diagramme ci-dessous montre le contenu génique d’une population On étudie un gène commun, non corrélé, n'est pas lié au sexe (autosomal) et a deux allèles : l’un dominant A et l’autre récessif a 1) Sur la base de ces données, donnez une définition du contenu génique de la population. Sachant que : [A] Nombre d'individus avec un phénotype = [A] Fréquence d'apparition externe divisé par la population totale N (A, A) Nombre d'individus présentant un motif = (A, A) Fréquence du génotype Divisée par la population totale N

Quelques principes La fréquence d’apparition d’un allèle A dans une population peut être calculée en se basant en théorie sur la probabilité à retirer un certain individu de cette population en premier puis à retirer un de ses allèles : Si Par chance on a retiré un individu au génotype AA dans ce cas, sa fréquence respective est de D avec la probabilité de retirer un allèle A est de cent pour cent c’est-à-dire 1 Le deuxième cas est si on retirer l’individu de génotype Aa avec une fréquence respective de H (hétérozygote), dans ce cas la probabilité de retirer un allèle A est de ½ Si on retire un individu de génotype aa avec une fréquence notée R (récessive), la probabilité de retirer un allèle A est de 0 puisqu’il ne possède aucun allèle A

2)En se basant sur ces principes, calculer la fréquence de chacune des manifestations externes, des génotypes et des allèles.

Page 5: La génétique des populations Diversité génétique Allèle ...

Eléments de réponses :

1) Pool génique : c’est l’ensemble des allèles qui se trouvent sur les locus des gènes des chromosomes de tous les individus de la population.il s’agit Il s’agit d’un génome collectif (global)qui indique l’ensemble des génotypes qui caractérisent une population donnée

2) Calcul des fréquences phénotypiques * On considère : - N : effectif de la population. - n [A] : nombre d’individus porteurs du phénotype [A]. - n [a] : nombre d’individus porteurs du phénotype [a]. On calcule les fréquences phénotypiques suivant les formules suivantes : f ([A]) = n [A]/ N; f ([a]) = n [a] / N ainsi f ([A]) + f ([a]) = 1 calcul des fréquences génotypiques * On considère : - N : effectif de la population. - n (AA) : nombre d’individus porteurs du génotype AA. - n (aa) : nombre d’individus porteurs du génotype aa. - n (Aa) : nombre d’individus porteurs du génotype Aa. * On calcule les fréquences génotypiques suivant les formules suivantes : f (AA) = D ; f (Aa) = H ; f (aa) = R donc si on veut calculer les fréquence génotypiques on aura les formules suivantes : f (AA) = n (AA) /N = D ; f (Aa) = n (Aa)/N= H ; f (aa) = n (aa)/N=R les fréquences alléliques * On a : D + H + R = 1 f ([A]) = f (AA) + f ([Aa]) et f ([a]) = f (aa) car l’allèle [A] est dominant ce qui veut dire que les individus ayant un phénotype A peuvent avoir comme génotype soit (AA) ou( Aa) tandis que a est récessif donc tout individu ayant comme phénotype [a] est forcément homozygote donc a un génotype (aa)ce qui veut dire pour calculer les fréquences alléliques on aura les résultats suivants La fréquence de l’allèle A peut être définie comme la probabilité de tirer cet allèle au hasard dans la population, ce qui suppose d’abord de tirer un individu, puis l’un de ses deux allèles : - L’individu tiré peut être AA, avec la probabilité D ; dans ce cas l’allèle tiré au hasard chez cet individu sera A avec la probabilité 1. - On peut tirer aussi l’individu Aa, avec la probabilité H ; dans ce cas l’allèle tiré au hasard chez cet individu sera A avec la probabilité 1/2, car l’individu est aussi porteur de l’allèle a. - l’individu tiré peut être aussi aa, avec la probabilité R ; Dans ce cas l’allèle tiré au hasard chez cet individu sera A avec la probabilité 0, car l’individu tiré ne possède pas cet allèle. Le calcul de ces probabilités du tirage des allèles A et a permet d’estimer leurs fréquences dans la population : f (A) = p = (D x 1) + (H x ½) + (R x 0) = D + H/2 f (a) = q = (D x 0) + (H x ½) + (R x 1) = R + H/2

Par conséquent, on peut calculer la fréquence de l’allèle A et celle de l’allèle a de la façon suivante :

f (A)=p=[n(Aa)+2n(AA)]/2N =H/2+D et f(a)=q=[n(Aa)+2n(aa)]/2N=H/2+R

Application pour le cas précédent :

f(A)=0 ,4615+(0,3077/2) =0,4615+0,1538=0,6153

f(a)=0,2308+(0,3077/2)= 0,2308+0,1538=0,3844

Page 6: La génétique des populations Diversité génétique Allèle ...

3 Notion d’équilibre génétique

Si vous avez suivi l’exemple précèdent on remarque que p+q=1 c’est-à-dire 100/° des

génotypes de la population étudié est recouvert par les allèles étudiés or ceci ne

reflète pas la réalité puisque pour un gène donné il n’y a pas que deux phénotypes ou

allèle , le fait est que étudier les populations en collant strictement au données réelles

pose certaines difficultés , tout prend sens lorsqu’on assume que les fréquences

génotypiques et alléliques restent stables c’est-à-dire que la fréquence des allèles et

des génotypes pour un gène ne varient pas d’une génération à une autre pour avoir la

formule p+q=1 qui ne varient selon les générations , ces caractéristiques sont les

propriété d’une population idéale qui n’existe que rarement dans la réalité mais qui

nous permet de simplifier les calculs et les estimations :

on dit que cette population est en équilibre génétique ou panmictique

Question : comment va-t-on utiliser les notions d’équilibre génétique , pool génétique,

pour estimer les fréquences alléliques et génotypiques dans les population ?

II-La loi de Hardy-Weinberg et sa démonstration

1 énoncé de la loi

Questions :

1- citez les conditions sine qua non pour l’application de la loi Hardy -Weinberg

2-determiner les propriétés d’une population théorique idéale

En 1908, un mathématicien Hardy et un médecin

Weinberg ont formulé une loi, appelée loi de

Hardy-Weinberg. Son énoncé peut être résumé

comme suit :

« Dans une population théorique

idéale, de taille infinie et en équilibre

génétique, les fréquence

génotypiques et alléliques restent

stables d’une génération à une

autre » Godfrey Hardy Wilhelm Weinberg

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..……………………………………..…

…………………………………..………………………………………..………………………………………..……………………………………..……

………………………………..………………………………………..………………………………………..……………………………………..………

……………………………..………………………………………..………………………………………..……………………………………..…………

…………………………..………………………………………..………………………………………..……………………………………..……………

………………………..………………………………………..………………………………………..……………………………………..………………

……………………..………………………………………..………………………………………..……………………………………..…………………

…………………..………………………………………..………………………………………..……………………………………..……………………

………………..………………………………………..………………………………………..……………………………………..………………………

……………..………………………………………..………………………………………..……………………………………..…………………………

Page 7: La génétique des populations Diversité génétique Allèle ...

2) la population théorique idéale selon Hardy Weinberg et ses

propriétés

La population théorique idéale présente les caractéristiques suivantes :

- population d’organisme diploïdes à reproduction sexuée sans chevauchement entre

les générations.

- son nombre est infini est l’accouplement se fait au hasard.

- fermée génétiquement (pas de migration).

- ses individus ont la même capacité de se reproduire et la capacité de donner des

descendants capables de vivre.

-la population est panmictique (les couples se forment au hasard (panmixie), et leurs

gamètes se rencontrent au hasard (pangamie))

Notions de panmixie et de pangamie :

*pan (en grec « tout » )

1 2 3

4

5

6

9 7 8

Le schéma suivant nous permet d’appréhender la

notion de panmixie :

l’individu 1 en réalité ne peut former un couple

qu’avec l’individu 2 or selon la panmixie il a des

chances égales de former un couple capable

d’avoir une progéniture avec n’importe quelle

femelle dans la population aussi éloigné soit ‘elle

comme l’individu 8 malgré qu’elle est éloignée de

l’individu1 en réalité

Dans ce se second dessin schématique on entreprend

d’expliquer le concept de pangamie

dans le schéma A on a un cas normal simplifié de fécondation :

plusieurs gamètes males pour une seule gamète femelle or

cela a pour conséquence une disproportion entres les

fréquence alléliques

Dans le cas de pangamie on assume que les gamètes males et

femelles ont la même probabilité de se rencontrer comme le

démontre le schéma B

Schéma A

Schéma B

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..……………………………………..…

…………………………………..………………………………………..………………………………………..……………………………………..……

………………………………..………………………………………..………………………………………..……………………………………..………

……………………………..………………………………………..………………………………………..……………………………………..…………

…………………………..………………………………………..………………………………………..……………………………………..……………

………………………..………………………………………..………………………………………..……………………………………..………………

……………………..………………………………………..………………………………………..……………………………………..…………………

…………………..………………………………………..………………………………………..……………………………………..……………………

………………..………………………………………..………………………………………..……………………………………..………………………

……………..………………………………………..………………………………………..……………………………………..…………………………

Page 8: La génétique des populations Diversité génétique Allèle ...

3 Démonstration de la loi de Hardy-Weinberg

Considérerons une population théorique idéale, nous suivons l'évolution de son pool

génétique sur deux générations successives G0 etG1 en suivant l'évolution des

génotypes et de la fréquence des allèles pour un gène situé sur un chromosome non

sexuel avec deux allèles A et a comme le montre les données du document suivant

1) Remplir le document en calculant :

-fréquences génotypique pour G0 et G1

-fréquence allélique pour G0 et G1

2) Analyser les résultats, quels sont vos conclusions

Page 9: La génétique des populations Diversité génétique Allèle ...

*Eléments de réponses

1)

2) On note qu'il y a une stabilité dans la fréquence des allèles et la fréquence des

génotypes à générations successives, il s’agit de l’équilibre de Hardy-Weinberg , Car

dans une population théorique idéale, les fréquences des génotypes et les fréquences

des allèles restent constants d'une génération à l'autre

Dans ce cas de figure, Les fréquences génotypiques sont déterminées à partir de la

fréquence allélique en adoptant une relation simple qui correspond au développement

de d’une identité remarquable (p+q)2 ou p est la fréquence de l’allèle A et q la

fréquence de l’allèle a , ainsi les fréquences génotypiques seront calculé ainsi :

f(AA) + f(Aa) + f(aa) = (p + q)P

2P = pP

2P + 2pq + qP

2

P

Avec f(AA) = p P

2P, f(Aa) = 2pq , f(aa) = qP

2

Page 10: La génétique des populations Diversité génétique Allèle ...

4) Quelle est la relation entre fréquence génotypiques et

fréquence alléliques selon la loi de Hardy -Weinberg

La figure montre la correspondance

entre la fréquence allélique q de a et les

fréquences génotypiques dans le cas de

deux allèles en régime panmictique. La

fréquence maximale des hétérozygotes

H est alors atteinte lorsque p = q = 0,50.

A l'inverse, lorsque l'un des allèles est

rare (ex: q très petit), presque tous les

sujets possédant cet allèle se trouvent

sous la forme hétérozygote.

Ceci montre que les fréquences

génotypiques varient en fonction des

fréquences alléliques

5 applications

Exercice 1 :

Soit une population P0 de drosophiles constituées de

1. Calculez les fréquences génotypiques et alléliques dans la population P0

2. Quelles sont les fréquences génotypiques et alléliques dans la population P1 issue

de la reproduction des individus de la population P0

1. Calcul des fréquences dans la population P0:

Les fréquences génotypiques :

avec

N=266+797+598

=1661

Page 11: La génétique des populations Diversité génétique Allèle ...

Les fréquences alléliques :

2) Puisque p=0,6 et q =0,4 dessinons un échiquier des croisements pour mieux

cerner la situation

Les fréquences génotypiques dans la population P1 :

f(RR) = p2 = 0.36 =D

f(Rb) = pq + pq = 2pq = 2 × 0.24 = 0.48 =H

f(bb) = q2 = 0.16=R

Les fréquences alléliques dans la population P1 :

f(R) =p=D+H/2= 0,36 +0,48/2= 0,6

f(b)=q=R+H/2= 0,16+0,48/2=0,4

On remarque que les fréquences alléliques et génotypiques ne changent pas de la

génération P0 à la génération P1 ce qui montre que la population est en équilibre

Exercice 2 : Le phénotype de pigmentation alaire, chez une

espèce de papillon, est gouverné par un gène

existant sous deux formes alléliques, notées A et a,

dont les fréquences sont pet q. Une première étude

a montré que le phénotype clair est récessif et

correspond au génotype aa. Le piégeage, en milieu

naturel d’une population P0 de 500 papillons, a

permis de dénombrer 480 phénotypes foncés et 20

clairs.

1. En supposant que la population est panmictique (soumise à la loi H-W), calculez les

fréquences alléliques et génotypiques dans la population P0.

2. Calculez ces fréquences dans la population P1 issue de de la reproduction des individus de

la population P0.

3. Que déduisez-vous de la comparaison des fréquences des deux populations P0 et P1

R p=0,6

b q=0,4

R p=0,6

RR P2= 0,36

Rb pq=0,24

b q=0,4

Rb pq=0,24

bb q2=0,16

Page 12: La génétique des populations Diversité génétique Allèle ...

1.Calcul des fréquences alléliques et génotypiques :

nous savons que le phénotype clair est le phénotype récessif donc tout individu de la

population portant le phénotype clair est forcément homozygote (aa) , dans cet exercice on a

20 individu clair sur une population de 500 papillon donc :

la fréquence génotypique est 𝑞2 = 𝑓(𝑎𝑎) = 20 /500 = 0,04

La fréquence allélique sera 𝑞 = 𝑓(𝑎) =√ 𝑓(𝑎𝑎) = √0,04 = 𝟎. 𝟐

Alors que selon la loi de Hardy -Weinberg p+q =1 donc p=1-q= 1-0,2=0,8= f(A)

f(AA)=p2=(0,8)2 =0,64 et f(Aa)=2pq=2 x 0,8x0,2= 0,32

Vérifions nos calculs f(AA) + f(Aa) + f(aa) = 0.64 + 0.32 + 0.04 = 1

2-Calcul des fréquences génotypiques et alléliques dans la population P1

Puisque la population est en équilibre génétique (les croisements et la fécondation se font au

hasard), la fréquence des gamètes portant l’allèle A sera 0.8 et celle des gamètes portant

l’allèle a sera 0.2 L’échiquier de croisement suivant résume les résultats de croisement entre

les individus de la population P0

Donc les fréquences génotypiques de la

population p1

AA=AxA=0,8x0,8=0,64

Aa=Axa=0,8x0,2=0,16

2pq=(Axa)+ (Axa)=0,32

aa= a x a=0,2x0,2=0,04

Les fréquence alléliques P1

f(A)=f(AA)+1/2f(Aa)=0,64+0,16=0,8

f(a)=f(aa)+ 1/2f(Aa)= 0,04+0,16=0,2

3. On observe que les fréquences génotypiques et alléliques dans la population fille P1 sont

égales aux fréquences dans la population mère P0. On déduit que les fréquences

génotypiques et alléliques ne changent pas d’une génération à une autre quand la population

répond à la loi de H-W : on dit que la population est en équilibre.

A p=0,8

a q= 𝟎. 𝟐

A p=0,8

AA P2= 0,64

Aa pq=0,16

a q= 𝟎. 𝟐

Aa pq=0,6

aa

q2=0,04

Page 13: La génétique des populations Diversité génétique Allèle ...

III-Les cas d’applications de la loi Hardy-Weinberg

1Cas de dominance absolue :

Exercice 1 :

Le groupe sanguin Rhésus est codé par un gène autosomal à deux allèles : l’allèle Rh+

dominant responsable et l’allèle Rh- récessif responsable du groupe [Rh- ].

En 1970, une étude sur 400 individus dans la zone basque en Espagne a montré que 230

parmi eux sont de groupe [Rh+ ]. En supposant que la population étudiée est soumise à la loi

de Hardy-Weinberg, déterminez :

1. Les fréquences des deux allèles Rh+ et Rh- .

2. Les différentes fréquences génotypiques.

3. L’effectif théorique des individus hétérozygotes et celui des individus [Rh+ ] homozygotes

1- puisque le phénotype Rh+ est dominant donc les individus ayant le phénotype [Rh-] sont

homozygotes donc f[Rh-]=f(dd)=q2=170 /400 ( 400-230=170)

q2=0,42 donc q=√0,42=0,65

selon la loi de H-W p+q=1 donc f(D)=p=1-q=0,35

(notez bien que D est l’allèle Dominant pour le Rhésus et d est l’allèle récessif)

2-les fréquences génotypiques :

f(DD)=p2=(0,35)2=0,122

f(Dd)=2pq= 2x(0,35x0,65)= 0,455

f(dd)= q2=(0,65) 2=0,423

3 l’effectif théorique des individus

il suffit de multiplier les fréquences génotypiques par le nombre total de la population c’est-

à-dire 400 donc

Effectifs des Rh+ hétérozygotes : N(Dd)= f(Dd)x N=0,455x400=182

Effectifs des Rh+ homozygotes :N(DD)= f(DD)x N=0,122 x400=48,8

Exercice 2 :

La mucoviscidose est une maladie autosomique récessive dont la prévalence dans une

population répondant à la loi de H-W est de 1/2500

1.Calculez les fréquences génotypiques et alléliques dans cette population. (Utilisez M pour

l’allèle normal et m pour l’allèle morbide).

2. Déduisez le nombre d’individus hétérozygotes dans cette population sachant qu’elle est

constituée de 20000 personnes

.3. Dans cette population panmictique, quelle est la probabilité qu'un enfant, issu de l’union

entre deux individus sains, soit malade en l’absence de toute information sur les génotypes de

ces individus.

182+48,8=230,8

Donc c’est juste

Page 14: La génétique des populations Diversité génétique Allèle ...

1 les fréquences génotypiques

f[m]=1/2500=0,0004= f(mm)=q2 donc q=√q2=√0,0004=0,02=f(m)

La population en équilibre H-W implique que (p+q)2=1

donc p+q=1

ainsi p=1-q=1-0,02=0,98= f(M) ainsi f(Mm)=2pxq=2x0,02x0,98=0.0392

f(MM)=p2=(0,98) 2=0.9604

2le nombre d’hétérozygotes n(Mm) = f(Mm) × N ➔ n(Mm) = 0.0392x 20000= 784

3- Interprétation chromosomique :

Fécondation : échiquier des croisements :

Donc les conditions favorables pour avoir un

enfant atteint de mucoviscidose est que les

deux parents soient hétérozygotes

Dans ce cas-là, leurs progéniture aura une

chance sur quatre d’être atteint par la maladie

ainsi en projetant cette donnée sur toute la

population il faut prendre en compte la

probabilité que les deux parents sont hétérozygotes donc on obtiendra la formule suivante :

(2pq x2pq).1/4 =(0.0392x0.0392).0,25=0.00038 ou 0,038%

2 Cas de codominance : Exercice :

M 1/2

m 1/2

M 1/2

MM 1/4

Mm 1/4

m 1/2

Mm 1/4

mm 1/4

Parent sain

mais vecteur de la

maladie

[M]

(Mm)

(M) ou (m)

Parent sain

mais vecteur de la

maladie

[M]

(Mm)

(M) ou (m)

Lorsqu’on vous demande de « déterminer la probabilité d’avoir un enfant

ayant le phénotype ….sachant que ses parents sont (sains/atteint)… » il est

utile de retranscrire les donnés du problème en faisant une interprétation

chromosomique ,ça permet de clarifier les termes de la formule qui

déterminer la probabilité

Page 15: La génétique des populations Diversité génétique Allèle ...

Chez l’Homme, le groupe sanguin MN est déterminé par un gène à deux allèles

codominants M et N, ce qui permet d’attribuer un génotype à chaque individu

échantillonné, puis d’estimer les fréquences alléliques dans la population.

Une étude portant sur 730 aborigènes australiens a donné les résultats suivants :

[M] :22 ;[N] :492 ;[MN] : 216 en considérant cette population en équilibre H-W

1. Calculez les fréquences génotypiques

2. Calculez les fréquences des allèles M et N

***************

1-les fréquence génotypiques :

f(MM)=f[m]=22/730=0,03 =➔ D1

f(NN)=f[N]=492/730= 0,67 ➔ D2

f(MN)=216/730=0,30 ➔ H

2-les fréquences des allèles M et N

f(M)=D1+1/2H=0,03+1/2 .0,30=0,03+0,15=0,18=➔ q

f(N)=D2 +1/2H=0,67+1/2 .0,30=0,67 +0,15=0,82➔ p

3 Cas de gènes lié au sexe : Exercice 1 :

Chez la drosophile, la couleur des yeux est due à l’expression d’un gène porté par

le chromosome sexuel X. l’allèle dominant S donne des yeux rouges et l’allèle

récessif w donne des yeux blancs. On met dans une cage à population le même

nombre de mâles et de femelles de drosophile.

On considère:

-à la génération G0 les fréquences des allèles S et w sont successivement p et q

- ces fréquences sont égales chez les deux sexes

- la population est en équilibre selon la loi de H-W

1. Ecrivez les différents génotypes des mâles et des femelles et déduisez les

différents types de gamètes qui peuvent être produits dans la population.

2.En s’aidant d’un échiquier de croisement, calculez les fréquences génotypiques

des femelles et des mâles dans la génération G0+1 .

Lesquels répondent à la loi de H.W

3. Que déduisez-vous de l’application de cette loi dans le cas de la transmission

des maladies dont le gène responsable est porté par un chromosome sexuel.

1-les différents génotypes chez les mâles et les femelles

Pour les males ( ) noté (Sy) ou ( ) notée (wy)

Les différents gamètes males produites

( ) ou ( ) ou ( )

Pour les génotypes chez les femelles : ( ) ou ( ) ou ( )

Notez bien qu’on a remplacé « D » et « R »

par « D1 » et « D2 » car il s’agit d’un cas de

codominance donc il n’y a pas de dominant

et de récessif

p+q=0,18 +0,82=1 donc

p+q=1

X

y

S X

y

w

X

S X

w y

X

S

X S

X

w

X w X w

X

S

Page 16: La génétique des populations Diversité génétique Allèle ...

Les gamètes femelles seront : ( ) ou ( )

2 échiquier des croisements possibles :

Les fréquences génotypiques prévues dans la génération G0+1

Chez les femelles : f(SS)= p2 chez les males :f(Sy)=p

f(Sw)=2pq f(wy)=q

f(ww)=q2

on constate que ls fréquences génotypiques femelles répondent à la loi H-W

tandis que les fréquences génotypiques males n’y répondent pas

3 conclusions :

Fréquence des mâles atteints

Fréquence des femelles atteintes

Conclusion

Allèle responsable de la maladie est récessif (a)

q

q2

Les mâles sont plus touchés de la maladie que les femelles ( car q2 <q)

Allèle responsable de la maladie est dominante (A)

q2

p2 + 2pq Les femelles sont plus touchées que les mâles

Exercice 2:

L’hémophilie B est une maladie héréditaire liée au chromosome X. L’allèle (h)

responsable de cette maladie est récessif par rapport à l’allèle normal (H).

Une étude réalisée chez une population a montré que l’incidence de cette maladie

est de 1 sur 2000 naissances de garçons.

1. En considérant que la population étudiée est équilibrée, calculez la fréquence

de l’apparition de la maladie chez les mâles et chez les femelles.

2. Que constatez-vous des résultats obtenus ?

1Puisque l’allèle responsable de cette maladie est récessif et la fréquence

d’apparition chez les garçon est de 1 sur 2000 donc selon la loi H-W on a :

F(hy)=q=1/2000=0,0005 =➔ q2=f(hh) =0,00000025=0,25x10-5

2 on remarque que les garçons seront plus atteint par la maladie tandis que les

probabilités que les filles soient malades est infime

X

S X

w

X

S

X

w

X

w

X

S

y

X

S

X

S

X w

X

S

X

w

X

S

X w

X

w

X

y

S

X

y

w

p

p

p2 p

q

q

q2 q

pq

pq

Page 17: La génétique des populations Diversité génétique Allèle ...

Exercice à faire :

La maladie d’Alport est une maladie héréditaire gouvernée par un gène porté par le

chromosome X. L’allèle (A) responsable de cette maladie est dominant par rapport à

l’allèle normal (a).

Des études chez une population ont montré que la fréquence de l’allèle (A) est

p = 0,087.

1-Calculez la fréquence de l’apparition de la maladie chez les mâles et chez les

femelles si on considère que la population est soumise à la loi de H-W.

2-Que constatez-vous des résultats obtenus ?

IV-Test de vérification de la conformité de la loi Hardy-Weinberg

1 différences entre les populations théoriques idéales et les

populations réelles :

Exercice :

la figure ci-dessous montre certaines caractéristiques des population théoriques et

des populations réelles

1-comparer les populations théoriques idéales et réelles dans chaque figure

2-Quels sont vos déductions ?

Population théorique idéale Population réelle

…a)……………………………………..………………………………………..………………………………………..…………………………………

…………………………………………..………………………………………..………………………………………..…………………………………

…………………………………………..………………………………………..………………………………………..…………………………………

…………………………………………..………………………………………..………………………………………..…………………………………

b)……………………………………..……………

…………………………..……………………………

…………..……………………………………………

………………………………..………………………

………………..………………………………………

..………………………………………………………

……………………..…………………………………

……..………………………………………..………

………………………………………………………

……………..………………………………………..

………………………………………..………………

……………………

Population théorique idéale Population réelle

Page 18: La génétique des populations Diversité génétique Allèle ...

Réponses

1) a – dans le premier schéma on a chaque individu de la population théorique idéale

est capable de former un couple et de se croiser avec n’importe quel individu pour

donner une progéniture : c’est le concept de panmixie , or dans la population réelle ce

concept est impossible à appliquer rien que le fait d’éloignement spatial entre individu

(par exemple le male sain en haut a gauche a peu de chance de croiser la femelle du bas

a gauche , elle plus de chance d’être croisée avec le male atteint du centre gauche.

b- croisement intergénérationnel : le deuxième schéma indique que pour avoir un

équilibre H-W dans une population théorique , le croisement intergénérationnel est

proscrit, seul les individus appartenant a la génération parentale P peuvent se croiser

, mais dans la population réelles ,il est difficile de concrétiser cette condition surtout

chez les êtres humain du au fait que l’homme est capable de se reproduire durant toute

l’année et que forcément des individus d’années différente et par conséquent de

génération (biologiquement parlant) différente vont former des couple et se

c)……………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

Population théorique idéale Population réelle

Population théorique idéale Population réelle

Population théorique idéale Population réelle

Génération G0

Génération G1

d)……………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

………………………………………..………………………………………..………………………………………..……………………………………

Page 19: La génétique des populations Diversité génétique Allèle ...

reproduire c’est le cas de la femme F2 qui s’est mariée avec un homme de génération

F1 dans la population réelle du schéma.

c- pangamie : les schéma c nous démontre l’improbabilité de la pangamie dans les

population réelles : la pangamie stipule que « toutes » les gamètes males ou femelles

des individus de la population théorique ont les mêmes chances de s’unir lors de la

fécondation (pan : tout) or ce n’est pas possible ,par exemple pour l’Homme on estime

que le nombre de spermatozoïdes par éjaculat est de plus 580 million en moyennes

donc chaque gamète male a une chance sur 580 million de féconder le gamète femelle

d-nombre illimité et ne variant pas : le schéma D montre clairement que dans une

population réelle le nombre total des individus varie d’une génération à une autre ce

qui n’est pas le cas pour la population théorique idéale.

2 ) on déduit que La loi de H-W ne s'applique en théorie qu'à des populations

d'effectif infini, et suppose remplies toute une série de conditions qui ne sont jamais

respectées dans la nature car les population sont des entités dynamiques qui

s’adaptent au conditions de l’environnement donc susceptibles de varier a travers les

générations.

2 Comment savoir si la loi de H-W peut s’appliquer également

aux populations réelles ?

Pour déterminer si une population naturelle est en équilibre à un instant « t » on va la

comparer à une population théorique idéale, cette comparaison peut se faire pour

plusieurs cas de dominance mais elle est plus abordable pour les cas de codominance

pour lesquels le calcul des fréquences alléliques est possible. On applique dans cette

comparaison un test nommé test de khi 2 (χ 2 )

Quels sont les étapes de ce test ?

Première étape : Dénombrement des

effectifs génotypiques réels (observés)

et calcul des fréquences alléliques

réelles parmi les N individus de la

population.

Exemple : considérons dans une population

naturelle, un gène représenté par deux allèles : l’allèle A et l’allèle B. Pour vérifier si cette

population est équilibrée ou non on va calculer dans un premier temps

Les fréquences réelles car comme on l’a mentionné précédemment dans les cas de

codominance il est facile de déterminer les fréquences génotypiques réelles donc on a no (AA) : effectif réel du génotype AA. => f (AA) = n (AA)/ N = D1

no(AB) : effectif réel du génotype AB.=> f (AB) = n (AB)/ N =H

no (BB) : effectif réel du génotype BB. = f (BB) = n (BB)/ N =D2

Donc les fréquences alléliques sont :

Page 20: La génétique des populations Diversité génétique Allèle ...

f(A) = D1+1/2H = f (A) = p = f (AA) + f (AB)/2

f(B) =D2+1/2H = f (B) = q = f (BB) + f (AB)/2

Deuxième étape : Calcul des effectifs génotypiques attendus (théoriques) dans une

population théorique idéale qui aurait le même effectif et les mêmes fréquences alléliques que

la population étudiée donc si on suit toujours l’exemple précèdent on a

nt (AA) : effectif théorique du génotype AA. ➔ nt (AA) = p 2 x N

nt (AB) : effectif théorique du génotype AB. ➔ nt (AB) = 2pq x N

nt (BB) : effectif théorique du génotype BB ➔ nt (BB) = q 2 x N

Troisième étape : Comparaison des effectifs génotypiques réels et effectifs génotypiques

théoriques par un test dit test de conformité X 2 :

On va Déterminer la valeur du X 2 calculé ou X 2 observé selon la formule suivante :

𝛘𝟐 = Ʃ (no − nt)2

nt

Donc pour notre exemple on a cette formule :

Dans un deuxième temps on va déterminer le X 2 du seuil :

Celle-ci est lue dans une table X 2 (tableau ci-dessous), en fonction de deux paramètres :

• Risque α : il est choisi par l’utilisateur ; on général on utilise 5 % c.-à-d. 0,05 (5 % comme

marge d’erreur)

• Nombre de degré de liberté ou ddl. Qui est calculé selon la formule suivante :

ddl : nombre de génotype - nombre d’allèles

On a pu déterminer p et q à partir

des effectifs réels

Avec :

no : effectifs génotypiques observés

nt : effectifs génotypiques théoriques

Page 21: La génétique des populations Diversité génétique Allèle ...

Finalement on va Comparer la valeur du X 2 calculé avec celle du X 2 théorique

Si X 2 calculé est inférieur à X 2 théorique, la population naturelle étudiée est équilibrée (suit

la loi de Hardy-Weinberg). (figure a)

Si X 2 calculé est supérieur à X 2 théorique, la population étudiée ne suit pas la loi de Hardy-

Weinberg avec un risque α = 5 % de se tromper.= elle n’est pas en equilibre H-W (figue b)

3 Exercice d’application :

On considère une population de Muflier constituée de 400 individus répartis comme suit:

- 165 plantes à fleurs rouges [R]

- 190 plantes à fleurs roses [RB]

- 45 plantes à fleurs blanches [B]

1. Calculez les alléliques dans cette population.

2. En utilisant le test de khi 2, montrez que la population est en équilibre (on prend α = 0.05)

La valeur du χ2 au seuil α = 0.05, pour 1 degré de liberté, est de 3.84

3. Calculez les fréquences théoriques des génotypes dans la génération suivante

1 – fréquences alléliques :

no[R]= 165/400= f(RR)= 0 ,41 ==> D1 ; f(R)=D1+1/2H=0 ,41+0,23=0,65 =p

no[RB]=190/400=f(RB)=0 ,47 ==> H

no[B]=45/400 =f(BB)= 0 ,11 ==> D2 ; f(b)=D2+1/2H=0 ,11+0,23=0,35 =q

2 le test khi deux

Figure a : résultat d’un test khi deux

sur un population naturelle en

équilibre H-W

Figure a : résultat d’un test khi deux

sur un population naturelle qui

n’est pas en équilibre H-W

Page 22: La génétique des populations Diversité génétique Allèle ...

Détermination de Khi 2 seuil à partir du tableau

α = 0.05

ddl= 3 – 2 = 1 ===========➔ χ 2 seuil = 3.841

On constate que χ 2 cal < χ 2 seuil La population étudiée est donc en équilibre selon la loi de

H-W.

3. Calcul des génotypes dans la génération suivante : Puisque la population est en équilibre

génétique :

f(RR) = p2 = (0.65)2 =0.422

f(RB) = 2pq = 0.455

f(BB) = q2 = 0.122

V-Les facteurs de la variabilité génétique populations des

1. Les mutations et leur effets possibles sur les populations a . Définition simplifiée

Toute modification de quantité de l’information génétique ou de la structure de son support

(gène et chromosomes) se nomme mutation

Ces mutations peuvent êtres être ponctuelles lorsqu’ils touchent une partie du génome

comme par exemple des mutations induisant des modifications de la séquence nucléotidique

d’un gène par délétion, insertion ou substitution ou chromosomiques lorsqu’ils conduisent à la

modification du nombre ou de la structure des chromosomes.

Les conséquences des mutation varient , en générale les mutation ponctuelles provoquent la

modification de la séquence peptidique en modifiant un à plusieurs acides aminés ce qui

entrainera à fortiori des modification des fonctions des protéines codés par le génome donc

l’apparition de nouveaux phénotypes , en ce qui concerne les mutations chromosomiques la

modification de la structure des chromosome entraine un dysfonctionnement dans la

transcription de certains gènes voir l’apparition de certaines maladies héréditaires ou la mort.

Page 23: La génétique des populations Diversité génétique Allèle ...

b. effet des mutations sur le pool génétique

Considérons deux populations P1 et P2 dont un –1– individu a subi une mutation qui a modifié

son génotype AA en Aa

1.Complétez le tableau et calculez les fréquences des 2 allèles avant et après la mutation

Nombre d’individus Fréquence des allèles

Avant la mutation Après la mutation Avant la mutation Après la mutation

Population

P1

3AA 5Aa 2aa

…. AA ….. Aa ….. aa

p1 = f(A) = ... ……

q1 = f(a) = ... ……

p1 = f(A) = ... ……

q1 = f(a) = ... ……

Population

P2

2150AA 1240Aa 610aa

…. AA ….. Aa ….. aa

p2 = f(A) = ... ……

q2 = f(a) = ... ……

p2 = f(A) = ... ……

q2 = f(a) = ... ……

2-Quels sont vos déductions ?

Elément de réponses :

1 p1=f(A) =3/10 +(1/2x5/10) =0,3+0,25 =0,55 ; p1=f(A) =2/10 + (1/2x6/10)= 0,2 + 0,3=0,5

q2=f(a)= 2/10 +(1/2x5/10) =0,2+0,25=0,45 ; q2=f(a)= 2/10 +(1/2x6/10) = 0,2 + 0,3=0,5

faire de même pour la population p2

2-On constate que la mutation a entrainé une modification significative des fréquences

alléliques dans la population d’effectif restreint. En revanche son effet est resté négligeable

sur la grande population.

c-bilan

Les mutations ponctuelles créent de nouveaux allèles, il en résulte l’apparition de nouveaux

génotypes et de nouveaux phénotypes. C’est pour cela que ces mutations sont considérées

comme des facteurs principaux de la variation et la diversification génétique au sein des

populations naturelles. L’apparition d’un nouvel allèle dans une population provoque un

changement des fréquences alléliques, génotypiques et phénotypiques, et par conséquent,

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..……………………………………….

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..………………………………………

……………………………………..………………………………………..………………………………………..……………………………………….

Page 24: La génétique des populations Diversité génétique Allèle ...

une modification de la structure génétique de cette population.

2. La sélection naturelle et son effet sur les populations a . Définition simplifiée

Dans un milieu naturel, les individus les mieux adaptés ont plus de capacité pour vivre et se

reproduire, ils contribuent efficacement dans le contenu génétique de la descendance (ils

transmettent les allèles de leurs gènes au cours des générations). Ces différences dans les

capacités (phénotypes) sont dues à des différences de génotypes. La variation de la fréquence

des allèles à travers les générations due à cette contribution différentielle selon la fécondité

et la capacité de survie est appelée sélection naturelle.

b– Exemple de sélection naturelle

La phalène du bouleau est un papillon nocturne qui est caractérisé par deux sous-

espèces : Biston blatularia et Biston carbonaria Pendant le jour, les phalènes

s’immobilisent sur les troncs d’arbres ; elles sont alors des proies faciles pour les

oiseaux.

On peut observer que dans les régions rurales, les arbres sont plutôt clairs

puisqu’ils sont recouverts de lichen. Au contraire, dans les régions industrielles,

les arbres sont plutôt foncés.

En effet, les lichens, sensibles à la pollution,

disparaissent tandis que les arbres se couvrent de

suie. Jusqu’au milieu du 19ème siècle, avant

l’industrialisation massive, les populations de

phalènes du bouleau étaient composées, en

Angleterre, exclusivement de la sous-espèce claire

Suite à l’industrialisation qui a eu lieu en Angleterre,

un recensement du début du 20ème siècle a mis en

évidence que l’importance relative de ces deux

phénotypes a fluctué au cours du temps dans les

régions rurales et industrielles.

La sous-espèce claire était majoritaire dans les régions rurales et la sous-espèce foncée était quant à elle largement majoritaire

dans les régions industrielles.

Experience de Kettlewell

L’expérience suivante a été effectuée par un entomologiste britannique, H. Kettlewell (1955). Des phalènes des 2 phénotypes

sont marqués d’une petite tache de peinture, puis lâchées : - dans un bois dont les arbres sont sombres car pollués par la suie

(Birmingham). - dans un milieu rural (Dorset) dans un bois où les arbres sont clairs (car couverts de lichen). Au cours des nuits

qui suivent le lâcher, les papillons survivants sont recapturés puis dénombrés. Les résultats sont présentés dans le tableau

suivant :

1- en analysant le tableau,

déterminez les caractéristiques

inhérentes à la distribution des

deux sous espèces de

papillons dans les deux régions

2-Quels sont vos déductions ?

Papillons lâchés Papillon recapturés Papillons clairs Papillons sombres Papillons clairs Papillons sombres

Birmingham 29% 71% 16% 84%

Dorset 49% 51% 75% 26%

Page 25: La génétique des populations Diversité génétique Allèle ...

1. Dans la région de Birmingham où les troncs d’arbres sont sombres (à cause de pollution), le % des

papillons sombres a augmenté alors que celui des papillons clairs a diminué. Alors que l’inverse s’est

produit dans la région de Dorset où les troncs d’arbres sont clairs (augmentation du % des papillons

clairs et diminution de % des papillons sombres).

2.Dans les régions polluées, les substances polluantes déposées sur les troncs d’arbres ont modifié leur

couleur qui est devenue sombre ce qui a rendu les papillons clairs facilement visible par les oiseaux

prédateurs et donc exposées à la prédation.

En revanche, dans les régions polluées, les troncs d’arbres sont restés de couleur claire ce qui a permis

aux papillons clairs de rester invisibles et donc non exposées à la prédation Les papillons ont donc été

sujet à une sélection naturelle exercée par les oiseaux prédateurs qui arrivent de les distinguer grâce à

leur phénotype et selon l’environnement (tronc d’arbre).

NB : Les papillons sombres subissent une sélection positive dans la région polluée et une sélection

négative dans la zone non polluée.

c- les types de sélection naturelle existant et leurs effets sur la population

Dans ce graphe suivant on a recensé les fréquences alléliques des deux papillons dans la région de

Manchester qui a connu une forte industrialisation durant un siècle on remarque que Les papillons

sombres porteurs de l’allèle muté C, mieux camouflé, en échappant aux prédateurs contribue à la

formation des générations suivantes et c’est ainsi que la fréquence de l’allèle C augmente au dépend de

l’allèle sauvage c.

Dans les zones polluées, les troncs d’arbres sont

noircis par la pollution. Cela permet aux

individus de la variété sombre de se camoufler

et échapper ainsi aux prédateurs, leur taux

augmentera donc d’une génération à l’autre.

Avant 1848, la fréquence de l’allèle (c) était

égale à 1, alors que celle de l’allèle (C) était nulle.

A partir de 1848, la fréquence de l’allèle (c)

diminue progressivement jusqu’à une valeur proche de 0 en 1948, alors que la fréquence de l’allèle (C)

augmente progressivement jusqu’à une valeur proche de 1.

Donc la variation de la structure génétique de la population étudiée (augmentation de la fréquence de

l’allèle C et diminution de l’allèle c) est le résultat d’une sélection naturelle, ainsi ce phénomène impacte

directement le pool génétique et il peut le modifier de telle manière a ce qu’un allèle considéré autrefois

dominant peut devenir récessif

Exercice ; Le document suivant décrit les différents types de séléction naturelle et leurs effets sur les

fréquences des

individus

1- Remplir les

cases du

tableau

2- Commenter

le

document

Page 26: La génétique des populations Diversité génétique Allèle ...

On distingue trois modes d’action de la sélection naturelle à partir de la courbe de distribution des

phénotypes dans une population :

La sélection directionnelle : ce type de sélection favorise les phénotypes extrêmes et ce, dans une direction

ou une autre pour évoluer vers un optimum. Ce type de sélection est souvent rencontré lorsqu’une

population subit des changements extrinsèques, par exemple des changements environnementaux, ou si

une partie de cette population émigre dans un nouvel habitat non identique à l’original.

La sélection stabilisatrice (stabilisante) : ce type de sélection élimine les phénotypes extrêmes pour

favoriser les intermédiaires. Ceci a pour effet de diminuer la variance du caractère entre individus et de

maintenir le statu quo relatif à un phénotype particulier.

La sélection divergente : Ce type de sélection se produit lorsque les phénotypes extrêmes ont un avantage

sur les intermédiaires qui seront diminués. Cette sélection peut potentiellement mener à une spéciation

sympatrique.

3 La dérive génétique

a- Exercice : dérive génétique par effet fondateur

Les Huttérites sont les membres d'une secte qui, persécutés en Europe, se sont installés en Amérique du Nord

au dix-neuvième siècle. Comme les Amish, ils ont établi une série de colonies d'une centaine d'individus dans

lesquelles ils vivent en autarcie sans se marier avec les personnes étrangères. Mc Lellan et ses collaborateurs

y ont étudié la fréquence de certains allèles des groupes sanguins des systèmes ABO et Kell . Le tableau ci-

dessous représente les résultats

obtenus

1- Comparez les données du tableau,

que constatez-vous ?

Mc Lellan et ces collaborateurs ont

expliqués l’évolution de la structure

génétique de Huttérites par la dérive

génétique, pour mettre en évidence l’effet de ce phénomène sur cette population, on vous propose le schéma

ci-dessous qui représente un modèle explicatif. Le phénotype [A] représente le groupe sanguin A et le phénotype

[a] celui de O

2. Calculez les différentes fréquences de phénotype dans ces populations ?

Groupes sanguins

A B O

Europe, USA 25% à 14,5% 6% à 14,5% 3% à 5%

Huttérites 35% 2% 14%

Amish 66% 6.5% 0.2%

Page 27: La génétique des populations Diversité génétique Allèle ...

3. Discutez les résultats obtenus en expliquant comment intervient le phénomène étudié à l’évolution de la

structure génétique de la population.

4. En se basant sur les données précédentes et les résultats obtenus expliquez l’origine de la structure

génétique enregistrée chez la population des Huttérites.

Eléments de réponses

1. Amish et Huttérites présentent des fréquences qui sont très différentes des moyennes constatées dans les

populations européennes et nord-américaines.

2. Voir le schéma ci-dessus.

3. C'est le hasard d’échantillonnage reproductif qui entraine chez la population fondée 1, le croisement des

individus mutants entre eux, provoquant l’élimination du phénotype sauvage à la deuxième génération en fixant

le phénotype mutant, et l’inverse chez la population fondée 2.

4. La population secte (Amish et Huttérites) descend sans doute d'un petit nombre d'individus ayant migré

d'Europe (population d’origine) ne transportant avec eux qu'une partie de la diversité génétique des populations

d’Europe. C'est que l'on appelle l'effet fondateur. Le temps passant, il se produira certainement dans cette

population des fluctuations de fréquences mutations qui n'existeront pas en Amérique du nord. La diversité

génétique se mettra alors à évoluer et la fondation de la population apparaitra finalement comme une sorte de

goulot d'étranglement de la diversité.

b- effets de la dérive génétique sur les fréquences alléliques

Le graphe suivant représente la fluctuation des

fréquences alléliques à travers les générations chez 3

populations de petite taille, en utilisant la modélisation

assistée par le système information.

D’après le graphique, on observe les différents effets de

la dérive génétique sur les fréquences alléliques des

différentes populations :

on constate que la fréquence de l’allèle f(a) augmente

jusqu’elle atteint la valeur 1, f(a) =1 chez la population 1, dans ce cas on parle de la fixation du phénotype [a] chez

cette population, alors chez la population 3 on observe le contraire, élimination de l’allèle (a) et par conséquent la

disparition du phénotype [a] et extinction des individus de ce phénotype.

C -conclusions

La dérive génétique correspond à la variation aléatoire des

fréquences alléliques d’une génération à une autre suite au choix

aléatoire des individus ou des gamètes participant à la

reproduction. Elle se produit de façon plus marquée lorsque

l’effectif de la population est faible. Elle conduit à la disparition ou

à la fixation de certains allèles.

4 La migration et son impact sur les

populations

A étude d’une migration unidirectionnelle

Une étude célèbre faite par Glass et Li en 1953 ; ils ont choisi d’étudier l’allèle Ro du système rhésus car il est très

rare en Europe et très fréquent en Afrique à l’origine des noirs américains. Le tableau suivant donne l’estimation de

la fréquence de cet allèle d’après cette étude.

Exemple d’une dérive génétique

Page 28: La génétique des populations Diversité génétique Allèle ...

1. Comparez les données du

tableau, que peut-on déduire ?

Pour expliquer l’origine de

l’évolution de la structure

génétique de la communauté

noire des Etats-Unis, on vous

propose le modèle de migration le

plus simple, appelé modèle

insulaire, est celui où les échange d’individus s’effectuent dans un seul sens avec un flux de gènes unidirectionnel

entre une population 1 de grande taille (le continent) et une population 2 de petit effectif (l’ile), la figure 1 représente

ce modèle

2. En utilisant les données de la figure 2 et le modèle proposé sur la figure 1, calculez le flux migratoire m et la

fréquence de l’allèle (A) et de l’allèle (a) chez la population 2 après la migration,

3. Sachant que la structure génétique de la population de continent reste stable, que peut-on déduire sur la structure

génétique de l’ile ?

4. Montrez l’influence de la migration sur la variation de la structure génétique de la population noire américaine ?

1- on observe que la fréquence de l’all éle R0 est inférieure chez les populations noires d’Amérique par rapport au

population africaines tandis que sa fréquence chez les populations blanches ne varie pas

2-Le flux migratoire m correspond à la proportion de migrants qui arrivent dans la population résidente, on le calcule

par la formule suivante : m = n/(N+n) dont : n : effectif des migrants et N : effectif de la population avant de recevoir

les migrants.

En utilisant la formule ci-dessous, on peut calculer la fréquence d’un allèle donné après l’arrivée de m migrants de

la population 1 (continent) : p1 = (1-m) po + m pm dont pm représente la fréquence de l’allèle dominant dans la

population 1 (continent), alors que po représente la fréquence de l’allèle dominant dans la population 2 (Ile)

3 On constate que la fréquence de l’allèle (A) augmente chez la population de l’ile après la migration, si la migration

poursuit avec le temps la structure génétique de l’ile devient la même que celle du continent.

4 On peut expliquer la variation de la structure génétique de la communauté noire des États-Unis par la migration

unidirectionnelle dont, le transfert de gènes ne peut s’effectuer que des blancs vers les noirs et jamais en sens

inverse (transfert unidirectionnel de gènes) ce qui entraine une variation des caractéristiques génétique de la

population noire sans modifier la structure génétique de la population d’origine.

La fréquence de l’allèle Ro

En 1953 dans la communauté noire des États-Unis

Dans les diverses populations origines esclaves (valeur moyenne actuelle)

Dans les populations européennes qui ont migré vers les États-Unis

Dans la communauté blanche des Etats-Unis

0,446 0,63 0,028 0,028

Page 29: La génétique des populations Diversité génétique Allèle ...

b-Cas de la migration multidirectionnelle

Le modèle archipel correspond à l’ensemble d’îles interconnectées par des échanges de migrants dans toutes les

directions possibles avec des conséquences sur l’ensemble des populations. La figure 1 représente le modèle

archipel de migration multidirectionnelle de 5 populations, la figure 2 donne l’évolution de la fréquence de l’allèle A

chez ces 5 populations suite au flux migratoire multidirectionnelle.

Au début, la fréquence de l’allèle A est très différente entre les 5 populations, et sous l’effet de flux migratoire

multidirectionnel, les différences de fréquence alléliques entre les populations diminuent progressivement, et les

population convergent vers une fréquence allélique commune qui correspond à la moyenne des fréquences alléliques

dans ces populations. Donc le flux génique multidirectionnel provoque un brassage génique entrainant l’homogénéité

des populations et par conséquence l’arrêt de la spéciation (diversité génétique)

VI-Notion d’espèces et ses caractéristiques biologiques

1. Les critères morphologiques et comportementaux.

On estime que deux individus qui se ressemblent (de même morphologie), ont plus de

chance d’appartenir à la même espèce, les différences sont très marquées entre les mâles

et les femelle (dimorphisme sexuel très important). C’est pour cela on cherche d’autre

critère comme le critère comportemental et le critère morphologique (son apparence

extérieure), qui nous permettent de distinguer les individus d’espèces différentes.

Cependant l’utilisation de ce critère a ses limites car chez certaines espèces les male ont

une apparence très différente des femelles comme l’exemple de la merle , aussi Une espèce

peut aussi présenter de grandes différences morphologiques à plusieurs stades de son

développement (exemple : les

différents stades du cycle de vie

d’un papillon , une chenille ne

ressembla pas à une chrysalide ni à

la forme adulte du papillon)

Page 30: La génétique des populations Diversité génétique Allèle ...

2. Les critères physiologiques Le tableau ci-contre présente la différence de tolérance à la température de

l’environnement de deux espèces de Bruants du nord de l’Europe ; Bruant jaune

(Emberiza citrinella) et Bruant ortolan (Emberiza hortulana) (d’après Wallgren 1954)

D’après le tableau, on constate que

l’espèce Emberiza hortulana dégage une

quantité élevée de CO2 selon la

température ambiante si on la compare

avec l’autre espèce Emberiza citrinella,

il s’agit d’un critère fondamental pour

faire la différence entre les espèces.

3. d’autres critères biologiques : a L’interfécondité

Selon ce critère, on estime que deux individus capables de se reproduire pour donner une descendance fertile appartiennent à la même espèce. Toutefois, ce critère a lui aussi ses limites : - Il ne peut être utilisé pour étudier les espèces disparues - Certaines espèces très proches sont capables de s’hybrider pour donner une descendance fertile (croisement entre le chameau et le dromadaire ou hybrides végétaux). - C’est un critère qui ne concerne que les organismes sexués, donc pour les bactéries ça sera difficilement applicable exemple : la mule est stérile car c’est du au fait qu’il résulte d’un croisement entre deux espèce différentes , si jamais la mule était fécond cela voudrai dire que l’âne , le cheval et la mule appartiennent à la même espèce b-Les études moléculaires et génétiques

Ces études permettent d’étudier le flux de gènes entre deux populations vivant dans la même

aire géographique. Si on ne retrouve pas de gènes communs entre ces deux populations, on

peut estimer qu’elles ne se reproduisent pas entre elles. Ce sont donc deux espèces

différentes.

Température

environnementale

-5

0

5

15

25

Le taux de

CO2 rejeté

en mg/h

Emberiza

hortulana

11

10,5

9

7

5

Emberiza

citrinella

8

7,5

7

6

4,5

Emberiza citrinella

(bruant jaune)

Emberiza hortulana

(Bruant ortolan)

Page 31: La génétique des populations Diversité génétique Allèle ...

Exemple : le triton .

Le triton est un amphibien qui a été soumis à plusieurs expériences pour différencier entre ses

espèces. Les photos montrent 4 espèces de triton, et le tableau présente les résultats de

l’analyse chromatographique de deux protéines extraites de ces 4 espèces (l’étude concerne

10 à 20 individus de chaque espèce). Cette étude a permis de déterminer la fréquence des

allèles codant pour chaque protéine dans chaque espèce.

On constate que chaque espèce possède un nombre bien déterminé des allèles et une fréquence allélique qui caractérise l’espèce. Donc, si on ne trouve pas de gènes communs entre les individus, on peut estimer qu’ils ne se reproduisent pas c’est-à-dire qu’ils ne sont pas interféconds (cf l’exemple de la mule), ce sont donc deux individus d’espèces différentes.

c. Les critères écologiques

Ils s’appliquent surtout aux espèces végétales qui sont caractérisées par des périodes de floraison définies au cours des saisons. Deux populations qui n’ont pas la même période de floraison ne peuvent pas se

reproduire. Elles forment donc deux espèces différentes.

4.Définition de l’espèce.

L'espèce est l'unité de base de la classification du vivant. Selon Ernst Mayr (1942) ; "les

espèces sont des groupe de populations naturelle, effectivement ou potentiellement

interfécondes, qui sont génétiquement isolées d’autre groupe similaires". A cette

définition, il a ensuite rajouté que cette espèce doit pouvoir garder une progéniture

viable et féconde. Ainsi l’espèce est plus grande unité de population au sein de laquelle

le flux génétique est possible dans les conditions naturelles.

Triturus vulgaris Triturus alpestris Triturus marmoratus Triturus cristatus

Page 32: La génétique des populations Diversité génétique Allèle ...
Page 33: La génétique des populations Diversité génétique Allèle ...

Exercice 1 Chez la drosophile, le gène récessif w lié au sexe est responsable de la couleur blanche des

yeux. L'allèle dominant w+ conduit au type sauvage à yeux rouges. Dans une population de

laboratoire, il a été trouvé 170 mâles à yeux rouges et 30 à yeux blancs. Estimer la fréquence

des allèles w et w+ chez les mâles. Pouvez-vous en déduire leur fréquence dans la population

totale ? Sous quelle condition ? Quel pourcentage de femelles aurait alors les yeux blancs

dans cette population ?

Exercice 2 :

La macroglobuline alpha est une protéine sérique codée par un gène lié au sexe et peut être

présente ou absente chez un individu donné. Dans une population supposée en équilibre de

HW, les proportions des phénotypes ma+ (présence de la protéine) et ma- (absence de la

protéine) sont 23 et 77 chez les hommes et 56 et 44 chez les femmes. Quelle est la fréquence

de l'allèle nul (absence de la protéine) dans la population ?

Exercice 3 :

Dans l'espèce humaine, le fait d'avoir un index plus court que l'annulaire est un phénotype dû

à l'un des allèles d'un gène diallélique. L’allèle responsable de « l’index court » a une

expression influencée par le sexe puisqu'il est dominant chez les hommes et récessif chez les

femmes. Dans un échantillon d'hommes, on a recensé 120 individus à index courts et 210 à

index longs. Quelle est la fréquence des femmes des deux types dans cette population ?

Exercice 4 :

Une maladie héréditaire de l'homme, l'hémophilie, est due à un gène récessif lié au sexe qui

est présent dans 1% des gamètes d'une population donnée. Quelle est la fréquence attendue

d'hommes hémophiles ? Quelle est la fréquence attendue de femmes hémophiles ?

Exercice 5 : Soit une population en équilibre de Hardy-Weinberg pour un locus à deux allèles A et a. Pour

quelle fréquence allélique les génotypes homozygotes récessifs aa sont-ils deux fois plus

nombreux que les génotypes hétérozygotes Aa ?

Exercice 7 A l'usage des amateurs d'oiseaux, on a fabriqué aux USA une race de volailles de luxe et de

prestige, presque uniquement sur un critère de plumes: les plumes frisées. Ce caractère du

plumage est sous le contrôle d'un seul locus. Le phénotype [frisé] est dû à l'hétérozygotie M N

M F à ce locus. Un homozygote M F M F a un phénotype [crépu], un M N M N a un plumage

[normal]. Sur un échantillon de 1000 individus, on a trouvé 800 frisés, 150 normaux et 50

crépus. La population est-elle à l’équilibre de HW pour ce gène ?

Page 34: La génétique des populations Diversité génétique Allèle ...

Références bibliographiques

Le brassage génétique et sa contribution à la diversité génétique p. 6 gauche, DR, droite ©

Lézarts Création ; p. 7, DR; p. 8, DR; p. 9, © RDE. Diversification génétique et diversification

des êtres vivants p. 12 ©

RDE ; p. 13 haut © RDE, bas, DR; p. 14 « Zoom sur… » © Istockphoto/ Thinkstock, partie

centrale ©

Lézarts Création ; p. 15 DR. De la diversification des êtres vivants à l’évolution de la

biodiversité p. 18 « Zoom sur… » gauche

© RDE, « Zoom sur… » droite © Istockphoto/ Thinkstock, partie centrale © Lézarts Création ;

p. 19 partie centrale ©

RDE, « Zoom sur… » © Istockphoto/ Thinkstockp. 20 DR; p. 21 partie centrale DR, « Zoom

sur… » ©

Istockphoto/ Thinkstock. Un regard sur l’évolution de l’homme p. 24 © RDE ; p. 25, DR; p. 26

© RDE ; Les relations entre organisation et mode de vie, résultat de l’évolution : l’exemple de

la vie fixée chez les plantes p. 30 DR; p. 31 DR; p. 32 DR; p. 33 DR

www.lyc-moulin-pezenas.ac-montpellier.fr › cours_specialite_svt_genetique

C.LIZAEAUX,D.BEAUDE ,Sciences de la vie et de la terre , terminales S , Editions bordas 2008

jaouani moussa , génétique des populations pdf

Moncif Elkaoune , genetique des population

A.Elommari ; génétique des population ,l’essentiel du cours

Youssef ElAndaloussi ; دروس الثانية باك علوم الحياة والأرض, ; pdf

Taha Atany , génétique des population ,vidéo youtube