KES lecture Lyman-alpha FAB

42
T he Hydrogen Lyman alpha line in emission Fabrizio Arrigoni Battaia Lyman 1904

Transcript of KES lecture Lyman-alpha FAB

Page 1: KES lecture Lyman-alpha FAB

The  Hydrogen  Lyman-­alpha  line  in  emission

Fabrizio  Arrigoni  Battaia  

Lyman  1904

Page 2: KES lecture Lyman-alpha FAB

https://arxiv.org/pdf/1704.03416.pdf

Most  of  these  slides  use  materials  from:

Page 3: KES lecture Lyman-alpha FAB

Relative  contributions  to  Universal  energy/mass  density

Page 4: KES lecture Lyman-alpha FAB

The  Hydrogen  Lyman-­‐a line

Lya (2p  -­‐>  1s)  à 1215.67  Å or  10.2  eV  

Selection  rules  (electric  dipole  approx.)

Page 5: KES lecture Lyman-alpha FAB

Victor  Schumann1896

1892

Page 6: KES lecture Lyman-alpha FAB
Page 7: KES lecture Lyman-alpha FAB
Page 8: KES lecture Lyman-alpha FAB

Chronicle  of  Lya Observations  (extragalactic)

Partridge&Peebles 1967

“Are  young  galaxies  visible?”

Hu&Cowie+  1987

Lowenthal+  1990  (and  many  more)

Heckman+  1991Partrid

ge  1974

Davis&

Wilkinson1974

Schm

idt  1

963  QSO

’s  discovery

1965  Ly

ain  3C  9  (z=2.012)

Spinrad+

1985  Ly

ain  HzRGs

IUE  satellite  1978

1980s  C

CDs  a

dven

t  low-­‐z  AGN

 (Fosbu

ry+1982;

Ferla

nd&Osterbrock1985)

1993  8-­‐m

eter  class  

telescop

e  era  be

gins…

Møller&Warren+1993  Lya from  DLA  

Hu&Cowie+  1987

Hu&McM

ahon

+1996  

LAEs  z~

4.5

Steide

l+  1991

1990s  HST  time  begins…

Steide

l+2000  

Lyaim

aging  of  protocluster

Bergeron+  1999

e.g.,  Bahcall+  1993

Pentericci+2000  

Lyaim

aging  arou

nd  HzRGs

Page 9: KES lecture Lyman-alpha FAB

The  Hydrogen  Lyman-­‐a line

Lya (2p  -­‐>  1s)  à 1215.67  Å or  10.2  eV  

Selection  rules  (electric  dipole  approx.)

Page 10: KES lecture Lyman-alpha FAB

The  Hydrogen  Lyman-­‐a line

Lya (2p  -­‐>  1s)  à 1215.67  Å or  10.2  eV  

Selection  rules  (electric  dipole  approx.)

A(2p-­‐>1s)  =  6.248e+08  s-­‐1

Page 11: KES lecture Lyman-alpha FAB

The  Hydrogen  Lyman-­‐a line

Lya (2p  -­‐>  1s)  à 1215.67  Å or  10.2  eV  

Selection  rules  (electric  dipole  approx.)

A(2p-­‐>1s)  =  6.248e+08  s-­‐1

A(3p-­‐>2s)  =  4.4101e+07  s-­‐1

Page 12: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  collisions  and  recombination

Page 13: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  collisions

Hydrogen  atom  excited  at  the  expenses  of  kinetic  energy  of  free  electrons.

Page 14: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  collisions

Hydrogen  atom  excited  at  the  expenses  of  kinetic  energy  of  free  electrons.

Page 15: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  collisions

Hydrogen  atom  excited  at  the  expenses  of  kinetic  energy  of  free  electrons.

C(T ) / exp

✓�118348

T

Black+1981

Page 16: KES lecture Lyman-alpha FAB

Fraction  of  cooling  in  Lya

Lya emission  mechanisms:  collisions

Page 17: KES lecture Lyman-alpha FAB

Cooling  rate  for  primordial  gas(CIE  assumption)

collisional  excitation

collisional  Ionization  of  H

collisional  excitation  of  HeII

T  sets  ionization  state

Lya emission  mechanisms:  collisions

Page 18: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

Recombination  of  free  proton  and  electron  +  radiative  cascades  to  the  ground  state  à Lya line

Page 19: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

Recombination  of  free  proton  and  electron  +  radiative  cascades  to  the  ground  state  à Lya line

Page 20: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

Recombination  of  free  proton  and  electron  +  radiative  cascades  to  the  ground  state  à Lya line

Page 21: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

Recombination  of  free  proton  and  electron  +  radiative  cascades  to  the  ground  state  à Lya line

Case  A:  medium  optically  thin  at  all  photon  frequencies

Case  B:  medium  opaque  to  all  Lyman  series  photons  and  to  ionizing  photons  from  direct  recombination  to  ground  state.  “On  the  spot  approx.”

Page 22: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

Page 23: KES lecture Lyman-alpha FAB

Lya emission  mechanisms:  recombination

P(Lya)=0.68  at  T=104 K

Page 24: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  the  radiative  transfer  equation

Page 25: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  the  radiative  transfer  equation

emission

Page 26: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  the  radiative  transfer  equation

emission absorption

Page 27: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  absorption

Line  center/resonance Off  line  center

⌧0 = �↵NHI

Page 28: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  the  radiative  transfer  equation

emission absorption ``destruction’’

Page 29: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  ``destruction’’

• Dust  can  absorb  Lya photons.  The  dust  grains  increase  their  temperature  and  re-­‐radiate  at  longer  wavelengths.  (dust  cross-­‐section  basically  constant)

• Molecular  Hydrogen  has  two  vibrational  transitions  close  to  Lya resonance  (at  99  km/s  and  15  km/s)

• 2g-­‐photons  emission  :  collisional  mixing  of  2p  and  2s  states

Page 30: KES lecture Lyman-alpha FAB

2g emission

2g (2s  -­‐>  1s)

Selection  rules  (electric  dipole  approx.)

A(2p-­‐>1s)  =  6.248e+08  s-­‐1

A(2s-­‐>1s)  =  8.23  s-­‐1

Page 31: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  ``destruction’’

• Dust  can  absorb  Lya photons.  The  dust  grains  increase  their  temperature  and  re-­‐radiate  at  longer  wavelengths.  (dust  cross-­‐section  basically  constant)

• Molecular  Hydrogen  has  two  vibrational  transitions  close  to  Lya resonance  (at  99  km/s  and  15  km/s)

• 2g-­‐photons  emission  :  collisional  mixing  of  2p  and  2s  states

• Other  minor  processes,  e.g.  Lya photons  can  photoionize hydrogen  atoms  not in  the  ground  state;  ….

Page 32: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  the  radiative  transfer  equation

emission absorption ``destruction’’

scattering

Page 33: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  scattering

Following  absorption,  re-­‐emission  occurs  instantly  à ``scattering’’

Page 34: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  scattering

Following  absorption,  re-­‐emission  occurs  instantly  à ``scattering’’

Lya scattering  is  a  double  diffusion  process

Page 35: KES lecture Lyman-alpha FAB

Lya scattering  is  a  double  diffusion  process

x=

⌫�⌫

↵v

th/c

Page 36: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  scattering

Probability  Distribution  Function  R(xout|xin)  or  redistribution  functions

x =⌫ � ⌫↵

⌫↵vth/c

Page 37: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  through  an  uniform,  static  gas  cloud

Page 38: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  through  an  uniform,  static  gas  cloud

Analytic  solutions  available:  Harrington  1973;  Neufeld  1990;  Dijkstra+2006

Orsi+2012

Page 39: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  through  uniform,  expanding  or  contracting  

gas  cloud

Laursen+2009

Page 40: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  through  uniform,  expanding  or  contracting  

gas  cloud

Laursen+2009

Page 41: KES lecture Lyman-alpha FAB

Lya radiative  transfer:  dust…

Laursen+2009

Page 42: KES lecture Lyman-alpha FAB

Gronke+2017

You  can  find  the  videos  at  https://www.aanda.org/articles/aa/olm/2017/11/aa31013-­‐17/aa31013-­‐17.html