Introduction aux modèles cosmologiquesmarclrey.free.fr/presentations/apr%8fsNw.pdf ·...

107
Introduction aux modèles cosmologiques Après Newton 1 Lachièze-Rey, 2010

Transcript of Introduction aux modèles cosmologiquesmarclrey.free.fr/presentations/apr%8fsNw.pdf ·...

  • Introduction aux modèles cosmologiques

    Après Newton

    1

    Lachièze-Rey, 2010

  • Le Monde après Newton

    Newton : cadre géométrique : espace et temps géométrisés…

    Espace + temps = cadre géométrique de la physique

    Mouvement décrit par des vitesses, des forces = objets géométriques

    Le monde = distribution de matière (régie par des forces) dans ce cadre géométrique

    Problème cosmologique : quelle est l’extension du monde matériel dans ce cadre géométrique infini ?

    Notre galaxie ? Univers-iles ?

    2

    Lachièze-Rey, 2010

  • Relativité restreinte

    Relativité restreinte :

    cadre géométrique encore plus complet car il incorpore la cinématique

    Espace + temps --> espace-temps

    Ne change guère la vision cosmologique

    3

    Lachièze-Rey, 2010

  • Relativité générale

    Espace-temps courbe Métrique g courbure (connection) Son tenseur de Riemann R représente le

    champ gravitationnel = courbure

    Les équations d’Einstein permettent de calculer R à partir - du contenu énergétique (tenseur d’énergie-impulsion T) - et de la constante cosmologique Λ.

    (Matière et lumière suivent les géodésiques de l’espace-temps.) (L’espace devient lui-même une entité dynamique et au statut quasi-matériel)

    4

    Lachièze-Rey, 2010

  • Cosmologie relativiste

    La cosmologie concerne les propriétés globales de l’univers. La gravitation gouverne la cosmologie.

    Elle est décrite par la relativité générale Cosmologie relativiste

    Univers =

    cadre géométrique (espace-temps)

    + contenu énergétique (matière, rayonnements,…)

    Les deux sont liés par la relativité générale, loi de la gravitation

    Simplifiées par la symétrie du principe cosmologique Le but de la cosmologie relativiste est de trouver une bonne description de l’espace-temps, par exemple par sa métrique.

    Physique connue Nombreuses Observations

    5

    Lachièze-Rey, 2010

  • Principe cosmologique

    Lachièze-Rey, 2010

    6

    • l’espace-temps est simple = espace x temps

    • L’espace [= chaque section spatiale de l’espace-temps] Est à symétrie maximale (=homogène et isotrope)

    Mais les propriétés de l’espace peuvent varier dans le temps (par exemple expansion).

    • description simple du contenu énergétique, par des quantités moyennes seulement :

    densité d’énergie ρ, pression p

  • Lachièze-Rey, 2010

    7

    Principe cosmologique

  • Cosmologie relativiste

    L’espace-temps devient lui-même une entité dynamique et au statut quasi-matériel :

    L’espace-temps a une forme (courbure et topologie)

    Le problème cosmologique, c’est avant tout décrire cette forme.

    Par exemple : frontière temporelle, big bang, big crunch ?

    Pas de frontière spatiale (modèle d’Einstein)

    Cosmologie future : cadre géométrique encore plus étendu ? (Cordes et branes ?)

    •  Autre théorie de Gravitation (Quantum gravity?) 

    •  Universe is not homogeneous and isotropic

    •  New physics.

    8

    Lachièze-Rey, 2010

  • EDWIN HUBBLE (1889–1953).���“Cepheids in spiral nebula.”���

    In Publications of the American Astronomical Society,���33rd meeting, Dec. 30, 1924 – Jan. 1,

    •  The Realm of the Nebulae.

    Lachièze-Rey, 2010

    9

  • Lachièze-Rey, 2010

    10

  • Lachièze-Rey, 2010

    11

  • Lachièze-Rey, 2010

    12

  • Lachièze-Rey, 2010

    13

  • Einstein, De Sitter , Eddigton ���

    Lachièze-Rey, 2010

    14

  • GEORGES LEMAÎTRE (1894–1966).���

    •  “Un univers homogène de masse constante...”���in Annales de la Société Scientifi que de Bruxelles, vol. XLVII.���Louvain: 1927.

    Lachièze-Rey, 2010

    15

  • Alexandre Friedmann��� Saint-Pétersbourg 1888 - Petrograd 1925,

    16

    Lachièze-Rey, 2010

    • Friedman, A. (1922).

    "Über die Krümmung des Raumes". Zeitschrift für Physik 10 (1): 377–386

    • Friedman, A. (1924).

    "Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes".

    Zeitschrift für Physik 21 (1): 326–332

  • Cosmologie relativiste

    •  Après Einstein (1917)

    Un modèle cosmologique est une solution de la relativité générale (simple)

    • Après Lemaître (1930) (et Friedman) : classe de solutions identifiées obéissant

    au Principe cosmologique = modèle de Friemann – Lemaître.

    • parmi eux on retient les solutions en expansion ( observations)

    • une classe particulière = modèles de big bang

    • un modèle de big bang est défini par deux caractéritiques:

    -  Le signe de la courbure de l’espace

    -  Le facteur d’échelle a(t)

    -  Les modèles de big bang : a(t0) = 0.

    -  Théorème (relativité générale) :

    [ matière – énergie « ordinaire »] et [| =0] gravité atractive

    expansion décélérée big bang

    17

    Lachièze-Rey, 2010

  • Modèles de bb

    •  A(t0) = 0

    •  A(t0 + e) très petit densité et températures très élevées

    univers primordial dense et chaud

     Phénomènes physiques particuliers:

    -  Interactions rayonnement – matière

    -  Physique nucléaire

    -  Physique des particules

    • Singularité : A(t0) = 0

    mal comprise / à éliminer ?

    Lachièze-Rey, 2010

    18

  • Cosmologie relativiste

    •  Univers en expansion

    19

    Lachièze-Rey, 2010

  • Lachièze-Rey, 2010

    20

    Pie XII, 1951

    " ... il semble en vérité que la science d’aujourd’hui, remontant d’un trait des millions de siècles, ait réussi à se faire le témoin de ce "fiat lux ! » initial, de cet instant où surgit du néant, avec la matière, un océan de lumière et de radiations, tandis que les particules des éléments chimiques se séparaient et s’assemblaient en million de galaxies.  »

    " ...Avec le concret qui est la caractéristique des preuves en physique, (la science) a confirmé la contingence de l’univers et aussi le bien-fondé des déductions sur l’instant où le cosmos est sorti des mains du créateur. Aussi, la création est apparue dans le temps. Donc il y a eu un Créateur ! Donc Dieu existe ! Bien qu’elle ne soit ni explicite ni complète, c’est la réponse que nous attendions de la Science et que la génération présente attendait d’elle ! "

    Georges Lemaître, 1958 :

    " Pour autant que je puisse juger, cette théorie reste en dehors du champ de la métaphysique ou de la religion. Elle laisse les matérialistes libres de dénier tout être transcendant. "

    http://decouverte.univers.free.fr/bigbang.htm

  • Constante cosmologique���

    21

    Lachièze-Rey, 2010

  • Modèles de big bang

    22

    Lachièze-Rey, 2010

  • Modèle de big bang avec Λ=0.7 et Ω =0.3

    (le « meilleur » aujourd’hui)

    Modèle de big bang

    « Einstein - de Sitter),

    avec Λ=0 et Ω = 1

    (abandonné aujourd’hui)

    23

    Lachièze-Rey, 2010

  • Constante cosmologique���

    24

    Lachièze-Rey, 2010

    Einstein 1917 : L pour avoir un modèle statique

    Ensuite, Einstein “renie “ L

    Lemaître :

    L=0 univers « trop jeune »

    L=0 apparition des galaxies difficile à expliquer

     Controverse

    Mais peu d’intérêt pour la cosmologie

  • Georges Gamow

    25

    Lachièze-Rey, 2010

  • Questions cosmiques 1 : ���géométrie de l’espace-temps

    • Forme (géométrique) de l’espace:

    plat ou non,

    infini ou non,…

    courbure spatiale

    [et topologie]

    • Partie temporelle de la géométrie : évolution

    Expansion :

    évidence et propriétés

    taux (= constante de Hubble)

    accélération ou décélération

    Âge de l’univers

    • Constante cosmologique = courbure moyenne de l ’espace-temps

    26

    Lachièze-Rey, 2010

  • Questions cosmiques 2 : ���contenu « matériel » de l’univers

    équation d’Einstein : la forme est imposée par le contenu (+ L ?)

    • Nature, densité et propriétés de la matière

    masse cachée --> physique des particules

    Énergie exotique ? (énergie du vide, quintessence …)

    pas d ’évidence

    pas de motivation théorique sérieuse

    Structuration et évolution de la matière visible ou invisible:

    formations des galaxies et des structures

    problème très actuel

    --> •

    27

    Lachièze-Rey, 2010

  • Questions cosmiques 3 : Univers primordial

    Que s’est-il passé il y a 15 milliards d’années, quand les conditions

    physiques étaient très différentes de celles d’aujourd’hui ?

    Plus on remonte loin dans le passé, plus on doit faire intervenir

    une physique différente :

    « Recombinaison » (à l’âge de 1 million d’années) :

    époque de transition

    origine du Fond Diffus cosmologique

    Physique nucléaire

    physique des particules

    … inflation, nouvelles théories, transitions de phase

    •••

    28

    Lachièze-Rey, 2010

  • Questions cosmiques 3 : Univers primordial

    Que s’est-il passé il y a 15 milliards d’années, quand les conditions

    physiques étaient très différentes de celles d’aujourd’hui ?

    Plus on remonte loin dans le passé, plus on doit faire intervenir

    une physique différente :

    « Recombinaison » (à l’âge de 1 million d’années) :

    époque de transition

    origine du Fond Diffus cosmologique

    Physique nucléaire

    physique des particules

    … inflation, nouvelles théories, transitions de phase

    •••

    29

    Lachièze-Rey, 2010

  • La forme de l’espace-temps

    Modèles relativistes

    Principe cosmologique ==> modèles Friedmann - Lemaître

    Modèles de big bang

    Modèles particuliers : Einstein, Minkowski, de Sitter

    30

    Lachièze-Rey, 2010

  • Principe cosmologique L’espace [les sections spatiales de l’espace-temps] sont à symétrie maximale (=homogènes et isotropes)

    1) l’espace-temps est simple = espace * temps Mais les propriétés de l’espace varient

    dans le temps (expansion).

    2) description simple du contenu énergétique : Quantités moyennes seulement

    (densité d’énergie ρ, pression p)

    31

    Lachièze-Rey, 2010

  • Principe cosmologique

    32

    Lachièze-Rey, 2010

  • Métrique Robertson - Walker

    Décalage vers le rouge

    (= redshift)

    33

    Lachièze-Rey, 2010

  • Le principe cosmologique suffit à déterminer une forme

    [de Robertson - Walker] pour la métrique :

    ds2 = dt2 -a(t) 2 dσ2,

    où dσ2 est la métrique d’un espace à symétrie maximale :

    S3 (k =1) R3 (k =0), ou H3 (k =-1) .

    k est le

    paramètre de

    courbure spatiale

    La fonction a(t) = facteur d’échelle :

    toute longueur cosmique varie proportionnellement à a(t)

    - (dans des « bonnes » coordonnées)

    - ceci est indépendant de la

    théorie de gravitation (Rg ou autre).

    Un modèle est déterminé par [a(t), k] 34

    Lachièze-Rey, 2010

  • Courbure de l’espace-temps

    35

    Lachièze-Rey, 2010

  • Modèles de Friedmann - Lemaître

    La relativité générale permet de calculer la courbure de l’espace-temps à partir du tenseur d’énergie-impulsion et de Λ, par les équations d’Einstein.

    Avec le principe cosmologique, - la courbure se réduit à a(t) et k. - Les équations d’Einstein se réduisent aux équations de Friedmann. La matière est décrite par

    sa densité moyenne ρ et sa pression moyenne P.

    36

    Lachièze-Rey, 2010

  • Modèles Friedmann - Lemaître

    - décrits par a(t) et k.

    -  Les équations d’Einstein (relativité générale) se réduisent aux équations de Friedmann : on peut calculer [a(t), k] à partir du tenseur d’énergie-impulsion et de Λ.

    La matière est décrite par sa densité moyenne ρ et sa pression moyenne P.

    Reliés par une équation d’état

    37

    Lachièze-Rey, 2010

  • Contenu matériel

    densité moyenne ρ pression moyenne P.

    Reliés par une équation d’état

    38

    Lachièze-Rey, 2010

  • Modèles de big bang

    = ceux pour lesquels le facteur d ’échelle s annule

    pour une valeur ti de t finie : a(ti) =0. (en fait, cette cosmologie ne tient pas compte des effets quantiques qui pourraient empêcher une telle Singularité.) Il vaut mieux remplacer la condition par a(ti) = Lplanck

    39

    Lachièze-Rey, 2010

  • Modèles de big bang

    40

    Lachièze-Rey, 2010

  • 41

    Lachièze-Rey, 2010

  • 42

    Lachièze-Rey, 2010

  • Observations d’intérêt cosmique

    • Tests cosmologiques : observer des objets « standard »pris comme

    traceurs de la géométrie (spatio-temporelle) ; amas de galaxies,

    supernovae (--> •), ...

    Difficile de séparer les aspects spatiaux et temporels

    • âge de l’univers

    • abondances des éléments légers

    (

  • Fond Diffus cosmologique���•  Les observations les plus lointaines et les plus anciennes disponibles

    (z=1000)

    •  Engendré à la recombinaison

    •  La confirmation la plus impressionnante des modèles de big bang

    •  On teste

    –  physique primordiale

    –  Gravitation

    –  Géométrie de l ’espace-temps

    –  Nature et propriétés de la matière

    –  Les lois de la physique ...

    44

    Lachièze-Rey, 2010

  • Fond Diffus cosmologique���

    équilibre

    45

    Lachièze-Rey, 2010

  • Spectre du Fond Diffus cosmologique

    46

    Lachièze-Rey, 2010

  • 47

    Lachièze-Rey, 2010

  • WMAP sky

    48

    Lachièze-Rey, 2010

  • WMAP sky

    T(θ,φ) --> spectre angulaire C(l)

    49

    Lachièze-Rey, 2010

  • 50

    Lachièze-Rey, 2010

  • 51

    Lachièze-Rey, 2010

  • 52

    Lachièze-Rey, 2010

  • Fluctuations du Fond Diffus cosmologique

    53

    Lachièze-Rey, 2010

  • Spergel et al 2003

    54

    Lachièze-Rey, 2010

  • Pic acoustique

    55

    Lachièze-Rey, 2010

  • 56

    Lachièze-Rey, 2010

  • 57

    Lachièze-Rey, 2010

  • Lentilles gravitationnelles

    Déviation gravitationnelle des rayons lumineux prévue par la relativité générale

    • effets

    forts (arcs) ou faibles,

    • à diverses échelles (microlensing)

    • très faibles : déformations des images (analyse statistique :

    champ de cisaillement ***)

    58

    Lachièze-Rey, 2010

  • 59

    Lachièze-Rey, 2010

  • Effets de lentilles gravitationnelles :

    Dévoilent la masse responsable (cachée ou non)

    Dévoilent la géométrie de l’univers

    60

    Lachièze-Rey, 2010

  • Conclusion

    Nous avons beaucoup appris dans les dernières années :

    Mesure de H0

    Mesure de l’accélération de l’expansion

    Détection des fluctuations du

    Fond Diffus cosmologique

    Estimation des quantités de

    masse cachée

    (mais pas sa nature)

    Tout est à confirmer par des méthodes indépendantes !

    Réconcilier les mesures de H0 proches et lointaines

    Mesures de la courbure de l’espace (aujourd’hui, estimée faible)

    Confirmer l’accélération de l’expansion (qui implique Λ)

    61

    Lachièze-Rey, 2010

  • 62

    Lachièze-Rey, 2010

  • La matière

    Sdv fd vbdf df

    63

    Lachièze-Rey, 2010

  • Abondances des éléments

    64

    Lachièze-Rey, 2010

  • Champ scalaire

    •  Le Lagrangien décrit l’évolution

    •  L’état fondamental (=vide) correspond au minimum du potentiel

    65

    Lachièze-Rey, 2010

  • Potentiel

    •  Symétrique à

    haute température

    •  Symétrie brisée

    à basse température

    66

    Lachièze-Rey, 2010

  • Brisure de symétrie

    •  À basse température

    •  = choix d’un minimum du champ

    •  Quel type de choix : discret ou continu ?

    •  Cela dépend de la nature du champ, et de

    son Lagrangien.

    •  On peut avoir F1 dans une région, et F2

    dans une autre --> à la frontière ?

    67

    Lachièze-Rey, 2010

  • Défauts topologiques

    •  Choix discret : entre la zone F1 et la zone

    F2, il doit exister une zone où le champ est piégé.

    •  Cela représente une surface très mince remplie d’une énergie énorme:

    un mur domanial

    •  Exclu par la cosmologie.

    68

    Lachièze-Rey, 2010

  • Cordes cosmiques

    •  Symétrie continue :

    •  Les zones de forte énergie sont piégées le

    long de lignes, qui se comportent comme des cordes :

    •  Densité d’énergie prop. m2.

    69

    Lachièze-Rey, 2010

  • Effets possibles des cordes cosmiques

    = très fortes singularités (coniques) du potentiel gravitationnel

    •  Lentilles gravitationnelles

    •  Fond diffus cosmologique

    •  Germes pour la formation des structures

    70

    Lachièze-Rey, 2010

  • 71

    Lachièze-Rey, 2010

  • Les cordes ont une dynamique

    •  Elles peuvent

    être chargées,

    supraconductrices…

    72

    Lachièze-Rey, 2010

  • Monopoles

  • Défauts cosmologiques

    Causalité ==> On s’attend à ce que le champ prenne la même valeur dans des régions dont les dimensions ont la taille de l’horizon causal Hbrisure au moment de la brisure

     un défaut topologique par volume Hbrisure 3.

     Pour les monopoles Ω = 1011 !!!

     IMPOSSIBLE

    74

    Lachièze-Rey, 2010

  • S’en débarrasser ?

    Théorie :

     Monopoles inévitables si GUT

      Densité incompatible avec la cosmologie

    Leur densité a été diluée ?

    -> origine de l’idée d’inflation

    = Comment diluer les monopoles

    75

    Lachièze-Rey, 2010

  • Inflation ?

    = une période (courte) d’expansion ultrarapide.

    Par exemple, d’un facteur 10100 en 10-35 seconde

    (big bang : facteur 1000 en 13 Gyrs).

    Une région de taille LPlanck =10-33 cm devient de taille 10xx

    cm.

    Quelle aurait pu en être la cause ?

    -  constante cosmologique ? NON

    -  Autre chose INFLATON

    76

    Lachièze-Rey, 2010

  • Motivations pour l’inflation

    •  Diluer les monopoles : mais les théories GUT ne sont plus à la mode -> l’actualité du problème a disparu.

    •  Résoudre les « problèmes » de la platitude et de l’homogénéité.

    -  ces sont de faux problèmes (mal posés)

    -  L’inflation ne les résout pas

    • Une origine aux fluctuations primordiale.

    77

    Lachièze-Rey, 2010

  • Problèmes de l’Inflation

    • Pas de fondements solides :

    -  concept d’énergie du vide

    -  Existence d’un champ scalaire particulier

    = inflaton

    •  Pas de véritable modèle

    • Fine tuning : L’idée exige une série d’hypothèses

    extrêmement ad hoc

    -  quant à la physique des particules

    -  Quant à la cosmologie (homogénéité

    préalable)

    78

    Lachièze-Rey, 2010

  • • Pas de tests :

    -  on trouve à peu près toutes les prédictions

    possibles

    -  La plupart des « prédictions » datent

    d’avant l’idée d’inflation.

    79

    Lachièze-Rey, 2010

  • Mécanisme original

    •  (Zeldovich)

    (Guth, Linde)

    Lors de la brisure

    Il faut une pression négative.

    « Les propriétés d’un champ scalaire rendent facile

    L’existence d’une pression négative » (Alan Guth)

    80

    Lachièze-Rey, 2010

  • Idée originelle: « old inflation »

    •  Starobinski (1979), Guth 1981, champ scalaire dans un minimum local (non global) de potentiel : faux vide (le minimum de l’énergie à ce moment):

    superrefroidissement

    •  Processus quantique car le champ passe du vai au faux vide par effet tunnel.

    •  Impossible de terminer l’inflation

    81

    Lachièze-Rey, 2010

  • Nouvelle inflation

    •  1982 (graceful exit).

    •  Le potentiel du champ (= INFLATON) est

    dessiné comme un plateau:

    •  le champ « roule »

    •  le long du plateau.

    82

    Lachièze-Rey, 2010

  • Inflation « chaotique »

    •  Potentiel plus général

    L’évolution de l’inflaton ressemble à celle d’une bille

    qui serait dans un puis de la même forme:

    Oscillation avec friction (

  • chaotique

    •  Le champ doit avoir le potentiel correct

    •  Le champ doit être au départ dans l’état de

    faux vide

    •  L’univers doit être au départ (suffisamment)

    homogène.

    •  L’évolution de la région de faux vide est

    une inflation.

    84

    Lachièze-Rey, 2010

  • •  Les particules présentes et la métrique sont énormément diluées

    •  À la fin de l’inflation, l’énergie du champ est matérialisée sous forme de particules.

    85

    Lachièze-Rey, 2010

  • Autres inflations

    •  Inflation hybride : deux champs scalaires

    •  Inflation supernaturelle

    86

    Lachièze-Rey, 2010

  • Champ scalaire (quantique)

    •  Le joker de la physique des particules

    Existence ???

    --> équations de Friedmann - Lemaître

    87

    Lachièze-Rey, 2010

  • « slow roll »

    •  Si le potentiel est plat, le champ varie lentement

    88

    Lachièze-Rey, 2010

  • … slow roll

    89

    Lachièze-Rey, 2010

  • Effets de l’inflation

    Elle augmente énormément toute longueur cosmique:

    • Dilution des monopoles

    • Dilution de la courbure de l’espace

    (le rayon de courbure est dilaté)

    ==>L’espace est « presque plat » (à condition qu’il ait eu une courbure correcte au départ)

    • La taille de la région de causalité est dilatée

    (supérieure à la taille de la surface de dernière diffusion, qui se trouve

    ainsi contenue dans une région causale)

    90

    Lachièze-Rey, 2010

  • Fluctuations primordiales

    Plus intéressant

    Fluctuation de densité en fonction de la taille spatiale λ (à l’instant où la fluctuation rentre dans l’horizon)

    Cas le plus simple δ=

    CMB ==> δ==10-5 ==>

    91

    Lachièze-Rey, 2010

  • La prédiction de l’inflation

    •  Prédiction : les fluctuations à différentes échelles ont même amplitude

    (spectre Harrison-Zeldovich 1970!)

    n=1

    (en fait pas de modèle établi -> pas de prédiction solide)

    92

    Lachièze-Rey, 2010

  • Inflation éternelle

    •  En fait, le champ a une probabilité (quantique) non nulle de rester dans le faux vide.

    •  Donc certaines régions continuent à être en inflation, d’autres non.

    •  Chaque région est comme un univers

    •  = autres univers = univers bulles = univers de

    poche.

    •  (en fait, d’autres régions de l’univers, tellement

    grand que inaccessible)--> invérifiable.

    (uniquement dans le futur)

    93

    Lachièze-Rey, 2010

  • •  Auto reproduction d’univers en expansion:

    Création de mini-univers

    Inflation -> univers

    94

    Lachièze-Rey, 2010

  • Peut-on justifier l’inflation ?

    •  1) l’inflation nécessite la validation des concepts d’énergie

    du vide et de champ scalaire (problème de physique)

    •  2) les conditions qui mènent à l’inflation sont très

    « spéciales ». Mais on peut toujours penser que dans un immense univers, il y aura toujours un endroit au moins où elles seront vérifiées.

    Mais pour justifier l’inflation , il faut un scénario de pré-inflation qui mène à l’inflation.

    95

    Lachièze-Rey, 2010

  • Problèmes fondamentaux

    •  Comment décrire l’univers primordial?

    •  Pourquoi constantes et paramètres ont-il leurs valeurs ?

    -  densité et pression,

    -  Nombre de dimensions de l’espace

    -  Constantes : cosmologique Λ, G,c,h

    -  Masses (et autres caractéristiques) des particules élémentaires (et de

    leurs interactions).

    • Y a-t-il une énergie du vide ? Un rayonnement des trous noirs ?

    •••

    96

    Lachièze-Rey, 2010

  • • Peut-on quantifier la gravitation?

    • La supersymétrie est-elle vérifiée ?

    •••

    Pas de réponse sans une nouvelle physique

    (qui permettra de prolonger les modèles de

    big bang)

    97

    Lachièze-Rey, 2010

  • Deux candidats

    •  Théories des [super]cordes et brane

    & M-théorie

    • géométrie quantique =

    (gravité en lacets, réseaux de spins…)

    98

    Lachièze-Rey, 2010

  • Quantifier la gravité ==> quantifier la géométrie

     unification géométrie / gravitation / matière

      espace-temps quantique

     Cut-off dans les intégrales

     (résolution des pbs de la physique quantique)

    99

    Lachièze-Rey, 2010

  • Théorie des cordes

    •  Espace-temps --> Fond (bulk) à N dimensions.

    •  Êtres fondamentaux à une dimension

    = cordes (fermées ou ouvertes).

    • Une corde évolue en décrivant une surface d’univers (2 dimensions) .

    Consistance mathématique ==>

    Il faut d=26 ou d=10.

    100

    Lachièze-Rey, 2010

  • •  Action [de Polyakoff] = surface de la sU.

    •  On peut voir la théorie comme une théorie dans un « espace » à deux dimensions (= la surface d’univers).

    101

    Lachièze-Rey, 2010

  • •  Premier (et principal) indice de succès:

    Les vibrations d’une corde fermée

    correspondent à une particule de masse nulle et de spin 2 : le graviton : on a une quantification linéaire de la gravité

    (très loin d’une quantification complète).

    102

    Lachièze-Rey, 2010

  • Supersymétrie

    •  On rend l’action invariante par supersymétrie, en rajoutant des degrés de liberté fermioniques.

    •  Groupe de symétrieétries (internes):

    103

    Lachièze-Rey, 2010

  • supercordes

    •  5 modèles : I, IIA, IIB, hétérotiques

    • reliés par des dualités

    --> 5 aspects d’une théorie sous jacente inconnue = M-théorie ?

    104

    Lachièze-Rey, 2010

  • branes

    •  Les extrémités des

    cordes ouvertes décrivent

    des hypersurfaces = branes.

    105

    Lachièze-Rey, 2010

  • Intérêt théorique

    •  Les différentes échelles de la physique sont rapprochées, à cause du nombre élevé de dimensions.

    106

    Lachièze-Rey, 2010

  • Modèles de branes

    •  Matière et interactions confinés sur la brane,

    •  Gravitation dans le fond.

    •  Notre monde = une 3- brane qui évolue dans le Fond ?

    •  Big bang = collision de branes ?

    •  On pourrait sentir l’influence des autres

    branes : masse cachée, énergie sombre

    107

    Lachièze-Rey, 2010