Innovave design,construconand! performance!of!hybrid ...

19
[email protected] Innova’ve design, construc’on and performance of hybrid photovoltaicthermal collectors Christophe MENEZO 1,2 , Patrick Dupeyrat 3 , Pierrick Haurant 1,2 1 CETHIL UMR CNRS 5008, INSA Lyon, Université Lyon 1, Villeurbanne 2 Chaire INSA/EDF “Habitats and Energy Innova’ons”, Villeurbanne 3 EDF R&D ENERBAT, Moretsur Loing 1

Transcript of Innovave design,construconand! performance!of!hybrid ...

Page 1: Innovave design,construconand! performance!of!hybrid ...

christophe.menezo@insa-­‐lyon.fr  

 Innova've  design,  construc'on  and  

performance  of  hybrid  photovoltaic-­‐thermal  collectors  

 Christophe  MENEZO1,2,  Patrick  Dupeyrat3,  Pierrick  Haurant1,2    

1CETHIL  UMR  CNRS  5008,  INSA  Lyon,  Université  Lyon  1,  Villeurbanne  2Chaire  INSA/EDF  “Habitats  and  Energy  Innova'ons”,  Villeurbanne    

3  EDF  R&D  ENERBAT,    Moret-­‐sur-­‐  Loing    1  

Page 2: Innovave design,construconand! performance!of!hybrid ...

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Wavelength [nm]

Sp

ec

tra

l Irr

ad

ian

ce

[W

/m²/

nm

]

Reflection

Absorption

PV conversionReflected

CONTEXT  HYBRID  FOR  BUILDING   -­‐  Challenge  -­‐  

High  energy  efficiency  building  –  Building  integrated  solar  component  Ø Local  produc8on  of  energy  Ø Usage  conflict  of  the  roof  (electricity  or  domes8c  hot  water  produc8on)  

PV  Conversion  :  15-­‐20  %    while  80-­‐90  %    of  solar  radia8ons  are  absorbed.  The  remainder  is  dissipated  into  heat.  

Ø   PV  conversion  efficiency  decrease  Ø   Available  solar  energy  is  not  used  

How  to  make  use  of  the  heat  dissipated  by  photovoltaic  modules  ?  

Crystalline Silicon PV cell

AM 1.5 solar spectrum

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 3: Innovave design,construconand! performance!of!hybrid ...

•  PV/T    with  air    •  PV/T  with  water  (covered  or  not)  •  CPV/T  

T.T.  Chow,  G.N.  Tiwari  and  Ch.  Ménézo  Hybrid  Solar  Technology  for  Power  Polygenera5on  and  Energy  Saving  Inter.  Journal  of  Photoenergy,  Vol.  2012  –  Hindawi  Publishing  Corpora8on  

HYBRID  PV-­‐T  FAMILIES  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 4: Innovave design,construconand! performance!of!hybrid ...

CLIPSOL-­‐LOCIE-­‐CETHIL  

2004  

Glass  cover  PV  amorphous  Sheet  and  tube  heat  exchanger    

Hybrid  collector  PV-­‐T  with  cover  2011  

G.  FRAISSE,  C.  MENEZO,  K.  JOHANNES,    Solar  Energy,  Vol.  81,  n°  11,  p.  1426-­‐1438,  2007  

Heat  Echanger  FracTherm®:  Herman,  2005  Fraunhofer  ISE  

EDF-­‐CETHIL-­‐Fraunhofer-­‐  

PhD  Patrick  Dupeyrat,    INSA  Lyon  July  2011  

Dualsun  de  Solaire  2G  

2010  

2008  

Without  cover  Mono-­‐cristalline  

-­‐  Without  cover  -­‐  Poly  cristalline  -­‐  Aluminium  heat  exch.:  ROLLBOND  ®    

CETHIL-­‐CSTB-­‐Photowai  (PhD  Simon  Boddaert)  

P.  DUPEYRAT  et  Al,  Solar  energy,  2011  

DEVELOPPED  WATER  PV-­‐T  COMPONENTS  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 5: Innovave design,construconand! performance!of!hybrid ...

Descrip'on  Ø  Covered  PV-­‐T:    reduc8on  of  the  thermal  losses  and    sufficient  fluid  temperature  for  domes8c  hot  water  applica8on  Ø  Fractal  exchanger  ;  Ø  Water  as  heat  transfer  fluid,  forced  circula8on  ;  Ø  32  Crystalline-­‐Si  cells  -­‐  high  efficiency  ;  

Glass cover Static air layer

Absorber Thermal insulation (rear)

Tube filled with water

PV cells

Solar cell PV module Collector System PN junction Building

Egap (~ 1.12 eV)

Conduction band

Valence band

Photon

Numerical / Experimental

Experimental  development  and  simula'on  inves'ga'on  of  a    PV-­‐T  hybrid  solar  collector  Mul8-­‐scale  and  mul8-­‐competence  approach:  a  full  and  accurate  study  of  the  component  materials  and  manufacturing  processes  

-­‐  Methodology  -­‐  WATER  PV-­‐T  COLLECTOR  DEVELOPMENT  (Project  PVTCol  2008-­‐11)    

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 6: Innovave design,construconand! performance!of!hybrid ...

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

(Tm - Tamb) / G [m².K/W]

Ther

mal

effici

ency

[-]

Performance:    

Related  to  

Unprecedented  performance  Ø   PV  conversion  yield:  >11  %  (+1)    Ø   Thermal  conversion  yield:  >78  %  (+10)  

Thermal  proper'es:    New  lamina'on  process  of  the  PV  cell  and  the  exchanger  →   Thermal  exchanges  improvement  

Op'cal  and  electrical  proper'es:  New  encapsula'on  process  and  new  materials  →   Op8cal  parameters  improvement  

PV efficiency

Reference PV module 11.9 ± 3.5%

Reference PV-T collector 11.1 ± 3.5%

PV-T prototype* 11.8 ± 3.5%

according to IEC 60904  

DEVELOPPED  PV-­‐T  COLLETOR  

Page 7: Innovave design,construconand! performance!of!hybrid ...

Exemple of improvements : Electrical Measurements (E.Q.E)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

300 500 700 900 1100

Wavelength [nm]

E.Q

.E [-

] Solar cell in improved module (A)

� Solar cell

in module (A)

� Low reflection losses due to FEP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

300 500 700 900 1100

Wavelength [nm]

E.Q

.E [-

] Solar cell in improved module (C)

� No absorption in encapsulant

� Low reflection losses due to FEP

Solar cell in module (A)

EVA Silicon

ARC

FEP Encapsulant Silicon

ARC

FEP

*  Dupeyrat,  P.,  Ménézo,  C.,  Wirth,  H.,  Rommel,  M.,  2011.   Improvement  of  PV  module  op8cal  proper8es  for  PV-­‐thermal  hybrid  collector  applica8on.  Solar  Energy  Materials  and  Solar  Cells  95,  2028–2036.  *  Dupeyrat,  P.,  Ménézo,  C.,  Rommel,  M.,  Henning,  H.-­‐M.,  2011.  Efficient  single  glazed  flat  plate  photovoltaic–thermal  hybrid  collector  for  domes8c  hot  water  system.  Solar  Energy  85,  1457–1468.  

Page 8: Innovave design,construconand! performance!of!hybrid ...

PV-­‐T  COLLECTOR  MODELLING -­‐  Model  presenta'on  -­‐  

3D  dynamic  thermal  modelling  –  Heat  balance  for  each  control  volume  

LWSWcondconvp +++=TVρC ΦΦΦΦ∂

tØ   Convec8ve  flux:  

•  With  the  exterior:  

•  Air  layer:  

Ø   Conduc8ve  flux:  

Ø   Short  wavelength  radia8ons  (SW):    

 with  

Ø Long  wavelength  radia8ons  (LW):  

•   With  the  exterior:  

•  Air  layer:    

( )airlayerconvconv TTh −=Φ

( )T∇∇=Φ .cond λ

SWαSW ESτ=Φ

( )PVSW η1GE −=

( ) ( )( )4glass

4groundrs

4glass

4skypcLW TTFTTFSε −+−=Φ σ

( )4glass

4PV

glassPVglassPV

glassPVLW TT

εε-εεεε

S −+

=Φ σ

airairconv Nu/δ kh =

windconv v2.8h +=

Absorbsion  

 Wind  Convec'on  

 Free  Convec'on   PV    

conversion  Conduc'on   Conduc'on  

Diffuse  radia'on  

Thermal  radia'ons  

Thermal  radia'ons  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 9: Innovave design,construconand! performance!of!hybrid ...

-­‐  Model  presenta'on  -­‐  

Fluid  flow  modelling  

wflow,wconv,w

www +=TVCρ ΦΦ∂

tØ   Conduc8ve  convec8on:  

Ø   Heat  transmission  during  the  flow:  

( )wabswwwconv, TTLπkNu −=Φ

( )iw,1-iw,wp,wflow, TTCtmΦ −∂

∂=

Tw,i

water m

Tabs,i

Tabs,i-1 Φflow,w

Tw,i-1 Φconv,w

PV-­‐T  COLLECTOR  MODELLING

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 10: Innovave design,construconand! performance!of!hybrid ...

-­‐  Model  presenta'on  -­‐  

Electrical  modelling  by  a  Current  –  Voltage  model    

* Chan, D.S.H., Phillips, J.R., Phang, J.C.H., 1986. A comparative study of extraction methods for solar cell model parameters. Solid-State Electronics 29, 329–337. * Picault, D., Raison, B., Bacha, S., de la Casa, J., Aguilera, J., 2010. Forecasting photovoltaic array power production subject to mismatch losses. Solar Energy 84, 1301–1309. * De Soto, W., Klein, S.A., Beckman, W.A., 2006. Improvement and validation of a model for photovoltaic array performance. Solar Energy 80, 78–88.  

Ø   Single  diode  model:      with  

 

   Using  W-­‐Lambert  func8on  :  

 

Determining  the  parameters  (    ,  ,                )  at  reference  temperature          from  flash  tests  (Chan  et  al.,  1986)*    

Parameters  at  temperature          from  correla8ons  (De  Soto  et  al.,  2006)*  

Ø I-­‐V  curve  for  a  given  solar  radia8on          at  temperature          (Picault  et  al.,  2010)*  

( ) ( ) ( )( ) sh

s

t

s0PH R

IRV1TVIRVqexp.TITII +

−⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛ +−= ( ) ( )

qkTTnTVt =

( )0PH TI ( )00 TI ( )0Tn 0T

T

TG

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=

refref G

G.T,GITG,I

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

refref G

Glog1T,GVTG,V

PV-­‐T  COLLECTOR  MODELLING

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 11: Innovave design,construconand! performance!of!hybrid ...

3D  Finite  elements  method  •   Two  meshing  modes:  

•   In  plane  -­‐  conduc'on  is  not  taking  into  account  •   Mismatch  effects  of  linked  to  cells  temperatures  differences  tacking  into  account  •   Differen8al  equa8ons  are  solved  by  numerical  method  of  trapezoidal  rule  (ode23t,  matlab®)  

Thermal  model   Electrical  model  

Voronoi  tessella8on  adapted  to  the  heat  exchanger  geometry  

Square  meshing  corresponding  to  PV  cells  

     

PV-­‐T  COLLECTOR  MODELLING -­‐  Implementa'on  methods  -­‐  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 12: Innovave design,construconand! performance!of!hybrid ...

-­‐  Implementa'on  methods  -­‐  

PV  produc'on  and  mismatch  effects  Modelling  principle    I-­‐V  computa8on  for  each  cell.                A  module  composed  of  N  PV  cells  in  series  and  N-­‐1  electric  nodes.  For  two  successive  cells  i  et  i+1,          

else                                    and    

N  equa8ons  for  N  unknowns,  solved  by  Newton-­‐Raphson  itera8ve  method  

PV-­‐T  COLLECTOR  MODELLING

Voltages  mapping  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 13: Innovave design,construconand! performance!of!hybrid ...

Experimental  condi'ons  Ø   Following  EN12975  standards  Ø   Collector  8lt  :  45  °  –  Text  =  29  °C  –  Wind  speed  :  3m/s  –  G  =  956  W/m2  (Ar8ficial  light  –  AM1.5  spectrum)  –  Ar8ficial  sky  –  Mass  flow  :  72  kg/h  

PV-­‐T  COLLECTOR  TESTING  &  NUMERICAL  COMPARISON

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 14: Innovave design,construconand! performance!of!hybrid ...

The  calculated  outlet  temperatures  of  the  fluid  are  very  closed  to  experimental  measured  temperatures  :    

Thermal  performance  Ø   Errors  <  0.2°C  –  Mean  error  =  -­‐0.16  °C  Ø Error  at  transi8ons  <  1  °C        

PV-­‐T  COLLECTOR  MODELLING

( ) ( ) GSTηTP PVPVPV =(Zondag  2002  ;  Cristofari,  2009)*  

Electrical  performance  Ø   Maximal  error  <  2  W  –  2%    (>  3W  –  3.75  %  for  usual  model)  

-­‐  Steady  state  and  controlled  condi'ons  valida'on  -­‐  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 15: Innovave design,construconand! performance!of!hybrid ...

A  high  efficiency  PV-­‐T  module  as  been  developed  end  tested    

Efficiencies  in  controlled  condi'ons  Ø   PV  conversion  yield  :  >11  %  (+1)    Ø   Thermal  conversion  yield:  >78  %  (+10)  

A  PV-­‐T  model  has  been  implemented  In  steady  state  controlled  condi8ons  :    

Thermal  performance  Ø   Errors  <  0.2°C  –  Mean  error  =  -­‐0.16  °C  Ø Error  at  transi8ons  <  1  °C        

Electrical  performance  Ø   Maximal  error  <  2  W  (>  3W  for  usual  model)  

FUTURE  WORK  ON  THE  WATER  PVT

Efficiencies  in  real  condi'ons  Ø   PV  conversion  yield  :  8.5  %      Ø   Thermal  conversion  yield:  36  %    

On  going  work:      OBJECTIF  :  GENERAL  STATEMENT  ON  PVT  COVERED  COLLECTOR  

PV-­‐T  model  valida8on  in  dynamic  mode  Complete  Domes8c  Hot  Water  system  modeling  –  op8mizing  –  inves8ga8ng  other  type  of  couplings    

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 16: Innovave design,construconand! performance!of!hybrid ...

Experimental  installa'on  PV-­‐T  collectors  integrated  to  Domes8c  Hot  Water  produc8on  (BESTLAB  EDF  R&D  tes8ng  facili8es  )  :  Study  of  the  dynamic  regime  under  real  condi8ons.      

Pump  

inverters  

PV-­‐T    collectors  

Tank  

Extra  hea'ng  

Ø   A  pump  drives  the  circula8on  of  glycolic  water  from  the  heat  exchanger  in  the  tank  to  the  PV-­‐T  collectors  Ø   micro-­‐inverters  inject  electricity  produced  by  the  PV-­‐T  modules  into  the  local  grid.  Ø   An  extra  hea'ng    element  in  the  tank  allows  studies  at  set  point  temperatures  

-­‐  Monitoring  in  real  condi'ons  -­‐  PV-­‐T  FOR  DHW  SYSTEM  TESTING  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 17: Innovave design,construconand! performance!of!hybrid ...

First  results  Measurements  between  01/09/2012  and  10/09/2012      

01Sept 03 Sept 05 Sept 07 Sept 09 Sept

500

1000

1500

Pow

er (W

)

Total radiation PV production

1 Sept 3 Sept 5 Sept 7 Sept 9 Sept

25

50

75

100

Tem

pera

ture

(°C

)

Tambient Toutlet Tinlet

Total  PV  energy:  29.5  kWh  for  6  kWh/m²/day  of    total  radia8on  :  mean  electrical  yield  of  8.5  %  

Thermal  energy  :  129  kWh,    36  %  of  the  incoming  solar  energy  

-­‐  Monitoring  in  real  condi'ons  -­‐  PV-­‐T  FOR  DHW  SYSTEM  TESTING  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 18: Innovave design,construconand! performance!of!hybrid ...

Robles-Ocampo et al. 2007

PV Cells

Glass Cover

Water Water

reflector

Incident Radiation

PV cells

Surface réfléchissante incurvée

Heat carrier fluid

Coventry  et  al.,  2005    

Principle : Parabolic Reflectors (concentration : 37x) + Water circulation

High thermal efficiency Low electrical efficiency (non uniform PV

irradiation and high temperature)

Bi-facial collector

Active area x 2 for PV

Reflector for back-side

Concentrators: Fresnel lens, treatment of the glass,…

Ø  Water: good optical properties Ø  High PV efficiency per unit of area

PV/T  collector  +  reflector  or  concentrators  FURTHER  DEVELOPMENTS    :  CPVT  COMPONENTS  

Star5ng  collabora5on  CETHIL/UMI-­‐LN2    (Sherbrooke)  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17  

Page 19: Innovave design,construconand! performance!of!hybrid ...

     

 Thanks  for  your  aren'on  

Innova've  design,  construc'on  and  performance  of  hybrid  photovoltaic-­‐thermal  collectors  

Workshop  on  Poten-al  Technological  Developments    for  Zero  carbon  Buildings  

Hong-­‐Kong        2013  -­‐  October  16-­‐17