Haba et al IJP2014.pdf

download Haba et al IJP2014.pdf

of 5

Transcript of Haba et al IJP2014.pdf

  • 8/20/2019 Haba et al IJP2014.pdf

    1/8

    Pharmaceutical nanotechnology

    Rhamnolipids  as   emulsifying  agents for  essential  oil  formulations:Antimicrobial

     

    effect 

    against 

    Candida 

    albicans 

    and 

    methicillin-resistantStaphylococcus

     

    aureus

    Ester Haba a,  Samira Bouhdid c,  Noelia Torrego-Solana a,   A.M. Marqués a,M. José Espuny a,   M. José García-Celma b,  Angeles Manresa a,*aUnitat de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, SpainbDepartment of Pharmacy and Pharmaceutical Technology, R+D Associated Unit to CSIC, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028

    Barcelona,  SpaincDépartement de Phytologie, Institut National des Plantes Médicinales et Aromatiques, Université Sidi Mohamed Ben Abdellah-Fès, Morocco

    R  

    L  

    O

     Article  history:

    Received   30   June  2014

    Received   in  revised  form  16  September  2014

    Accepted  26  September  2014

    Available  online  28  September  2014

    Keywords:

    Essential  oils

    Rhamnolipids

    Emulsions

    Phase  behaviour

    Methicillin-resistant

    R  

    T

    This work examines the inuence of essential oil composition on emulsicationwith rhamnolipids and

    their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant

    Staphylococcus aureus (MRSA)and Candida albicans. 

    Rhamnolipids, producedby Pseudomonas aeruginosa,

    with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The

    rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca

    alternifolia,Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration

    method. Ternaryphasediagramsweredesigned to evaluateemulsion stability,whichdiffereddepending

    on theessential oil. The in vitro antimicrobial activity of the EOsalone and the emulsionswas evaluated.

    The antimicrobial activity presentedby theessential oilsalone increasedwithemulsication. The surface

    propertiesof rhamnolipidscontributeto thepositivedispersionof EOsand thus increase theiravailability

    and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions

    represent a promising approach to the development of EO delivery systems.ã 2014 Elsevier B.V. All rights reserved.

    1.  Introduction

    Essential  oils  (EOs)  are  complex   mixtures  of   volatile  organic

    molecules  extracted   from  aromatic  plants   by  different  methods.

    They  are  oil-like  in  nature,  frequently  characterized   by  a  strong

    fragrance   (Morais  et  al.,  2008) and  may  contain   up  to  100  compo-

    nents,   mainly  terpenes  and  phenylpropanoids   (Hammer  and

    Carson,  2011).  This   structural  diversity  is  responsible  for  the  wide

    variety   of   biological  activities  exhibited  by  EOs.   Several  authors

    have   reported  that   many  EOs,   especially  those  rich  in  phenols,

    aldehydes   and  alcohols,  are  effective  in  inhibiting   spoilage  and

    pathogenic   microorganisms   (Hammer  and  Carson,  2011).  They

    therefore  represent  a  natural  alternative   to  the  synthetic

    antimicrobials   used  in  the  cosmetic,  food  and  pharmaceutical

    industries  (Lang   and  Buchbauer,   2012).  Their  effectiveness  means

    they   can  be  used  in  small  amounts   (Hammer   and  Carson,  2011).

    One  of   the  most  widely  studied  EO  is  that   derived   from

    Melaleuca  alternifolia, (Myrtaceae),  also  known   as  tea  tree oil  (TTO).

    This   oil  is  extracted   by  steam  distillation  from  the  leaves   and

    terminal  branchlets   of   M.  alternifolia  and  has  been  used

    medicinally  for  many  years.  TTO  has  broad-spectrum  in  vitro

    antimicrobial  activity   that  is  mainly   attributed  to  the  presence  of 

    terpinen-4-ol  and  1,8-cineole,   which   are  both   major  components

    of   the  oil.  TTO  is  widely  used  as  an  antiseptic  agent   in  denture-,

    mouth-   and  hand-wash   products.  It  is  also  added  to  topical

    formulations  for  the  treatment  of   cutaneous  infections  (Carson

    et  al.,  2006;  Charles  et  al.,  2013;  Sharma  et  al.,  2010).

    The  EO  extracted   from  Origanum  compactum  (Lamiaceae),   an

    endemic  species  growing   in  Morocco,  has  been  reported  to  be

    effective  in  vitro  against  a  wide   range  of   bacteria  and  fungi,

    including   pathogenic   strains  (Bouhdid  et  al.,  2009;  Oussalah  et  al.,

    2007).  This   oil  is  mainly  composed  of   carvacrol   and  thymol,  which

    are  phenolic  terpene  isomers  known  for  their  antimicrobial

    activity   (Ahmad  et  al.,  2011).  Cinnamon   (Cinnamomum   zeylanicum

    Blume,  syn  Cinnamomum   verum)   belongs  to  the  Lauraceae  family.

    The  EO  extracted   from  cinnamon   bark   is  widely used  and has  many

    applications  in  perfumery  and  the  food  and  pharmaceutical*  Corresponding  author.   Tel.:  +34  93  4024496;   fax:  +34  93  4024498.

    E-mail  address:  [email protected]  (A.   Manresa).

    http://dx.doi.org/10.1016/j.ijpharm.2014.09.039

    0378-5173/ã  2014  Elsevier  B.V.   All  rights  reserved.

    International   Journal  of   Pharmaceutics  476  (2014)  134–141

    Contents 

    lists 

    available 

    at 

    ScienceDirect

    International 

     Journal 

    of  

    Pharmaceutics

    journa   l  home page  :  www.e  lsevier.com/loca   te / i jpharm

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://www.sciencedirect.com/science/journal/03785173http://www.elsevier.com/locate/ijpharmhttp://www.elsevier.com/locate/ijpharmhttp://www.elsevier.com/locate/ijpharmhttp://www.elsevier.com/locate/ijpharmhttp://www.elsevier.com/locate/ijpharmhttp://www.elsevier.com/locate/ijpharmhttp://www.sciencedirect.com/science/journal/03785173http://dx.doi.org/10.1016/j.ijpharm.2014.09.039http://dx.doi.org/10.1016/j.ijpharm.2014.09.039mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpharm.2014.09.039&domain=pdf

  • 8/20/2019 Haba et al IJP2014.pdf

    2/8

    industries  (Lee  and  Balick, 2005).  This  oil  is  rich  in  cinnamaldehyde

    and  eugenol  and  exerts   several  biological  functions.   Numerous

    studies  have  reported  that   cinnamon   bark   oil  effectively  inhibits

    the  growth  of   bacteria  and  fungi  (Bouhdid  et  al.,  2010;  Unlu  et  al.,

    2010).  Lavender   (Lavandula   angustifolia),  a  member  of   the

    Lamiaceae  family,  produces  an  EO  that  is  rich  in  linalyl

    acetate  and  linalool.  This   oil  has  been  reported  to  exhibit  some

    antimicrobial  activity   against  pathogenic   microorganisms   (de

    Rapper  et  al.,  2013;  Hammer  et  al.,  1999a).

    The  industrial  application  of   antimicrobial  EOs  and  their

    components   is  limited  by  their  hydrophobicity,  avouring

    properties  and  high   volatility  (Hyldgaard   et  al.,  2012);  it  is

    therefore  important  to  determine  an  appropriate   formulation  for

    commercial   applications.  The  pharmaceutical  and  food  industries

    have  developed  several  approaches   to  deliver  sensitive  antimicro-

    bials  (Gudiña  et  al.,  2013). Recent  studies  have  reported  that  some

    delivery   systems  (i.e.   emulsion)  generally  improve   the  activity   of 

    antimicrobials   from  herbs  and  spices  and  help  maintain   their

    stability  (Gaysinsky  et  al., 2008). An  emulsion  consists of  one  liquid

    dispersed  in  another  immiscible  liquid  in  the  form  of   droplets,  and

    is  usually  stabilized  by  surfactants  that   assemble  at  the  interface.

    This   system  may  and  ensure  dispersion  of   oil  in  the  aqueous  phase

    where   microorganisms   are  most   likely  to  accumulate.  To  avoid

    possible  negative   interactions   with  EO  activity,  it  is  important  tochoose   an  appropriate  surfactant  for  the  emulsion,  since  some

    surfactants  have   been  found  to  compromise   the  antimicrobial

    activity   of   TTO  (Hammer  et  al.,  1999b).

    Rhamnolipids  constitute   one  of   the  most  important  classes  of 

    microbial  surfactants  and  have  shown  excellent   emulsifying

    potential   with   a  variety   of   compounds.  They  are  suitable

    candidates   for  industrial  use,  since  their  surface-active  properties

    remain  stable  over  a  broad  pH  range  and  when   heated  (Lovaglio

    et  al.,  2011).  Rhamnolipids   exert  antimicrobial  activity  against both

    fungi   and  bacteria  (Abalos  et  al.,  2001;  Haba  et  al.,  2003a;  Nitsche

    et  al.,  2005).  Their  therapeutic  applications  have  been  the  subject

    of   studies  (Gharaei-Fathabal,   2011;   Rodrigues  et  al.,  2006) and

    some   interesting  articles  have  recently   been  published  (Fracchia

    et  al.,  2012;   Gudiña   et  al.,  2010).To  our  knowledge,   no  information  is  available   on  the  use  of 

    rhamnolipids   as  emulsifying  agents   in  EO  formulations  intended

    for  microbial  inhibition.  The  objectives  of   this   study  were:  (i)  to

    explore   the  emulsication  behaviour   of   rhamnolipids   with   four

    commercial   EOs  (O.  compactum,  M.  alternifolia,  C.  zeylanicum  and  L.

    angustifolia,)  using  ternary  phase  diagrams,  and  (ii)  to  assess  the  in

    vitro  antimicrobial   activity   of   the  emulsions  against  Staphylococcus

    aureus  (MRSA)  and  Candida  albicans.

    2.  Materials  and  methods

     2.1. 

    Microorganisms 

    and 

     growth 

    culture

    Pseudomonas 

    aeruginosa 

    47T2 

    NCIB 

    40,044, 

    isolated 

    from 

    an 

    oil-contaminated   soil  sample,  was  selected  due  to  its  capacity   to

    produce  surface-active   rhamnolipids   from hydrophobic   substrates.

    After being  grown on TSA  (tripticase  soy agar, Pronadisa, Barcelona,

    Spain),  the  bacterial  strain  was  maintained  at  4 C  and  also

    preserved  in  cryobilles  (AES   Chemunex   S.A.,  Terrassa,   Spain)  at

    20 C.

    Experiments  were   carried  out  in  2-l  baf ed  Erlenmeyer   asks

    containing  400 ml of  medium with   the  following  composition  (g/l):

    NaNO3  5,   KH2PO4  2.0,  K2HPO4 1.0,  KCl  0.1,   MgSO47H2O  0.5,  CaCl20.01, FeSO47H2O 0.012  and  yeast  extract  0.01.We  added 0.05  ml of  a

    trace   element  solution  containing   (g/l):   H3BO3  0.26,  CuSO45H2O

    0.5,   MnSO4H2O  0.5,   MoNa2O42H2O  0.06  and  ZnSO47H2O  0.7  to

    this   medium.  Finally,   40 g/l  of   olive/sunower  (50:50   v/v)  waste

    frying 

    oil 

    was 

    used 

    as 

    carbon 

    source, 

    containing 

    oleic 

    acid

    (50.29%)   and  linoleic  acid  (34.23%)   as  the  major   components,   and

    stearic  acid   (7.70%)   and  palmitic  acid  (7.77%)  in  smaller  quantities.

    The  medium  components   were  sterilized  separately  at  120C,

    1 atm  for  20 min.   The  initial  pH  of   the  medium  was  adjusted  to  7.2.

    A  2%  (v/v)  cell  suspension  in  sterile  saline  (0.9%  NaCl)  of   an

    overnight   culture  on  TSA  (Pronadisa, Barcelona,  Spain)  was  used  as

    the  inoculum.  Cultures  were   incubated  at  30 C  for  96 h  on  a

    reciprocal   rotary   shaker  at  150  rpm.

     2.2. 

    Rhamnolipid 

     production 

    and 

    characterization

    Microbial  growth   was  calculated  by  measuring  the  protein

    content   of   the  cultures  in  accordance   with   the  method   described

    by  Lowry  et  al.  (1951). Total  rhamnolipid   (RL)   production   was

    measured  as  rhamnose   by  a  specic colorimetric  method

    (Chandrasekaran  and  Bemiller,   1980). The  RL   content   was

    calculated   by  multiplying  the  rhamnose   concentration   by  a  factor

    of   3.0,   which   represents  the  rhamnolipid/rhamnose   calculated

    using  the  puried  product.

    Rhamnolipids  were   recovered   and  puried.  Cells  were  removed

    from  the  culture  by  centrifugation  (12,000   g ) for  30 min.

    Purication   was  carried  out  by  adsorption  chromatography

    (Torrego-Solana   et  al.,  2014).

    Liquid chromatography-mass  spectrometry  (LC–MS)  was

    performed  in  order  to  analyse  the  composition   of   the  RL mixture,

    and  a  10-mg portion  was  resuspended   in  1 ml  of   methanol  and

    analysed  by  LC–MS. Rhamnolipid  mixtures  were  separated  and

    identied  by  LC–MS  using  a  Waters   2690  separation   module

    (Waters,   Milford, MA,  USA).  Samples  were  injected  (10 ml) into  aC18   Spherisorb  ODS2  150  4.6-mm  column  (Teknokroma,  Sant

    Cugat,  Spain).  The  LC  ow  rate  was  1 ml min1.  An  acetonitrile–

    water   gradient  was used,  starting with  30%  acetonitrile  for  2 min,

    followed  by  a  ramp  of   30–100%  acetonitrile  for 30 min,  before

    being  left to  stand  for 5 min   and  then  returned  to  the  initial

    conditions.  Post-column  addition  of   acetone  at 200 ml/min   wasperformed  using  a  Phoenix 20  syringe  pump  (Carlo  Erba, Rodano,

    Italy),  since  we  observed  a  rise  in  sensitivity  to  rhamnolipids.  The

    LC  ef uent  and  acetone  were  mixed  in   a  tee  valve (Valco)  and  split(1/50)  before  being  introduced  into  the  mass  spectrometer.  MS

    was performed  with  a  single  quadrupole  mass spectrometer,  VG

    Platform  II  (Micromass, Manchester, UK),  equipped  with  a

    pneumatically  assisted  electrospray  (ES)  source.  Negative  ion

    mode  was  used  (N-ES).  Full   scan  data were  obtained  by  scanning

    from  m/z   100  to  750  in  centroid  mode,  using  a  scan   duration   of 

    2.0  s  and  an  inter-scan   time   of   0.2  s.  The  working   conditions   for  N-

    ES  were   as  follows:   dry  nitrogen   was  heated  to  80 C  and

    introduced  into  the  capillary  region  at  a  ow  rate  of   400  l/h.

    The  capillary  was  held  at  a  potential   of   3.5 kV  and  the  extraction

    voltage   was  held   at  80 V.  Rhamnolipid  homologues  were

    quantied  from  the  molecular  proportion   of   each   of   the

    pseudomolecular  ions   calculated   by  LC–MS (Haba  et  al.,  2003b).

    The 

    proportion 

    (%) 

    of  

    each 

    component 

    was 

    calculated 

    from 

    theareas  obtained  for  each  molecule  of   RL   by  LC–MS.

    Equilibrium  surface  tension  (g ST)  and  critical  micelle  concen-

    tration   (CMC)  were  measured  at  25 C  by  the  DuNoüy  ring  method

    with   a  Krüss  K9  tensiometer  (Hamburg,   Germany).   The  instrument

    was  calibrated   against  Milli-Q   ultrapure  distilled  water   (Millipore,

    Billerica,  MA,  USA).   Aqueous   solutions  with   various  concentrations

    of   biosurfactants  (200–5 mg/l)  were  obtained  by  successively

    dilutions  prepared   by  weight  in  Millipore  ultrapure  water  for  CMC

    determination.   To  reach  equilibrium,  all  sample  solutions  were

    aged   in  appropriate  cells  at  room  temperature  (25 C).  The

    platinum  plate  and  all  glassware   used  were  cleaned  in  chromic

    mixture.  CMC  was  calculated  from  surface  tension  plot   values

    versus   log  surfactant  concentration   after  reaching   equilibrium

    at 

    25

    C.

    E.  Haba  et   al.  /   International   Journal  of   Pharmaceutics  476  (2014)  134–141  135

  • 8/20/2019 Haba et al IJP2014.pdf

    3/8

     2.3.  Essential  oils

    The  four  EOs  (supplied  by  Pranarôm,  Ghislenghien,  Belgium)

    used  for  this   study were  oregano   essential oil  (OEO)   extracted   from

    O.  compactum  ower heads  from  Morocco, cinnamon   essential  oil

    (CEO)   extracted   from  the  bark   of   C.   zeylanicum  from  Sri  Lanka,   tea

    tree  oil  (TTO)  extracted   from  the  leaves of   M.  alternifolia  from

    Australia,   and  lavender   essential  oil  (LEO)   extracted   from  ower

    heads  of   L.   angustifolia  from  France.   Oils  were   commercialized  and

    chemotyped   by  Pranarôm  International   (Ghislenghien,  Belgium).

    According   to  the  supplier,   the  major  components   of   the  oils  were:

    carvacrol   (37.77%),   thymol  (19.79%)  and  g-terpinene  (17.01%)  forOEO;  E-cinnamaldehyde   (77.31%)   for  CEO;  terpinen-4-ol  (39.39%)

    and  g-terpinene  (20.76%)  for  TTO;  and  linalool  (30.60%)   and  linalylacetate  (34.09%)   for  LEO).   The GC and  the physical   characteristics  of 

    the  EOs  are  included  (Supplementary  information).  All  EOs  were

    used  as  supplied.

     2.4. 

    Determination 

    of  

    emulsifying  

     properties 

    of  

    rhamnolipids 

    in 

    water/ 

    oil  mixtures

    The  emulsifying  properties  of   puried RL    were   determined

    following  the  titration  method   and  represented  in  ternary  phase

    diagrams   (Sadurní  et  al.,  2005).  Non-equilibrium  phase  diagramswere  performed  at  25 C  by  stepwise  addition  of   water   to  the  RL 

    and  oil  mixture.  Emulsions  were   prepared  by  weighing   the

    components   up  to  1 g  as  follows:   the  required  concentrations   of 

    RL  were weighed  in  glass  tubes, mixed  with   the  required  amount  of 

    the  hydrophobic   component  and  vortexed  until  complete  dissolu-

    tion  of   the  biosurfactant  was  achieved.  The  appropriate  amount   of 

    deionized  water  was  then  added  slowly   and  the  tube  was  tightly

    stoppered  and  mixed  vigorously   for  1 min.   The  shaking  time  and

    vortex  speed  were  kept  constant.   Finally,  the  mixtures were  kept  in

    a  thermostatic  bath   at  a  constant   temperature  of   25 C  for  24 h.  The

    emulsion  boundaries  were  determined  by  visual  inspection.  The

    samples were  examined  to determine  if  a  clear  single phase  formed

    immediately  or  phase  separation  occurred,  or  an  opaque   mixture

    appeared,  which   would  indicate   the  coexistence   of   two  or  morephases.  The  optical  anisotropic  aspect  was  detected  with   crossed

    polarizers.

    The  physical   aspect  of   the  mixtures  was  plotted   on  a  ternary

    phase  diagram  with   three   vertexes   representing  water,  RL   and  oil

    (W/RL/EO).   The  emulsion  region  was  represented.  The  selected

    hydrophobic   components   assayed   in  this   study  were  the  four  EOs

    in  the  range  of   0.5–90%.   The  maximum  amount   of   biosurfactant

    was  20%  (from  0.1%  to  20%).   The  dots   of   emulsions  on  the  phase

    diagram  were  coded  and  the  percentage   of   each   component   given

    (%W/%RL/%EO);   the  starting  points   were:   (75-20-5);   (66-20-14);

    (50-20-30);   (34-20-46);   (0-20-80);   (0-10-90).  The  results  obtained

    with   the  different  oils  studied  were  compared  and  the  emulsions

    were  also  characterized   by  optical   microscopy   (Leica  DM  IL   LED,

    Leica 

    Microsystems 

    Barcelona, 

    Spain). 

    Images 

    were 

    acquired 

    with 

    aLeica  EC3  digital  camera   and  the  software   Image.

     2.5.  Minimum  inhibitory  concentration  (MIC)  of   essential  oils  and

    rhamnolipids

    First  the  antimicrobial  activity,  based  on  MICs,  of   the  EOs  and

    rhamnolipids   was  determined;  for  C.  albicans  it  was  ATCC  10231

    and  for  methicillin-resistant  S.  aureus   (MRSA)  it  was  ATCC

    43300.

    MICs  were   determined  using  the  broth   microdilution  assay

    (Bouhdid  et  al.,  2009): rst,  50 ml  of   Mueller  Hinton  Broth  (MHB,Oxoid,  Basingstoke,  UK)  or  Sabouraud-dextrose  broth  (SDB,  Oxoid,

    Basingstoke, UK)  supplemented with  bacteriological  agar  (0.15% w/

    v) 

    was 

    distributed 

    from 

    the 

    second 

    to 

    the 

    12th 

    well 

    of  

    96-well

    polypropylene   microtitre   plate  (Costar,  Corning  Incorporated,

    Corning,   NY,  USA).   A  dilution  of   the  EO  was  prepared  to  a  nal

    concentration   of   4%  in  the  corresponding   medium.  Then, 100 ml  of these  suspensions  were  added  to  the  rst  test  well   of   each

    microtitre   line,  and  then  50 ml  of   scalar  dilution  was  transferredfrom  the  second  to  the  11th   well.  The  12th  well  was  considered  as

    the  growth  control,  because no EO was  added. We  then  added 50 mlof   a  microbial  suspension  to  each  well   at  a  nal  concentration  of 

    approximately   105–106CFU/ml.  The  nal  concentration   of   EO  was

    between  2%  and  0.0019%  (v/v).   Plates  were   incubated   at  37 C  for

    18 h.  After  incubation,  5 ml  of   resazurin  (0.01%  w/v)   was  added  toeach   well  to  assess  active   microbial  growth.  After  further

    incubation   at  37 C  for  2 h,  the  MIC  was  determined  as  the  lowest

    EO  concentration  that   prevented   a  change   in  resazurin  colour.

    Active  microbial  growth  was  detected   by  reduction  of   blue  dye

    resazurin  to pink  resorun. A  control was  carried out  to ensure  that

    the  EO  did  not  cause  a  colour  change   in  the  resazurin  at  the

    concentrations   tested.  Experiments  were  performed  in  triplicate

    and  modal  values  were  selected.  The  same  method  was  followed

    for  the  RL,  although   nal  concentrations   of   rhamnolipids   ranged

    from  256 mg/ml  to  0.0244 mg/ml.  Vancomycin  hydrochloride(Sigma–Aldrich,   Saint  Louis,  USA))   and  amphotericin   B  (Sigma–

    Aldrich,   Germany)   were   used  as  the  control.

     2.6.   Antimicrobial  activity  of   the  emulsions  by  agar-well  diffusion

    assay

    The  antimicrobial  activity of   the  selected   emulsions   and

    individual  components  was  assessed   by agar-well  diffusion.   After

    solidication  of  a basal   layer (20 ml) of   sterile  Mueller-Hinton agar or

    Sabouraud   dextrose  agar  (Oxoid,  Basingstoke,   UK)  in  Petri   dishes,

    sterile  8-mm diametercylinders were deposited  on top. Then,6 ml of 

    LB  medium  (Oxoid,  Basingstoke,   UK)  containing  0.8%  agar  was

    inoculated  with  a  fresh  culture  of   the  microbial   strain   (nal

    concentration  106 CFU/ml)   and  poured  over  the  surface   of   the

    medium.  After   solidication,  the  cylinders  were pulled  out  and  the

    wells  were lled   with  50 ml  of   the  chosen   emulsions.   After

    incubation   at  37 C  for  24h,   all  plates  wereexamined  for  any regionof   growth  inhibition,   and  the  diameter   (mm)  of   these   regions  was

    measured  (Bouhdid   et  al.,  2008)  All  tests   were performed  in

    triplicate.  The emulsions  wereprepared  as described  previously  and

    placed  into  the  wells immediately  after   preparation.  In  addition,  RL 

    and  EOs  were  tested  individually. The  volumes  applied  to the  wells

    were  equivalent  to the  concentration  in  the  emulsions   tested.

    3. 

    Results 

    and 

    discussion

     3.1.   Rhamnolipid  characterization

    In  order  to  reduce   the  cost   of   rhamnolipid  production,  prolong

    the  life  of   the  materials  and  therefore  minimize   the  environmental

    impact, 

    edible 

    oil 

    waste 

    was 

    used 

    for 

    microbial 

    conversion 

    toproduce  biosurfactants  (Abalos   et  al.,  2004;  Benincasa  et  al.,  2004;

    Haba  et  al.,  2000;   Mercadé  et  al.,  1993).

    After  RL   purication,  a  sticky,  semi-solid,  brown-coloured   oil

    product  with  98%  purity  was  obtained.  The  composition  of   the

    surfactant  produced   by  P.  aeruginosa  47T2  was  determined  by  LC–

    MS–ES  to  be  a  mixture  of   eight  homologues  (RL8).   As  shown  in

    Table  1  most  of   the  accumulated  rhamnolipid  (60.4%)   were   mono-

    rhamnolipids: R 1-C8-C10; R 1-C10-C10;  R 1-C10-C12; R 1-C10-C12:1Being

    the major   component  R 1-C10-C10 (39.14%).   The 39.6%  of   the mixture

    were  di-rhamnolipids:   R 2-C8-C10;   R 2-C10-C10;   R 2-C10-C12;  R 2-C10-

    C12:1; being  the  main  componentnt   R 2-C10-C10 (19.18%).  Accumu-

    lation  started  soon  after  incubation   and  lasted  until  the  end  of   the

    process  (96 h),  whereas  the  minor  homologues  accumulated  after

    growth 

    ceased.

    136  E.  Haba  et   al.  /   International   Journal  of   Pharmaceutics  476  (2014)  134–141

  • 8/20/2019 Haba et al IJP2014.pdf

    4/8

    Rhamnolipids  accumulated  in  the  culture  medium  as  a  mixture

    of   different  homologues  whose  nal  composition  appeared  to

    depend  on  the  bacterial  strain  and  substrate  composition.

    Although   rhamnolipid  properties  are  known   to  depend  on  the

    distribution  of   their  homologues,  little  is  known   about  the

    contribution   of   each  individual   homologue  to  the  surface

    properties  of   rhamnolipid  mixtures.  The  new  surfactant  (RL8)

    reduced  the  surface  tension  to  32.21 mN/m  and  the  critical  micelle

    concentration   (CMC)  observed  was  105 mg/l.  The  CMC  value   for

    RL8  appeared  to  be  slightly  lower  than   that  observed  with   a

    rhamnolipid 

    mixture 

    of  

    11 

    homologues 

    (108 

    mg/l) 

    produced 

    by 

    thesame   strain  (Haba  et  al.,  2003a).  This   could  be  due  to  the  smaller

    amount   of   unsaturated  components   of   the  surfactant  produced   in

    the  present  study  (9.88%)   compared  to  the  13.87%  reported

    previously  (Haba  et  al.,  2003a).  The  effect  of   the  presence   of 

    unsaturated  compounds was  also  observed  in  the  case of   strain  LBI,

    which   contained  up  to  31%  unsaturated   carbon   with   a  CMC  of 

    120 mg/l  (Benincasa  et  al.,  2004), and  also  for  the  AT10  strain,

    which   contained   up  to  43.2%  unsaturated  compounds   with   a  CMC

    of   150 mg/l  (Abalos  et  al.,  2001). However,  despite  differences  in

    the  composition of   individual  homologues  and CMC  values,  surface

    tension  values   (27–32 mN/m)  and  HLB  values   (7–10)  were  in  the

    same   range  of   hydrophobicity,   and  therefore  the  same  range  of 

    emulsication behaviour   (Attwood   and  Florence,1983);  in  the  case

    of   RL8,  an  HLB  of   8.13  was  calculated,  which   favours   O/W

    microemulsions.

     3.2. 

    Emulsifying  

     properties 

    of  

    RL47T2 

    in 

    water/oil 

    mixtures

    Biosurfactants  have  been  shown   to  have  valuable   biological

    properties  and  several  pharmaceutical   (Gharaei-Fathabal,   2011)

    and biomedical  applications   (Rodrigues  et  al.,  2006;  Stipcevic  et  al.,

    2006).  They  have  been  reported  to  have  antimicrobial,  anti-

    adhesive   and  other   biological  applications  (Cameotra   and  Makkar,

    2004;  Das  et  al.,  2009;  Fracchia   et  al.,  2012;   Gharaei-Fathabal,

    2011;   Gudiña  et  al.,  2010;  Haba  et  al.,  2003b;  Kitamoto   et  al., 1993).

    The  trend  for  using  natural  emulsifying  agents   in  pharmaceutical

    formulations  favours   the  use  of   biosurfactants  as  an  alternative   to

    their  chemical   counterparts, and  these  show promise  for  the  future

    (Gudiña  et  al.,  2013). By  exploiting  the  excellent   emulsicationbehaviour   of   rhamnolipids   in  an  attempt   to  broaden  their  range  of 

    applications   in  therapeutic  EO  formulations,  ternary  systems   were

    plotted   to  study  the  emulsifying  capacity   of   RL8  and  one  of   the  EOs

    of   O.  compactum   (OEO),  C.   zeylanicum  (CEO),   M.  alternifolia  (TTO)

    and  L.  angustifolia  (LEO)   and  water  (Fig.  1a–d).  The  ternary  phase

    diagrams   provide   in-depth  knowledge   about  what  a  system  may

    offer  in  terms  of   the  phase  behaviour,  depending  on  the  relative

    proportions  of   its  components.

    Despite  the  fact  that  the  phase  behaviour   of   water/surfactant/

    oil  systems  at  constant   temperatures   has  been  studied  extensively

    for  pharmaceutical   and  cosmetic  formulations  (Attwood  and

    Florence,  1983), and  for  agricultural  and  food  applications,  the

    literature   provides   little  information  on  phase  diagrams   with

    biosurfactants  (Abalos  et  al.,  2004;  Kitamoto   et  al.,  2009;  Marqués

    et  al.,  2009;  Torrego-Solana   et  al.,  2014).

    OEO,  TTO  and  LEO  have  a  lower   density  than   water;  they  are

    immiscible  in  water  and  phase  separation  was  apparent.  Although

    TTO  is  slightly  soluble  in water,   some   turbidity  was  observed  in  the

    composition  studied  due  to  the  low  solubility  (Morais  et  al.,  2008).

    In  terms  of   the  miscibility  of   RL8  with   the  EOs,   RL8  was  found  to  be

    soluble  in  CEO  and  TTO.  While  rhamnolipids   are  soluble  in  water,

    the  lipophilic  nature  of   EOs  promotes   phase  separation.  Since  the

    role  of   biosurfactants  as  emulsifying  agents  is  to  ensure  the

    dispersion 

    of  

    EOs 

    in 

    water, 

    and 

    low 

    concentrations 

    are 

    needed, 

    nomore   than   20%  of   RL8  was  added.   Destabilization  of   emulsions

    observed  after  few  minutes  of   preparation  in  emulsions  with  TTO

    and  OEO  could  be  attributed  to  Ostwald  ripening.  In  oil-in-water

    emulsions,  the  kinetics  of   Ostwald   ripening  depends  on  the

    diffusion  of   the  oil  molecules  across  the  aqueous  phase  separating

    droplets   (Suriyarak  and  Weiss,   2014). This  destabilization  process

    is  of   particular  importance   for  emulsions  containing   lipids  with

    appreciable  water  solubility  (e.g.  avours   and  essential  oils).

    Emulsions  of   essential  oils,  which   consist  of   various   terpenes,  can

    show  distinct  Ostwald  ripening  kinetics.

    Oregano   oil  is  dark   brown   in  colour  and,  together   with  RL8,

    produces   the  brownish   colouration  observed  in  some  emulsions.

    Examination  of   the  ternary   phase  diagrams  showed  that,  in  the

    OEO  system  (W/RL/OEO),  two  main  areas  with   two  different

    behaviours   were  distinguished  (Fig.   1a).  In  zone   A,  the  emulsions

    contained   up  to  40%  OEO,  1–20%  RL   and  50–95%  water.  Visual

    inspection  revealed   thick,   cream-coloured  emulsions,  most  of 

    which   presented  creaming   phenomena.With  a  low  water  concen-

    tration   and  5–20%  RL8,  a  different  area  (zone  B),  composed  of   more

    than   50%  emulsion  and  water   separation  at  the  bottom,   was

    observed;  these  emulsions  were   thick  and  dark   brown   in  colour.

    The  emulsions  were   consistent  in  both   areas  and  when   observed

    under optical microscopy  multiple  emulsions were  visible  (Fig. 2a).

    This   phenomenon   has  been  described  previously  in  emulsions  of 

    rhamnolipids   from  strain  AT10  and  Casablanca  crude  oil,  which   is

    also  a  complex   substrate with more  than   26%  aromatic   compounds

    (Abalos  et  al.,  2004).

    TTO  formulations  of   a  monoolein/water   system   as  a  carrier  for

    terpinen-4-ol  (Caboi  et  al.,  2002)   and  more  recently,  thedevelopment  of   hydrogel-thickened   nanoemulsions  with   vitamin

    A  palmitate  (Oliveira   et  al.,  2011)  have  been  reported,  no  other

    information  on  the  behaviour   of   TTO  in  biologically  active

    formulations  was  found.  In  the  TTO  system   (W/RL/TTO),   zone   A

    was  smaller  than   in  the  OEO  system  (Fig.  1b).  This   zone   extended

    from  55%  water  to  the  water  vertex,   with   up  to  30%  of   the  oil  being

    solubilized.  In  contrast   to  the  OEO  system,  the  maximum  amount

    of   surfactant  used  was  9%.  The  excess   of   watermade  the  emulsions

    appear  light  and  milky.  Above   this   area, when   TTO  was  in  the  range

    2–5%  and  RL   was  over  9%,  gels   rather   than   emulsions  were

    observed.  Birefringence  was  observed  under  polarized  light  for

    some  compositions  with   a  water  concentration   ranging   from  73%

    to  93%  and  5%  TTO,  that   could  be  attributed  to  the  formation  of 

     Table  1

    Rhamnolipid  homologues  RL8  produced  by  P.  aeruginosa  47T2.  Relative  abundances  (%)  were  calculated  from  the  pseudomolecular  ion  peak  areas.

    Rhamnolipid

    homologues

    Pseudo-molecular  ion  (m/ z )  Relative  abundance  (%)  Fragments  (m/ z )

    R-C10-C10   503  39,14   333,169,  119, 103

    R 2-C10-C10   649   19,68   479,   169,163

    R 2-C10-C12/R 2-C12-C10   677  10,73  507,   479,  197,  169,  163

    R-C10-C12/R-C12-C10   531  8,41  361,  333,169,  163,  119, 103

    R-C10-C12:1/R-C12:1-C10   529  9,88  333,  197,   169,  163,  119, 103

    R 2-C

    10-C

    12:1  675  6,25  479,  195,  169,  103

    R 2-C8-C10   621  2,91   451,  169,  141

    R-C10-C8/R-C8-C10   475  3,01   305,  169,  163,  141, 119,103

    E.  Haba  et   al.  /   International   Journal  of   Pharmaceutics  476  (2014)  134–141  137

  • 8/20/2019 Haba et al IJP2014.pdf

    5/8

    anisotropic  structures,  such  as  lamellar  or  hexagonal   liquid

    crystals.  These  results  differ  from  those  reported  to  obtain  stable

    emulsions 

    with 

    TTO/TS 

    weight 

    ratios 

    (%) 

    15/10, 

    10/5, 

    15/5 

    and 

    20/10, points  outside  the best-area boundaries  found  in  this work.  This

    might  be  due  to  the  surfactant  used,  a  mixture  of   nonionic

    surfactants  (ethers),  whereas  rhamnolipids   belong   to  the  carbox-

    ylic  esters  in  the  anionic  group   (Morais  et  al.,  2008).

    In  the  case   of   the  CEO  system   (W/RL/CEO),  the  emulsions  were

    not  formed  in  the  same  way  as  the  OEO  or  TTO  systems.  As  shown

    in  Fig.  1c,  despite  the  fact  that   RL8  was  soluble  in  CEO,   phase

    separation  was  apparent   in  all  compositions  studied.  Even  at  high

    water  concentrations   a  dark  phase  appeared  at  the  bottom  in

    equilibrium  with   a  uid  emulsion.  This   behaviour   could  be

    explained  by  the  high   percentage   of   E-cinnamaldehyde   (77.31%),

    which   is  barely   soluble  in  water,   as  well  as  the  low  proportion  of 

    oxygenated  monoterpenes   such  as  1,8-cineole   (0.16%),  linalool

    (2.8%)   and  a-terpineol  (0.27%)   in  the  oil  (Edris  and  Malone,  2011).

    Observation 

    of  

    the 

    bottom 

    phase 

    under 

    optical 

    microscopy 

    showeda  compact   and  homogeneous   emulsion  (Fig.  2b).  In  the  LEO  system

    (W/RL/LEO),  the  best  emulsions  were   observed  when   the  EO

    ranged between 0.7%  and 1.6%  and RL   between 3%  and 7.5%,  and  the

    weight   ratio   for  water  was  over  91%  (Fig.  1d,  zone   A).  Milky

    emulsions  with   a  thin   creamy  lm  formed  in  the  aqueous  region.  A

    multiphase  area  (zone B) near  the oil  vertex  formed  from  the EO/RL 

    axis  to  near  50%  water.

    EOs  are  multi-component  systems,  and  therefore  their  solubi-

    lization  and  consequent   emulsication  result  from  the  interaction

    of   all  minor  and  major  constituents,  with  each  other  and  with   the

    surfactant  at  the  interface  layer   (Edris  and  Malone,  2011).

    Comparing  the  four  systems  studied,  OEO  produced  the  thickest

    Fig.   1.  The  pseudo-phase  diagrams  show   the  emulsion  areas  for  the  OEO  (a),  TTO  (b),  CEO  (c)  and  LEO  (d)  systems.   White  dots  indicate  monophasic  compositions.  The

    intersection  (black  dots)  between  the  dotted  lines  show  the  emulsion  used  to  study  the  antimicrobial  activity  of   the  emulsions.

    Fig.   2.  Emulsions  observed  under  optical  microscopy.   Emulsion  A,   formed  from  OEO,  is  an   exemple   of   multiple  emulsion  W/OE/W.   Emulsion  B,  would  be  an   example  of 

    emulsion 

    formed 

    from 

    CEO, 

    TTO 

    or 

    LEO.

    138  E.  Haba  et   al.  /   International   Journal  of   Pharmaceutics  476  (2014)  134–141

  • 8/20/2019 Haba et al IJP2014.pdf

    6/8

    emulsions,  while  TTO  and  LEO  produced  light,   milky  emulsions

    with   less  than   9%  RL.  For  the  OEO,  TTO  and  LEO  systems,  the  best

    emulsions  were   formed  when   water  was  over  50%  and  EO  content

    was  below  40%.

     3.3. 

     Antimicrobial 

    effect 

     3.3.1.   Minimum  inhibitory  concentration  (MIC)

    The  EOs  used  were  rst  examined   for  their  antimicrobial   effect.

    Specically,  their  minimum  inhibitory  concentrations   (MIC)  were

    determined  against  two  pathogens:  C.  albicans  and  methicillin-

    resistant  S.  aureus  (MRSA).  The  MICs  were   assayed   in  liquid

    medium  and  a  small  amount   (0.15%)  of   agar   was  added  to  prevent

    phase  separation  (Mann  and  Markham, 1998).As  shown   in  Table  2,CEO  and  OEO  showed   the  highest  antimicrobial   activity  against

    MRSA,  with   an  MIC  value   of   0.125%  (v/v),   whereas  the  activity

    against  C.  albicans  revealed  MIC  values   of   0.0156%  and  0.008%  (v/v)

    for  CEO  and  OEO,  respectively.   Regarding   the  other   oils,  TTO  and

    LEO  inhibited  C .  albicans  at  an  MIC  value   of   0.5%  (v/v)   and  MRSA  at

    2%  (v/v).   These  results  are  consistent  with   those  obtained  over

    44  resistant  clinical   isolates  and  against  signicant  pathogenic

    bacterial  and  fungal   isolates  from  the  oral   cavity  and  skin  (Warnke

    et  al.,  2009;  Warnke  et  al.,  2013).  The  MICs  of   RL8  were   higher   than

    256 mg ml1 against  both   of   the  microorganisms   tested.  Vancomy-cin hydrochloride   inhibited MRSA  at  an MIC  value  of   0.125 mg ml1,while   C.  albicans  was  inhibited by amphotericin   B  at  0.065 mg ml1.

     3.3.2.   Antimicrobial  effect   of   the  emulsionsIn  order  to  prevent   disaggregation,  the  antimicrobial  activity   of 

    EO  emulsions  was  studied  by  means   of   the  diffusion  test,  rather

    than   the  dilution  method.  To  our  knowledge,   this   is  the  rst  time

    that  rhamnolipids,  low-molecular-weight   biosurfactants,  have

    been  used  as  an  emulsifying  agent  in  an  EO  formulation.

    The  emulsions  tested  all  had  a  high   EO  content   that   was  within

    the  therapeutic  range.   The  following  emulsions  were  selected

    (%  W/RL8/EO):   OEO,  72.2/11.1/16.7;  TTO,  71.8/2.8/25.3;  CEO,   80.9/

    1.9/17.1; and  LEO,  78.7/8.5/12.8   (Fig.  1a–d). Single  components,

    RL8  and  EOs,   were  also  tested  as  controls   due  to  their  inhibitory

    effects  at  the  concentrations   used  in  the  chosen   emulsions

    (Table  3).  As  shown,   RL8  showed  some  inhibition  (9.0 mm)  at

    2.8%  and  8.5%  (w/v)  (Table  3)  for  both  strains.  This   effect  reached

    10.0 

    mm 

    when 

    the 

    concentration 

    was 

    increased 

    to 

    11.1% (w/v).The  inhibition  zone   measured  for  EOs  at  the  concentration used

    in  the  emulsion  ranged   from  21.3 mm  to  37.3 mm  for  C.  albicans

    and  from  11.0 mm  to  24.6 mm  for  MRSA.  No  inhibition  effect  was

    found  with   LEO.   OEO  was  the  most  effective  against  C.  albicans

    (OEO > CEO > TTO),  while   the  order  of   effectiveness  against  MRSA

    was  CEO > OEO > TTO  (Table  3).  In  terms  of   emulsion  systems,  the

    CEO  emulsion was  the most  effective  against both  microorganisms,

    with   an  inhibition  zone   of   42.8 mm  and  24.2  mm  for  C.  albicans  and

    MRSA,  respectively,   followed   by  the  OEO  and  TTO  emulsions.  The

    least  effective   emulsion  was  LEO  (10.0  mm),   i.e.   CEOe  > OEOe  >

    TTOe >  LEOe.

    According   to  Rota  et  al.  (2008), the  antimicrobial  activity   of   EOs

    can be  classied  into   three  levels, depending on  the  inhibition   zone

    diameter:   weak  activity   (inhibition  zone   12 mm),  moderate

    activity   (12 mm <   inhibition  zone  

  • 8/20/2019 Haba et al IJP2014.pdf

    7/8

    http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0195http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0195http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0190http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0190http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0185http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0185http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0185http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0180http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0180http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0175http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0175http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0175http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0170http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0170http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0170http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0165http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0165http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0165http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0160http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0160http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0160http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0155http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0155http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0155http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0150http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0150http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0145http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0145http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0145http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0140http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0140http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0140http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0140http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0135http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0135http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0135http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0135http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0130http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0130http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0130http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0125http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0125http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0125http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0120http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0120http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0115http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0115http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0110http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0110http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0110http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0105http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0105http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0105http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0105http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0100http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0100http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0100http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0095http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0095http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0095http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0090http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0090http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0090http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0085http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0085http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0085http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0085http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0080http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0080http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0075http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0075http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0075http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0070http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0070http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0070http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0065http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0065http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0065http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0060http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0060http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0060http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0060http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0055http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0055http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0055http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0050http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0050http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0045http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0045http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0045http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0040http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0040http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0040http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0035http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0035http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0035http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0035http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0030http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0030http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0030http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0030http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0025http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0025http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0025http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0020http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0020http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0015http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0015http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0015http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0010http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0010http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0010http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0010http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0005http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0005http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0005http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0005

  • 8/20/2019 Haba et al IJP2014.pdf

    8/8

    Marqués,   A.M.,  Pinazo,  A.,  Farfan,  M., Aranda,  F.J.,  Teruel,   J.A.,  Ortiz,  A.,   Manresa,  A.,Espuny,  M.J.,  2009.  The  physicochemical  properties  and  chemical  compositionof   trehalose  lipids  produced  by  Rhodococcus  erythropolis  51T7.   Chem.  Phys.Lipids   158,   110–117.

    Mercadé,  M.E.,  Manresa,  A.,  Robert,  M.,  Espuny,  M.J.,  de   Andrés,  C.,  Guinea,  J.,  1993.Olive  oil  mill  ef uent  (OOME):  new  substrate  for  biosurfactant  production.Bioresour.   Technol.   43,  1–6.

    Morais,  G.G.,  Santos,  O.D.H.,  Oliveira,  W.P.,  Filho,  P.A.R.,   2008.   Attainment  of   O/Wemulsions

     

    containing 

    liquid 

    crystal 

    from 

    annatto 

    oil 

    (Bixa  orellana),  coffee  oiland  tea  tree  oil  (Melaleuca  alternifolia) as  oily  phase  using  HLB  system  andternary  phase  diagram.   J.  Disper.  Sci.  Technol.   29,  297–306.

    Nitsche, 

    M., 

    Siddhartha, 

    G.A.O., 

    Contiero, 

     J., 

    2005. 

    Ramnolipid 

    surfactants: 

    anupdate   on  the  general   aspects  of   these  remarcable  biomolecules.  Biotechnol.Prog.

     

    21, 

    1593–1600.Oliveira,   J.S.,  Aguiar,  T.A.,   Mezadri,  H.,  dos  Santos,  O.D.H.,  2011.   Attainment  of 

    hydrogel-thickened  nanoemulsions  with   tea  tree  oil  (Melaleuca  alternifolia) andretinyl   palmitate.  Afr.   J.  Biotechnol.  10,  13014–13018.

    Oussalah,  M., Caillet,  S.,  Saucier,   L.,  Lacroix,  M., 2007.  Inhibitory  effects  of   selectedplant

     

    essential 

    oils 

    on 

    the 

    growth 

    of  

    four 

    pathogenic 

    bacteria:  E.  coli  O157:H7

    Salmonella  Typhimurium,  Staphylococcus  aureus  and  Listeria  monocytogenes.Food  Control  18,  414–420.

    Rodrigues,  L.,  Banat,  I.M.,  Teixeira,    J.,  Oliveira,  R.,  2006.  Biosurfactants:  potentialapplications  in   medicine.   J.  Antimicrob.  Chemother.   57,  609–618.

    Rota,  M.C.,  Herrera,   A.,  Martínez,  R.M.,  Sotomayor,   J.A.,   Jordán,  M.J.,  2008.Antimicrobial

     

    activity 

    and 

    chemical 

    composition 

    of   Thymus  vulgaris, Thymus

     zygis  and  Thymus  hyemalis   essential  oils.  Food   Control  19,  681–687.Sadurní,  N.,  Solans,  C.,  Azemar,   N.,  García-Celma,  M.J.,  2005.  Studies  on  the

    formation  of   O/W  nano-emulsions,  by  low-energy  emulsication  methods,suitable  for  pharmaceutical  applications.  Eur.   J.  Pharm.  Sci.  26,  438–445.

    Sharma, 

    N.C., 

    Araujo, 

    M.W., 

    Wu, 

    M.M., 

    Qaqish, 

     J., 

    Charles, 

    C.H., 

    2010. 

    Superiority 

    of 

    an   essential  oil  mouthrinse  when  compared  with   a  0.05%   cetylpyridiniumchloride  containing  mouthrinse:  a  six-month  study.   Int.  Dent.   J.  60,  175–180.

    Sikkema,   J.,  de   Bont,   J.,  Poolman,  B.,  1994.   Interactions  of   cyclic  hydrocarbons  withbiological  membranes.   J.  Biol.  Chem.  269,  8022–8028.

    Stipcevic,  T.,  Piljac,  A.,   Piljac,  G.,  2006.  Enhanced  healing  of   full-thickness  burnwounds  using  di-rhamnolipid.  Burns  32,  24–34.

    Sugumar,   S.,  Ghosh,   V.,  Nirmala,  M.J.,  Mukherjee,  A.,   Chandrasekaran,  N.,  2014.Ultrasonic  emulsication  of   eucalyptus  oil  nanoemulsion:  antibacterial  activityagainst  Staphylococcus  aureus  and  wound  healing  activity  in  Wistar  rats.Ultrason.  Sonochem.  21, 1044–1049.

    Suriyarak,  S.,  Weiss,   J.,  2014.  Cutoff   Ostwald  ripening  stability  of   alkane-in-wateremulsion  loaded  with  eugenol. Colloids  Surf.  A:  Physicochem.  Eng. Aspects  446,71–79.

    Terjung,   N.,  Lof er,M.,   Gibis,  M., Hinrichs,  J.,  Weiss,  J.,  2012.  Inuence  of  droplet  sizeon  the  ef cacy  of   oil-in-water  emulsions  loaded  with   phenolic  antimicrobials.

    Food 

    Funct. 

    3, 

    290–301.

    Torrego-Solana,   N.,  García-Celma,  M.J.,  Garreta,  A.,  Marqués,   A.M.,  Diaz,  P.,  Manresa,A.,

     

    2014. 

    Rhamnolipids 

    obtained 

    from 

    PHA-negative 

    mutant 

    of   Pseudomonas

    aeruginosa  47T2DAD:  composition  and  emulsifying  behavior.    J.  Am. Oil  Chem.Soc.  91,  503–511.

    Unlu,  M.,  Ergene,  E.,  Unlu,  G.V.,  Zeytinoglu,  H.S.,  Vural,  N.,  2010.  Composition:antimicrobial  activity  and  in   vitro  cytotoxicity  of   essential  oil  from  Cinnamo-mum   zeylanicum  Blume  (Lauraceae).  Food   Chem.  Toxicol.   48,   3274–3280.

    Warnke,   P.H.,  Becker,   S.T.,  Podschun,  R.,  Sivananthan,  S.,  Springer,   I.N.,  Russo,  P.A.J.,Wiltfang,  J.,  Fickenscher,   H.,  Sherry,   E.,  2009.  The  battle  against  multi-resistantstrains:  Renaissance  of   antimicrobial  essential  oils  as  a  promising  force  to  ghthospital-acquired  infections.   J.  Cranio.  Maxill.  Surg.  37,  392–397.

    Warnke,   P.H.,  Lott,  A.J.S.,  Sherry,   E.,  Wiltfang,   J.,  Podschun,  R.,  2013.  The  ongoingbattle

     

    against 

    multi-resistant 

    strains 

    in-vitro 

    inhibition 

    of  

    hospital-acquiredMRSA,  VRE,  Pseudomonas,  ESBL   E.  coli  and  Klebsiella  species  in   the  presence  of plant-derived  antiseptic  oils.   J.  Cranio.  Maxill.  Surg.  41, 321–326.

    Weiss,   J.,  McClements,  D.J.,  Davidson,  P.M.,  2014.  Nanoscalar  dispersion  of antimicrobials:  effect  on  food  safety  world  food   science.  World  Food  Microbiol.16,

     

    8–19.

    Wu,  J.-E.,  Lin,  J.,  Zhong,  Q.,  2014.  Physical   and  antimicrobial  characteristics  of   thymeoil  emulsied  with  soluble  soybean  polysaccharide.  Food  Hydrocolloids  39,144–150.

    E.  Haba  et   al.  /   International   Journal  of   Pharmaceutics  476  (2014)  134–141  141

    http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0200http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0205http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0210http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0215http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0220http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0225http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0230http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0235http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refhub.elsevier.com/S0378-5173(14)00694-2/sbref0240http://refh