Gyrification corticale et signes neurologiques mineurs dans les ...

69
Master Recherche en Sciences Cognitives Université Paris Descartes / ENS / EHESS Année 2009-2010 Gyrification corticale et signes neurologiques mineurs dans les troubles schizophréniques Olivier Gay Encadrement : A. Cachia et M. Plaze Laboratoire de Physiopathologie des Maladies Psychiatriques INSERM U894 – Centre de Psychiatrie et Neurosciences Avec le soutien de l'Académie Nationale de Médecine

Transcript of Gyrification corticale et signes neurologiques mineurs dans les ...

Page 1: Gyrification corticale et signes neurologiques mineurs dans les ...

Master Recherche en Sciences Cognitives

Université Paris Descartes / ENS / EHESS

Année 2009-2010

Gyrification corticale

et signes neurologiques mineurs

dans les troubles schizophréniques

Olivier Gay

Encadrement : A. Cachia et M. Plaze

Laboratoire de Physiopathologie des Maladies Psychiatriques

INSERM U894 – Centre de Psychiatrie et Neurosciences

Avec le soutien de l'Académie Nationale de Médecine

Page 2: Gyrification corticale et signes neurologiques mineurs dans les ...

2

Page 3: Gyrification corticale et signes neurologiques mineurs dans les ...

Remerciements

à Arnaud Cachia et Marion Plaze, pour leur encadrement didactique et leur soutien amical tout au long de ce projet de master,

au Professeur Krebs, pour son accueil au sein du laboratoire et son accompagnement dans ce projet de master,

aux Professeurs Olié et Lôo pour leur accueil au sein du Service Hospitalo-Universitaire de Thérapeutique et de Santé Mentale, pour leur confiance et leur attention bienveillante à ce projet de master,

à Thérèse Jay, co-directrice du laboratoire, pour son accueil au « bâtiment Broca » et aux membres de l'équipe du Laboratoire de Physiopathologie des Maladies Psychiatriques et du Centre d'Evaluation et de Recherche Clinique (MC Bourdel, Y Morvan, E Magaud, MA Gorsane, MJ Dos Santos, l'équipe de saisie, I Amado, MF Poirier) pour leur assistance,

à S Mouchet-Mages, F Mouaffak, D Willard pour la mise à disposition des données de Primepi, et tout particulièrement à SMM pour son aide dans la recherche des données,

aux Professeurs Oppenheim et Meder, pour la précieuse collaboration qu'ils permettent avec le Département d'Imagerie Médicale et Fonctionnelle, à C Rodriguez-Régent pour son aide dans la recherche des données d'imagerie,

à D Rivière du LNAO pour son assistance dans l'analyse des données d'imagerie,

à E Duchesnay pour son assistance informatique,

à l'Académie Nationale de Médecine pour sa confiance et son soutien financier,

à mes proches pour leur soutien et leur affection,

à Otilia et Emma.

3

Page 4: Gyrification corticale et signes neurologiques mineurs dans les ...

4

Page 5: Gyrification corticale et signes neurologiques mineurs dans les ...

Table des matières 1 Introduction...................................................................................................................7

1.1 Eléments cliniques et physiopathologiques de la schizophrénie...........................7 1.1.1 La maladie et son spectre...............................................................................7 1.1.2 Historique des modèles étiopathogéniques....................................................8 1.1.3 Les anomalies neurodéveloppementales dans la schizophrénie...................10 1.1.4 Le modèle intégratif neurodéveloppemental de la schizophrénie................12

1.2 Signes neurologiques mineurs et schizophrénie..................................................14 1.2.1 Définition des signes neurologiques mineurs (SNM)..................................14 1.2.2 Les SNM, marqueurs endophénotypiques de la schizophrénie....................16 1.2.3 Imagerie anatomique et SNM dans la schizophrénie...................................17

1.3 La gyrification corticale, marqueur du développement cérébral.........................20 1.3.1 Ontogenèse corticale....................................................................................20 1.3.2 Gyrification corticale dans la schizophrénie................................................23

2 Hypothèse et objectif de l'étude...................................................................................27 3 Sujets et méthodes.......................................................................................................28

3.1 Sujets ...................................................................................................................28 3.1.1 Inclusion.......................................................................................................28 3.1.2 Evaluation clinique.......................................................................................28 3.1.3 Acquisition des images.................................................................................29

3.2 Analyse des images..............................................................................................30 3.3 Analyses statistiques............................................................................................32

4 Résultats.......................................................................................................................33 4.1 Caractéristiques de la population d'étude.............................................................33 4.2 Comparaison SNM+ versus SNM-......................................................................35

4.2.1 Gyrification hémisphérique..........................................................................35 4.2.2 Gyrification régionale..................................................................................37

4.3 Corrélation avec les dimensions des SNM..........................................................37 4.3.1 Gyrification hémisphérique..........................................................................37 4.3.2 Gyrification régionale..................................................................................37

5 Discussion....................................................................................................................38 5.1 SNM, gyrification corticale et développement cérébral dans la schizophrénie...39 5.2 Dimensions des SNM et gyrification régionale ..................................................40 5.3 Caractéristiques cliniques associées aux SNM ...................................................42 5.4 Aspects méthodologiques.....................................................................................44 5.5 Limites.................................................................................................................45

6 Conclusion et perspectives..........................................................................................46 7 Bibliographie...............................................................................................................48 8 Annexes.......................................................................................................................55

8.1 Annexe 1 – Critères diagnostiques des troubles psychotiques (DSM IV-TR).....55 8.2 Annexe 2 – Examen neurologique standardisé (Krebs et al. 2000).....................57 8.3 Annexe 3 – Procédure d'analyses d'images avec Brainvisa.................................66

5

Page 6: Gyrification corticale et signes neurologiques mineurs dans les ...

6

Page 7: Gyrification corticale et signes neurologiques mineurs dans les ...

1 Introduction 1.1 Eléments cliniques et physiopathologiques de la schizophrénie

1.1.1 La maladie et son spectre

La schizophrénie est une maladie psychiatrique qui touche environ 1% de la population

(American Psychiatric Association 2003 ; Hautecouverture, Limosin et al. 2006). Elle

débute généralement à la fin de l'adolescence ou chez l'adulte jeune. Elle évolue de

manière chronique tout au long de la vie, avec des périodes très symptomatiques

alternant avec des phases plus ou moins longues de rémission plus ou moins complète

(American Psychiatric Association 2003 ; Hautecouverture, Limosin et al. 2006 ; Guelfi

& Rouillon 2007).

Les symptômes de la schizophrénie sont classiquement répartis en trois dimensions : les

symptômes positifs (délire, hallucination, phénomène de passivité…), les signes

négatifs (émoussement affectif, retrait social…), et les éléments de désorganisation

(troubles du cours de la pensée, du comportement) (Guelfi & Rouillon 2007). Il existe

un grand polymorphisme des tableaux cliniques selon l'importance respective de ces

différents symptômes (American Psychiatric Association 2003 ; Guelfi & Rouillon).

En complément de cette approche sémiologique, des classifications internationales (la

CIM-10, Classification internationale des Maladies (10e version) de l'Organisation

Mondiale de la Santé, ou le DSM-IV-TR, Manuel de Diagnostic et Statistiques des

troubles mentaux (4e version corrigée) de l'Association de Psychiatrie Américaine)

proposent des critères diagnostiques (cf. Annexe 1), utilisés de manière consensuelle

pour la recherche, reposant sur les symptômes dits « de premier rang » (Schneider

1957).

Du point de vue historique, la schizophrénie a été définie comme une entité

nosographique indépendante à la fin du XIXe siècle par Kraepelin (Kraepelin 1970).

Cette entité nouvelle regroupait différents tableaux psychiatriques décrits

précédemment, partageant, selon Kraepelin, une évolution péjorative vers une forme de

« démence précoce » (pour une revue historique, voir Bottéro 2008). En 1911, Bleuler

rebaptise cette entité « schizophrénie » (du grec skhizein, fendre, et phrên, pensée), en

référence à la dissociation psychique, mécanisme pathologique qu'il identifiait au cœur

de la maladie (Bleuler 1993).

7

Page 8: Gyrification corticale et signes neurologiques mineurs dans les ...

Kraepelin postulait la schizophrénie comme une entité pathologique strictement

distincte des autres troubles psychiatriques (Bottéro 2008). Toutefois, plusieurs revues

récentes ont pointé l'existence de caractéristiques épidémiologiques, cliniques,

cognitives et génétiques partagées par la schizophrénie et d'autres troubles présentant

des caractéristiques psychotiques (i.e. des symptômes délirants ou hallucinatoires, voire

des éléments de désorganisation) : les troubles schizo-affectifs et bipolaires (Malhi,

Green et al. 2008 ; Owen & Craddock 2009 ; Purcell, Wray et al. 2009 ; Tandon,

Nasrallah et al. 2009). Ces caractéristiques communes laissent supposer de facteurs

étiopathogéniques partagés et justifient l'étude conjointe des ces différents troubles dits

« psychotiques », intégrés dans un même spectre pathologique (Craddock & Owen

2010).

1.1.2 Historique des modèles étiopathogéniques

Lorsque Kraepelin définit la démence précoce, il fait l'hypothèse d'une origine

neurodégénérative commune aux différents tableaux cliniques (Bottéro 2008). Les

recherches anatomopathologiques semblent alors prometteuses par les corrélations entre

des anomalies organiques cérébrales et des tableaux neuro-psychiatriques qu'elles

permettent d'établir (comme la découverte des plaques amyloïdes et de la

dégénérescence neurofibrillaire par Alzheimer en 1907 dans la maladie qui prendra son

nom - Frith 1996). Kraepelin postule que des anomalies neurodégénératives seront mis

en évidence chez les patients présentant une démence précoce, et valideront le

regroupement de tableaux polymorphes au sein d'une même maladie.

Malgré quelques résultats préliminaires (voir par exemple l'étude de Southard sur le

cortex cérébral retrouvant de nombreuses anomalies - Southard 1915), l'idée prévalente

va pourtant longtemps être celle d'une absence de lésions organiques, au point que la

schizophrénie va être considérée comme « le tombeau de la neuropathologie » (Plum

1972). Cette idée prévalente a contribué au développement de théories de la

schizophrénie fondée sur des facteurs uniquement psychologiques, sans lien avec des

bases cérébrales (Racamier 1980 ; Kasanin 1994).

Se reconnaissant autant influencé par Kraepelin que par Freud, Bleuler tente de son côté

une synthèse originale. Il postule un dysfonctionnement cérébral primaire, lié à des

8

Page 9: Gyrification corticale et signes neurologiques mineurs dans les ...

lésions organiques, altérant la capacité du cerveau à réaliser des associations. Ce

dysfonctionnement se manifeste secondairement à travers différents symptômes

cliniques en fonction de l'histoire psychologique individuelle du patient (Bleuler 1993).

Bleuler introduit ainsi une approche de la maladie à travers trois niveaux d'explications :

des lésions organiques, une altération d'une fonction cérébrale, des manifestations

cliniques.

Cette approche à travers différents niveaux d'explication a été reprise et plus largement

développée par la neuropsychologie cognitive. A partir des années 1980, notamment

sous l'impulsion de Frith, les méthodes de la neuropsychologie cognitive ont été

appliquées à l'étude de la schizophrénie (Frith & Done 1988). Elles visent à proposer un

niveau d'explication intermédiaire entre les symptômes cliniques et les anomalies

organiques cérébrales, en schématisant les processus de traitement de l'information (et

leurs altérations) mis en jeu dans la maladie, et à permettre ainsi une interprétation

critique des corrélations anatomo-cliniques (Frith 1996).

L'avènement des neuroleptiques donne un nouvel essor aux recherches d'anomalies

organiques dans la schizophrénie (Frith 1996). Les neuroleptiques se révèlent efficaces

dans le traitement de la maladie (Delay, Deniker et al. 1952) ; l'action de ces molécules

apportent un argument décisif quant à l'existence d'un substrat organique de la maladie.

Une « théorie dopaminergique de la schizophrénie » se développe avec la découverte de

l'action des neuroleptiques sur les voies monoaminergiques. Cette théorie postule

l'association des troubles à des anomalies de la neurotransmission (Meltzer & Stahl

1976), mais elle ne permet pas de rendre compte de tous les aspects évolutifs de la

maladie (Weinberger 1987).

Par la suite, de nouvelles études anatomopathologiques confirment l'existence de lésions

histologiques (Weinberger, Wagner et al. 1983 pour une revue historique ; Iritani 2007 ;

Erb & Franck 2009), notamment d'anomalies subtiles de l'architecture du neuropile,

plus que du nombre ou de la position des neurones (Garey 2010). Mais c'est surtout le

développement des techniques d'imagerie cérébrale qui contribue à mettre en évidence

de manière répliquée des anomalies organiques, avec un élargissement des ventricules

cérébraux, retrouvés chez des patients chroniques et dès le premier épisode (Weinberger

1984). Weinberger postule dès 1987 que ces anomalies sont antérieures au début de la

9

Page 10: Gyrification corticale et signes neurologiques mineurs dans les ...

maladie et reflètent une atteinte neurodéveloppementale (Weinberger 1987). De

nombreuses données sont venues ensuite étayer cette hypothèse.

1.1.3 Les anomalies neurodéveloppementales dans la schizophrénie

Des arguments convergents en faveur d'anomalies du développement cérébral précoce

proviennent de divers types d'études, chez l'homme et des modèles animaux (Gupta &

Kulhara 2010). Ces arguments reposent sur : l'association de la schizophrénie aux

complications obstétricales, les indices cliniques et paracliniques en faveur d'anomalies

neurodéveloppementales, les atteintes de gènes et molécules impliqués dans le

développement cérébral (pour revue : Rapoport, Addington et al. 2005 ; Fatemi &

Folsom 2009) .

• Complications obstétricales

Le risque ultérieur de développer une schizophrénie en cas de complications

obstétricales est estimé par un odd-ratio à 2 (Geddes, Verdoux et al. 1999). Ces

complications incluent : les complications de la grossesse (saignement, pré-éclampsie,

diabète, incompatibilité rhésus), les anomalies de la croissance et du développement

fœtal (petit poids de naissance, malformations congénitales, petit périmètre crânien), les

complications de la délivrance (asphyxie, atonie utérine, accouchement par césarienne

en urgence) (Cannon, Jones et al. 2002).

Il existe également un risque accru de développer une schizophrénie en cas d'infections

maternelles au cours de la grossesse, notamment virales : grippe, rubéole, herpès

(Brown & Derkits 2010). Le pic de naissance des sujets schizophrènes en fin d'hiver,

trois mois après le pic automnal d'infections grippales, est un argument en faveur d'une

période de vulnérabilité du développement cérébral aux infections au deuxième

trimestre de grossesse (Fatemi & Folsom 2009).

Il existe une interaction entre ces facteurs environnementaux et des facteurs génétiques,

le risque lié à ces complications est plus important en cas d'antécédents familiaux de

schizophrénie (Cannon, Mednick et al. 1993 ; Clarke, Tanskanen et al. 2009).

10

Page 11: Gyrification corticale et signes neurologiques mineurs dans les ...

• Indices cliniques et paracliniques

La présence dans l'enfance d'anomalies prémorbides est un argument en faveur

d'atteintes précoces (Rapoport, Addington et al. 2005). Différentes anomalies sont

retrouvées : des retards du développement moteur et du langage (Rapoport, Addington

et al. 2005), des signes neurologiques mineurs (Krebs & Mouchet 2007 ; Chan &

Gottesman 2008), des déficits cognitifs et des interactions sociales (Rapoport,

Addington et al. 2005 ; Gupta & Kulhara 2010). Ces anomalies sont retrouvées de

manière plus importante chez les sujets présentant une schizophrénie ayant débuté dans

l'enfance, ce qui est un argument en faveur de l'importance de la charge

neurodéveloppementale dans l'apparition des troubles (Biswas, Malhotra et al. 2007).

Des anomalies morphologiques cliniques ont également été mises en évidence chez les

sujets schizophrènes : anomalies morphologiques mineurs (Lloyd, Dazzan et al. 2008 ;

Compton & Walker 2009), anomalies des dermatoglyphes (Bramon, Walshe et al. 2005 ;

Fatjo-Vilas, Gourion et al. 2008). L'intérêt de ces anomalies est d'être un reflet clinique

d'atteintes prénatales génétiques et/ou environnementales (Compton & Walker 2009).

Du point de vue paraclinique, des études antomopathologiques post-mortem ont

retrouvé des lésions attribuées à des anomalies de migration neuronale précoce (Jakob

& Beckmann 1986 ; Akbarian, Bunney et al. 1993 ; Akbarian, Vinuela et al. 1993). Des

anomalies congénitales de la morphologie cérébrale ont aussi été retrouvées chez des

patients schizophrènes, notamment des agénésies du corps calleux (Paul, Brown et al.

2007 ; Fatemi & Folsom 2009).

• Anomalies génétiques et moléculaires

Plusieurs gènes candidats pour la schizophrénie (NRG1, GAD1, DISC1, DTNBP1,

GRM3) semblent impliquer dans différents aspects du développement cérébral :

prolifération et migration cellulaire, myélinisation, croissance axonale, synaptogenèse et

apoptose (Fatemi & Folsom 2009 ; Le Strat, Ramoz et al. 2009). Des analyses

moléculaires à partir de tissus cérébraux de patients schizophrènes ont mis en évidence

des anomalies touchant des protéines impliquées dans la plasticité cérébrale (Martins-

De-Souza, Dias-Neto et al. 2010).

11

Page 12: Gyrification corticale et signes neurologiques mineurs dans les ...

En parallèle de ces anomalies précoces, des anomalies neurodéveloppementales

« tardives » ont aussi été retrouvées en imagerie cérébrale dans les phases initiales de la

maladie à l'adolescence (pour une revue détaillée Pantelis, Yucel et al. 2005). Le suivi

longitudinal de sujets à risque pour la schizophrénie a permis de mettre en évidence des

anomalies associées à l'entrée dans la maladie (la « transition psychotique »), avec une

perte importante de matière grise, notamment au niveau des cortex temporal médial et

préfrontal (Wood, Pantelis et al. 2008). Ces anomalies pourraient résulter d'atteintes des

processus de maturation cérébrale survenant de manière physiologique à l'adolescence,

comme un excès d'élagage (« pruning ») synaptique (Paus, Keshavan et al. 2008). Ces

atteintes pourraient elles-mêmes être liées à une vulnérabilité génétique et/ou des

facteurs environnementaux (stress, abus de substances, dysrégulation hormonale)

(Pantelis, Yucel et al. 2005).

La découverte successive de ces différentes anomalies neurodéveloppementales

précoces puis tardives est venue étayer l'hypothèse neurodéveloppementale initiale de

Weinberger (Weinberger 1987), et a permis à ce paradigme de devenir le modèle

physiopathologique de référence de la schizophrénie (Pantelis, Yucel et al. 2005).

1.1.4 Le modèle intégratif neurodéveloppemental de la schizophrénie

Dans son hypothèse initiale, Weinberger postulait une atteinte cérébrale précoce

statique, à l'origine d'un dysfonctionnement ne se révélant que tardivement, en lien avec

les processus physiologiques de maturation cérébrale (Weinberger 1987).

La mise en évidence d'atteintes tardives a modifié ce paradigme (Keshavan 1999). Le

modèle neurodéveloppemental actuel postule l'existence d'atteintes multiples (Fatemi &

Folsom 2009). Des atteintes précoces entraînent la dysplasie de certains circuits

neuronaux, pouvant rendre compte des anomalies prémorbides retrouvées chez un grand

nombre de patients (Keshavan 1999). L'entrée dans la maladie à l'adolescence est liée à

des anomalies plus tardives (Douaud, Mackay et al. 2009), vraisemblablement en

interaction avec les atteintes précoces (Penttila, Paillere-Martinot et al. 2008). Ces

différentes atteintes sont liées à des anomalies des processus physiologiques de

développement et maturation cérébraux : prolifération, différentiation, migration et

12

Page 13: Gyrification corticale et signes neurologiques mineurs dans les ...

organisation architecturale cellulaires, synaptogenèse (atteintes précoces),

myélinisation, élagage synaptique (atteintes tardives) (Fatemi & Folsom 2009).

Ces anomalies des processus de développement et maturation cérébraux sont la

résultante de facteurs génétiques et/ou environnementaux (voire de leurs interactions)

(Le Strat, Ramoz et al. 2009). Pour rendre compte de l'interaction des facteurs

génétiques et non-génétiques, Bayer s'inspire du modèle de la tumorogenèse de

Knudson, et formule l'« hypothèse d'une double atteinte » (« two-hit hypothesis »)

(Bayer, Falkai et al. 1999). Une anomalie fonctionnelle d'un gène candidat pour la

schizophrénie (liée à une mutation présente chez un des parents ou apparue de novo lors

de la gamétogénèse) constitue une première atteinte, qui rend le sujet sensible à des

facteurs environnementaux responsables d'une seconde atteinte, entraînant la maladie.

Les gènes candidats pour la schizophrénie sont impliqués dans plusieurs étapes-clé du

développement cérébral, leur fonction est modulée par les facteurs environnementaux

(Bayer, Falkai et al. 1999).

Par la suite, le terme de « double atteinte » est repris plus directement dans le modèle

neurodéveloppemental, pour spécifier que la schizophrénie résulterait d'une

combinaison d'atteintes lors de deux phases-clé du développement cérébral : le

développement précoce pré et péri-natal, et la maturation à l'adolescence (Maynard,

Sikich et al. 2001).

Toutefois, des processus détérioratifs surviennent encore après le début de la maladie : il

existe une détérioration cognitive dans les premières années de la maladie, avant une

stabilisation ultérieure (McGlashan 2006), associées à des modifications

morphologiques : élargissement ventriculaire (Nair, Christensen et al. 1997) et

diminution des volumes corticaux frontaux et temporaux (Mathalon, Sullivan et al.

2001). Ces phénomènes semblent liés à des anomalies des processus de plasticité

cérébrale physiologiques à l'âge adulte, comme l'apoptose (Jarskog, Glantz et al. 2005),

à laquelle les neurones seraient plus sensibles chez les patients schizophrènes (Jarskog,

Selinger et al. 2004).

En intégrant ces dernières données au modèle neurodéveloppemental, la schizophrénie

apparaît aujourd'hui comme une maladie de la plasticité cérébrale, avec des atteintes à

13

Page 14: Gyrification corticale et signes neurologiques mineurs dans les ...

tous les stades de la vie cérébrale : de l'organogenèse au développement précoce, lors de

la maturation à l'adolescence et lors de la vie adulte.

Malgré l'apport du modèle neurodéveloppemental, l'identification et la compréhension

plus précises des mécanismes physio-pathologiques restent nécessaires, notamment

pour développer de nouvelles approches thérapeutiques (Tandon, Nasrallah et al. 2009).

Face à la grande hétérogénéité de facteurs étiologiques et de mécanismes physio-

pathologiques (Keshavan, Tandon et al. 2008), il apparaît utile de s'appuyer sur des

endophénotypes (marqueurs phénotypiques liés de manière identifiée à une vulnérabilité

génétique - Allen, Griss et al. 2009) comme les signes neurologiques mineurs. Leur

étude doit permettre de déterminer des groupes de patients plus homogènes quant aux

facteurs et aux mécanismes mis en jeu dans la genèse du trouble (Tandon, Nasrallah et

al. 2009), là où la caractérisation de différents sous-types cliniques de schizophrénie

s'est montrée peu pertinente (Fanous & Kendler 2008).

1.2 Signes neurologiques mineurs et schizophrénie

1.2.1 Définition des signes neurologiques mineurs (SNM)

Les signes neurologiques sont classiquement divisés en deux catégories : les signes

majeurs, qui reflètent l'altération d'un réseau neuronal déterminé (par exemple : les

signes pyramidaux et extra-pyramidaux), et les signes mineurs considérés par

opposition sans valeur localisatrice : c'est-à-dire ne pouvant être reliés à l'altération

d'une région cérébrale spécifique et ne s'intégrant pas dans un syndrome neurologique

bien défini (Heinrichs & Buchanan 1988 ; Chen, Shapleske et al. 1995). Mais cette

valeur « non-localisatrice » des SNM pourrait tenir à la difficulté de déterminer les

circuits mis en jeu par l'examen de ces signes, qui font intervenir des fonctions

intégratrices (Bombin, Arango et al. 2005 ; Krebs & Mouchet 2007).

Plusieurs classifications des SNM ont été proposées, reposant sur différentes échelles

d'examen standardisées. L'échelle NES (Neurological Examination Scale - Buchanan &

Heinrichs 1989) est l'échelle la plus utilisée dans la littérature ; l'échelle d'Heidelberg

(Schroder, Niethammer et al. 1991) en est une version dérivée, plus courte. En 2000,

Krebs et collaborateurs ont publié une procédure d'examen neurologique standardisé

14

Page 15: Gyrification corticale et signes neurologiques mineurs dans les ...

pour l'étude des troubles psychiatriques, incluant une échelle des SNM validée de 23

items – dont les dimensions (intégration sensorielle, intégration motrice, coordination

motrice, mouvements involontaires et qualité de la latéralisation) reposent sur une

analyse factorielle – en plus d'un examen neurologique global et de l'évaluation des

signes extra-pyramidaux avec les items de l'échelle de Simpson et Angus (Simpson &

Angus 1970) (Krebs, Gut-Fayand et al. 2000). Les items diffèrent entre les différentes

échelles de SNM ; mais trois dimensions sont généralement étudiées (Bombin, Arango

et al. 2005) : l'intégration sensorielle (tâches fondées sur des perceptions sensitives plus

ou mois élaborées), la coordination motrice (réalisation de séquences motrices plus ou

moins complexes) et l'intégration motrice (réalisation de tâches motrices fondées sur des

perceptions sensorielles).

La prévalence des SNM dans les groupes de contrôles sains est de 5% (Bombin, Arango

et al. 2005), avec des variations selon les études, liées à l'utilisation d'échelles

différentes et à l'absence de définition consensuelle pour le seuil de dysfonctionnement

neurologique (Krebs & Mouchet 2007). L'échelle des SNM de Krebs et coll. propose

quatre niveaux de cotation par item et définit une atteinte neurologique au-delà d'un

score-seuil de 10. Il s'agit du score auquel sont inférieurs les scores de 95% du groupe

contrôle de sujets sains (Krebs, Gut-Fayand et al. 2000) ; c'est également le score-seuil

déterminé statistiquement par une approche bayésienne (Ouali, Cherif et al. 2006).

La présence de SNM est vraisemblablement liée à des anomalies

neurodéveloppementales précoces (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007). En effet, les SNM sont fréquents et importants dans les pathologies

développementales débutant dans l'enfance, tel l'autisme (Hallett, Lebiedowska et al.

1993 ; Jansiewicz, Goldberg et al. 2006). Chez les patients schizophrènes (Bombin,

Arango et al. 2005), leur présence est mise en évidence en période prémorbide, dès

l'enfance (Krebs & Mouchet 2007).

Les dimensions de SNM correspondraient à l'atteinte de différentes régions cérébrales :

frontales pour les tâches de coordination motrice et préfrontales pour les séquences

motrices complexes, pariétales pour les tâches d'intégration sensorielle (Bombin,

Arango et al. 2005 ; Chan & Gottesman 2008).

15

Page 16: Gyrification corticale et signes neurologiques mineurs dans les ...

1.2.2 Les SNM, marqueurs endophénotypiques de la schizophrénie

Les signes neurologiques mineurs sont plus fréquents dans la schizophrénie que les

signes majeurs (Bombin, Arango et al. 2005). Ils sont retrouvés chez 50 à 65% des

patients schizophrènes (Heinrichs & Buchanan 1988), avec une prévalence variable

selon le seuil retenu (présence d'au moins un signe chez 88 à 100 % des patients

(Bombin, Arango et al. 2005). Ils sont aussi présents dans d'autres troubles

psychiatriques mais avec une moindre fréquence (Chan & Gottesman 2008).

Les SNM ne sont pas corrélés au sexe, ni à l'âge (Bombin, Arango et al. 2005 ; Krebs &

Mouchet 2007), à part aux âges élevés (Chen, Kwok et al. 2000). Concernant la

symptomatologie clinique, les SNM ne sont pas corrélés avec les symptômes positifs

(Bombin, Arango et al. 2005) ; ils sont corrélés avec la désorganisation de manière

globale, et avec les signes négatifs pour les items d'intégration sensorielle (Krebs &

Mouchet 2007) et de coordination motrice (Bombin, Arango et al. 2005). Les SNM ne

sont pas un effet secondaire des traitements puisqu'ils sont présents chez les patients

naïfs de traitement neuroleptique (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007 ; Chan & Gottesman 2008 ; Whitty, Owoeye et al. 2009). Les SNM sont associés à

des troubles cognitifs, notamment des déficits attentionnels, de la mémoire de travail, de

la résolution de problème (Bombin, Arango et al. 2005), mais de manière inconstante

car les liens entre SNM et déficits cognitifs ne sont pas linéaires (Krebs & Mouchet

2007).

Les SNM sont présents bien avant l'entrée dans la phase symptomatique de la maladie :

ils sont retrouvés dès l'enfance (Walker & O'Brien 1999). Ils sont considérés comme un

marqueur trait, stable au cours du temps (Bombin, Arango et al. 2005 ; Krebs &

Mouchet 2007 ; Chan & Gottesman 2008), malgré des variations rapportées lors de

phases symptomatiques (Bombin, Arango et al. 2005), et une influence possible des

traitements (Whitty, Owoeye et al. 2009).

Les SNM semblent liés à une vulnérabilité génétique : ils sont retrouvés chez les

apparentés sains avec des fréquences intermédiaires entre celles des patients

schizophrènes et celles des sujets contrôles sains sans antécédents familiaux

psychiatriques (Krebs & Mouchet 2007).

En résumé, les SNM remplissent les critères d'un marqueur endophénotypique de la

16

Page 17: Gyrification corticale et signes neurologiques mineurs dans les ...

schizophrénie puisqu'il s'agit de caractères phénotypiques mesurables, fréquemment

retrouvés chez les patients, et que ce marqueur trait stable reflète une vulnérabilité

génétique (Chan & Gottesman 2008).

En tant que marqueur endophénotypique, l'étude des SNM doit permettre de discriminer

des patients partageant des mêmes mécanismes étio-pathogéniques (Chan & Gottesman

2008). Les SNM sont un reflet d'anomalies neurodéveloppementales précoces (pré- et

périnatales) (Bombin, Arango et al. 2005 ; Krebs & Mouchet 2007). La présence de

SNM distinguent ainsi vraisemblablement les patients selon l'importance de la charge

neurodéveloppementale (i.e. en fonction du poids particulier d'anomalies cérébrales

précoces dans le développement de la maladie), avec une charge plus élevée chez les

patients présentant des SNM.

1.2.3 Imagerie anatomique et SNM dans la schizophrénie

Plusieurs études se sont intéressés aux corrélats cérébraux des SNM dans la

schizophrénie et les troubles psychotiques apparentés (pour revue : Tableau 1).

Les anomalies retrouvées impliquent le cortex cérébral, les noyaux gris centraux, et le

cervelet, conformément à l'hypothèse d'Andreasen qui postule des dysfonctionnements

par dysconnectivité de circuits cortico-sous-cortico-cérébelleux dans la schizophrénie

(Andreasen 1999). En revanche, les corrélats anatomiques des différentes dimensions

sont plus variables.

Tableau 1 – Morphométrie cérébrale en imagerie et SNM dans la schizophrénie

Sujets : scz : schizophrénie ; scz-aff : trouble schizo-affectif ; scz-form : trouble schizophréniforme ; BP :

trouble bipolaire. Méthode : échelles de signes neurologiques : NES (Buchanan & Heinrichs 1989),

Heidelberg (Schroder, Niethammer et al. 1991), NE-Krebs (Krebs, Gut-Fayand et al. 2000) ; techniques

d'imagerie : CT : scanner, IRM : imagerie par résonance magnétique, ROI : étude de régions d'intérêt,

VBM : étude morphométrique voxel à voxel. Résultats : d/g : droit/gauche, vol : volume, tot : total, GM :

matière grise, WM : matière blanche, DLPFC : cortex préfrontal dorso-latéral, IFG : gyrus frontal

inférieur, MFG : gyrus frontal moyen, ACC : cortex cingulaire antérieur, STG : gyrus temporal supérieur,

MTG : gyrus temporal moyen.

17

Page 18: Gyrification corticale et signes neurologiques mineurs dans les ...

Article Sujets Méthode Résultats

(Kolakowska, Williams et al. 1985)

56 psychotiques(42 scz + 14 scz-aff)

CT Pas de corrélation avec la taille des ventricules(y compris après correction pour la taille du cerveau)

(DeMyer, Gilmor et al. 1988)

25 scz25 contrôles sains

CT ↓ taille des aires frontales

(Schroder, Niethammer et al. 1991)

50 psychotiques (scz + scz-form)34 contrôles sains

HeidelbergCT

↑ élargissement des ventricules cérébraux↑ anomalies morphologiques des ganglions de la base

(King, Wilson et al. 1991)

16 scz chroniques CT Pas de corrélation avec la taille des ventricules

(Rubin, Vorstrup et al. 1994)

45 psychotiques (scz + scz-form)

CT ↓ longueur cérébrale↑ élargissement fissure sylvienne g

(Mohr, Hubmann et al. 1996)

143 scz78 alcoolo-dépendants57 contrôle sains

NESCT

↑ élargissement du 3e ventricule

(Keshavan, Sanders et al. 2003)

17 scz 9 autres

18 contrôles sains

NESIRM 1.5TROI

Contrôles : pas de corrélation

Scz : corrélations aux dimensions :• séquences motrices :

vol du noyau caudé g et du cervelet• tâches cognitives/perceptuelles :

vol du noyau caudé g, du cervelet, et du cortex associatif hétéromodal (DLPFC g, STG d)

(Ho, Mola et al. 2004) 155 psychotiques, 1er

épisode (141 scz + 3 scz-aff + 11 scz-form)

155 contrôles sains

Examen neurologique du cerveletIRM 1.5TROI

↓ volume du cerveletPas de corrélation avec les vol cérébraux

(Dazzan, Morgan et al. 2004)

77 psychotiques, 1er

épisode (35 scz + 42 autres)

NESIRM 1.5T VBM

Corrélations aux dimensions :• coordination motrice :

↓ GM : putamen g↑ WM : capsule interne g

• intégration sensorielle : ↓ GM : noyaux lenticulaires d/g, thalamus d/g, pulvinar ; IFG d, cortex précentral d, MTG d/g, STG g, gyrus lingual d/g ↑ WM : capsule interne g

(Bottmer, Bachmann et al. 2005)

37 psychotiques, 1er

épisode (20 scz + 2 scz-aff + 14 scz-form + 1 psychose non spécifiée)

18 contrôle sains

HeidelbergIRM 1.5TROIBRAINS software

Pas de différence du vol cérébral tot↓ vol cervelet d/g

↓ vol cervelet d corrélée :• pronation/supination mains d/g• diadochocinésie main g• stéréognosie mains d/g• opposition doigt-pouce

18

Page 19: Gyrification corticale et signes neurologiques mineurs dans les ...

(Dazzan, Morgan et al. 2006)

43 sujets sains NESIRM 1.5TVBM

Corrélations au score tot de SNM :GM : vol tot, ACC, IFG d, STG d, MTG dWM : faisceau longitudinal supérieur

(Mouchet-Mages, Canceil et al. 2007)

21 psychotiques, 1er

épisodeNE-KrebsIRM 1.5TVBM

SNM+ versus SNM- :↓ GM : gyrus post-central g

↓ WM : insula d, cluster cervelet g

Corrélations aux dimensions :• intégration motrice :

↓ GM : cervelet, IFG d, gyrus post-central g, gyrus occipital droit

• intégration sensorielle : ↓ GM : clusters dans cervelet d/g

• coordination motrice : WM : ↓ MFG g, ↑ precuneus d

(Bersani, Paolemili et al. 2007)

33 scz NESIRM 1TMesures radiologiques

Corrélations aux dimensions :• intégration sensorielle / taille du 3e

ventricule

(Venkatasubramanian, Jayakumar et al. 2008)

30 scz

27 témoins

NESIRM 1.5TVBM

Pas de différence du vol cérébral tot↓ du vol de GM tot

↓ des vol GM locaux :• corticaux : SFG g, gyrus post-cingulaire g,

MTG g ; STG d, cuneus d• sous-cortical : putamen d• mésencéphale g, cervelet g

(Thomann, Wustenberg et al. 2009)

42 psychotiques, 1er

épisode (scz + scz-form)

22 contrôles sains

Heidelberg Scale IRM 1.5TVBM

Contrôles : ↓ GM : IFG d/g, MFG d

Scz :- corrélations au score tot de SNM :

• ↓ GM : thalamus d/g, tête noyau caudé d ; cervelet g ; gyrus post-central g, insula g, IFG g, gyrus pré-central d, gyrus lingual d

• ↓ WM : IFG d/g, cervelet d

- corrélations spécifiques aux dimensions :• coordination motrice :

↓ WM : IFG g, cervelet d, corps calleux• tâches motrices complexes :

↓ WM : IFG g• orientation spatiale :

↓ GM : vermis cérébelleux

(Thomann, Roebel et al. 2009)

30 psychotiques, 1er

épisode

21 contrôles sains

HeidelbergIRM 1.5TVBM

Corrélation au score tot de SNM :↓ hémisphère cérébelleux d, lobes cérébelleux postéro-supérieurs d/g

Corrélation aux dimensions :• latéralisation et orientation spatiale :

↓ lobes cérébelleux antérieurs d/g, corps

19

Page 20: Gyrification corticale et signes neurologiques mineurs dans les ...

médullaire g• coordination motrice :

↓ lobes cérébelleux postéro-supérieurs d/g

(Janssen, Diaz-Caneja et al. 2009)

70 psychotiques, 1er

épisode (25 scz + 6 scz-aff + 5 scz-form + 20 BP + 14 autres)

NESIRM 1.5TVBM

Corrélations aux dimensions : • integration sensorielle :

↓ GM thalamus d/g• séquences motrices :

↓ GM noyau caudé d

(Mouchet-Mages, Rodrigo et al. en révision)

52 psychotiques, 1er

episode (44 scz + 2 scz-aff + 4 scz-form + 2 psychose non spécifiée)

NE-KrebsIRM 1.5TVBM

Corrélation au score total de SNM :↓ GM DLPFC d/g

Corrélation aux dimensions :• intégration motrice :

↓ GM DLPFC d/g• coordination motrice :

↑ GM thalamus d/g↓ WM thalamus antérieur, cervelet

Les atteintes cérébrales associées aux SNM sont des atteintes survenant précocement au

cours du développement cérébral (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007). L'enjeu de la recherche de corrélats cérébraux des SNM est donc de retrouver la

trace de ces atteintes précoces.

La plupart des études publiées sont des études transversales utilisant la méthode

morphométrique par VBM (voxel-à-voxel) (Ashburner 2009). Or les analyses

morphométriques transversales par VBM chez l'adulte ne sont pas de bons indicateurs

des processus cérébraux précoces, du fait des variations non-linéaires de la volumétrie

cérébrale au cours du développement (Shaw, Kabani et al. 2008). Il est donc important

d'utiliser un marqueur plus spécifique des processus précoces, toujours présent à l'âge

adulte.

1.3 La gyrification corticale, marqueur du développement cérébral

1.3.1 Ontogenèse corticale

La gyrification corticale est le résultat des phénomènes de plissement auquel est soumis

le cortex cérébral au cours de son développement précoce (White, Su et al. 2010). Cette

caractéristique est partagée par l'homme et certains grands mammifères (Hilgetag &

Barbas 2006). D'un point de vue évolutionniste, ce plissement a permis un

accroissement de la surface corticale supérieur à celui de la boîte crânienne (Hilgetag &

20

Page 21: Gyrification corticale et signes neurologiques mineurs dans les ...

Barbas 2006).

D'un point de vue macroscopique, l'ontogenèse corticale se manifeste par le passage

d'un cerveau totalement lisse (lissencéphale) à un cerveau fortement plissé

(gyrencéphale) (White, Su et al. 2010). En fonction de leur date d'apparition, de leur

forme, et de leur variabilité, on peut distinguer trois types de plissements corticaux

(Welker 1990 ; Armstrong, Schleicher et al. 1995) : les sillons primaires, de faible

variabilité inter-individuelle, visibles dès la 16ème semaine de gestation, puis les sillons

secondaires, à variabilité intermédiaire, qui apparaissent vers la 32ème semaine de

gestation, et enfin les sillons tertiaires, à forte variabilité inter-individuelle et qui se

forment vers la 36ème semaine de gestation (Figures 1 et 2).

Figure 1 – Chronologie d'apparition des sillons cérébraux (d'après White, Su et al. 2010)

21

Page 22: Gyrification corticale et signes neurologiques mineurs dans les ...

Figure 2 – Développement du cerveau humain in utero - vue sagittale (d'après Welker 1989)

Plusieurs mécanismes participeraient à la formation des sillons : une croissance active

du cortex (Toro & Burnod 2005), notamment des circonvolutions gyrales (Welker

1990), une croissance différentielle des couches neuronales internes et externes

(Richmann, Stewart et al. 1975), une différenciation cytoarchitectonique (Connolly

1950), des phénomènes de tension des fibres axonales (Goldman-Rakic, Selemon et al.

1984 ; Van Essen 1997 ; Hilgetag & Barbas 2006).

Les caractéristiques des sillons primaires semblent les plus déterminées génétiquement

(Bartley, Jones et al. 1997 ; Lohmann, von Cramon et al. 1999 ; Wright, Sham et al.

2002), voire phylo-génétiquement conservés entre les humains et les singes (Fukunishi,

22

Page 23: Gyrification corticale et signes neurologiques mineurs dans les ...

Sawada et al. 2006). Les facteurs environnementaux ont aussi une influence sur les

processus de plissement : il existe par exemple un retard de gyrification chez les fœtus

jumeaux par rapport aux fœtus uniques (Dubois, Benders et al. 2008). Le pattern des

plissements serait déterminé par une protomap : une carte primaire de protosillons (les

« racines sulcales ») qui se creuseraient et se réuniraient ultérieurement pour former les

sillons (Regis, Mangin et al. 2005). Cette carte primaire serait sous une forte influence

génétique (Piao & Walsh 2004; Rakic 2004). La gyrification serait aussi influencée par

les étapes antérieurs du développement cérébral : les étapes très précoces de

prolifération, différenciation et migration cellulaire (White, Su et al. 2010).

La gyrification corticale est également un marqueur indirect de la connectivité

neuronale (Van Essen 1997 ; Hilgetag & Barbas 2006). Ce lien est au cœur des théories

des plissements fondés sur les tensions mécaniques des fibres axonales, selon lesquelles

la gyrification est liée aux connexions axonales : le plissement cortical permettrait

d’optimiser la quantité d’axones nécessaires pour connecter entre elles les différentes

aires fonctionnelles et donc le transfert d’information (Zhang & Benson 2000 ;

Klyachko & Stevens 2003). De manière empirique, des corrélations entre la gyrification

et des processus fonctionnels sont aussi retrouvés : les anomalies de la gyrification sont

un marqueur précoce d'anomalies cognitives ultérieures (Dubois, Benders et al. 2008) ;

la gyrification est influencée par la latéralisation (la surface et la longueur du sillon

central sont plus importantes du côté de l'hémisphère dominant - Mangin, Riviere et al.

2004).

L'étude de la gyrification permettrait de retrouver des indices d'anomalies du

développement cérébral précoce à distance dans le temps (Cachia, Mangin et al. 2003).

Longtemps limitée du fait d'une grande complexité, l'étude des sillons corticaux s'est

développée récemment à l'aide d'outils automatisés, notamment dans l'étude des

troubles schizophréniques (Cachia, Paillere-Martinot et al. 2008 ; Penttila, Paillere-

Martinot et al. 2008 ; Plaze, Paillere-Martinot et al. 2009).

1.3.2 Gyrification corticale dans la schizophrénie

Des anomalies de la gyrification ont été retrouvées dans la schizophrénie, et les autres

troubles psychotiques - schizophréniforme et schizo-affectif (pour revue : Tableau 2), au

23

Page 24: Gyrification corticale et signes neurologiques mineurs dans les ...

niveau du cortex préfrontal et dans une moindre mesure, au niveau du cortex temporal,

aussi bien dans les études anatomo-pathologiques post-mortem qu'in vivo dans les

études d'imagerie. Les anomalies ont été retrouvées chez des patients chroniques, lors

du premier épisode, dans les formes à début précoce, chez des sujets à risque, chez des

apparentés sains.

Tableau 2 – Gyrification corticale dans la schizophrénie

Sujets : scz : schizophrénie ; scz-aff : trouble schizo-affectif ; scz-form : trouble schizophréniforme ; RM :

retard mental. Méthode : IRM : imagerie par résonance magnétique ; GI 2D : index de gyrification 2D

(Zilles, Armstrong et al. 1988) ; GI-A : index de gyrification automatisé (Moorhead, Harris et al. 2006) ;

SI 3D : index de gyrification 3D (Cachia, Paillere-Martinot et al. 2008), g-SI : index hémisphérique, l-SI :

index régional. Résultats : d/g :droit/gauche ; vol : volume ; tot : total ; PFC : cortex préfrontal ; ACC :

cortex cingulaire antérieur ; PCC : cortex cingulaire postérieur.

Articles Sujets Méthodes Résultats

Post-mortem

(Highley, Esiri et al. 1998)

25 scz29 contrôles

Post-mortemétude qualitative

↑ gyrification lobes temporaux

(Vogeley, Schneider-Axmann et al. 2000)

24 scz24 contrôles sains

Post-mortemGI 2D – PFC

↑ GI PFC d (chez les hommes uniquement)

(Wheeler & Harper 2007)

9 scz9 contrôles sains

Post-mortemGI 2D – PCC

↓ GI PCC rostral

IRM anatomique

(Bullmore, Brammer et al. 1994)

39 scz23 bipolaires31 contrôles sains

IRMAnalyse fractale – cerveau entier

↓ dimension fractale chez scz↑ dimension fractale chez bipolaires

(Kikinis, Shenton et al. 1994)

15 scz15 contrôles sains

IRM 1.5TAnalyses qualitatives et quantitatives – lobe temporal

Anomalies de la gyrification temporale : - ↑ interruptions sulcales - orientation plus verticale des sillons

(Noga, Bartley et al. 1996)

13 paires de jumeaux monozygotes discordants pour scz9 paires de contrôles sains

IRM 1.5TAnalyses qualitatives et quantitatives – cerveau entier

Pas de différence

(Kulynych, Luevano et al. 1997)

9 scz9 contrôles sains

IRM 1.5TGI 2D – cerveau entier

↓ GI cerveau entier

(Narr, Thompson et al. 2001)

25 scz28 contrôles sains

IRM 1.5TComplexité corticale 3D – cerveau entier

↑ complexité lobe frontal

24

Page 25: Gyrification corticale et signes neurologiques mineurs dans les ...

(Vogeley, Tepest et al. 2001)

12 psychotiques (6 scz + 6 scz-aff) 12 apparentés sains

IRM 1.5TGI 2D - PFC

↑ GI PFC d

(Yucel, Stuart et al. 2002)

55 scz75 contrôles sains

IRM 1.5TAnalyse semi-automatisée – ACC

↓ index de gyrification ACC g

(Sallet, Elkis et al. 2003)

40 scz20 contrôles sains

IRM 1.5TGI 2D – cerveau entier

↓ GI frontaux et temporo-pariéto-occipitaux d/g

(Highley, DeLisi et al. 2003)

61 scz42 contrôles

IRM 1.5TGI 2D – cerveau entier

Pas de différence

(White, Andreasen et al. 2003)

42 psychotiques, début précoce (<18 ans)(33 scz + 7scz-form + 2 scz-aff)

26 contrôles sains

IRM 1.5TIndex de courbure

Au niveau global :↑ courbure gyrale↓ courbure sulcale

Au niveau lobaire :• frontal, pariétal : ↓ courbure sulcale• occipital : ↑courbure gyrale

(Harris, Whalley et al. 2004)

16 HR (devenus scz)14 HR contrôles

IRM 1TGI 2D – cerveau entier

↑ GI préfrontal d

(Harris, Yates et al. 2004)

34 scz 1er épisode36 contrôles sains

IRM 1TGI 2D

↑ GI temporal d

(Jou, Hardan et al. 2005)

9 apparentés sains de scz12 contrôles sains

IRM 1.5TGI-2D – frontal (sur 1 coupe)

↓ GI sur une coupe frontale g

(Wiegand, Warfield et al. 2005)

17 scz 1er épisode 17 troubles affectifs17 contrôles sains

IRM 1.5TGI ±3D – PFC

Pas de différence de complexité corticale

(Moorhead, Harris et al. 2006)

16 HR évoluant vers la scz14 HR contrôles

IRM 1.5TGI-A – PFCvs GI 2D manuel

GI-A > GI 2D

(Harris, Moorhead et al. 2007)

17 HR évoluant vers la scz128 HR contrôles

IRM 1TGI-A – PFC

↑ GI PFC d

(Bonnici, William et al. 2007)

25 scz18 RM (QI 50-70)23 scz + RM29 contrôles sains

IRM 1TGI-A – PFC

↓ GI : • PFC d : contrôles > scz > RM• PFC g : contrôles > autres

(Falkai, Honer et al. 2007)

48 scz29 apparentés avec troubles psychiatriques53 apparentés sains41 contrôles sains

IRM 1.5TGI 2D – frontal (sur 3 coupes)

↑ GI frontal d/g : scz et apparentés > contrôles

(Stanfield, Moorhead et al. 2008)

Adolescents avec RM (QI : 50-80) : - 71 schizotypiques - 72 contrôles sains

IRM 1.5TA-GI – PFC

↑ GI-A du PFC d(simple tendance après ajustement pour le volume du PFC)

25

Page 26: Gyrification corticale et signes neurologiques mineurs dans les ...

(Cachia, Paillere-Martinot et al. 2008)

30 scz paranoïdes avec hallucinations résistantes

28 contrôles sains

IRM 1.5TSI 3DBrainvisa

↓ GI :• global : ↓ g-SI d/g• local : ↓ l-SI : o sillon frontal moyen g, sillon

temporal supérieur d/g, vallée sylvienne g

(Penttila, Paillere-Martinot et al. 2008)

51 scz début précoce

59 contrôles sains

IRM 1.5TSI 3DBrainvisa

↓ GI :• global : ↓ g-SI d/g• local : ↓ l-SI : sillon collatéral g

(Turetsky, Crutchley et al. 2009)

36 scz28 contrôles sains

IRM 1.5 TMesures des sillons olfactif et orbital 3DBrainvisa

↓ profondeur du sillon olfactif d

(McIntosh, Moorhead et al. 2009)

28 scz42 bipolaires37 contrôles sains

IRM 1.5TA-GI - PFC

↓ GI : PFC d/g (scz et bipolaires)GI corrélé au QI

La plupart des études retrouvent des variations par rapport aux sujets contrôles, mais

avec soit une augmentation, soit une diminution des index de gyrification (Tableau 2).

Ces différences sont vraisemblablement liées aux différences de méthodes de mesure.

La majorité des études antérieures à 2008 utilisent un index de gyrification 2D. Cet

index de gyrification planaire est défini à partir du ratio entre la longueur de l’enveloppe

externe du cortex et la longueur totale du cortex obtenu à partir d’une ou plusieurs

coupe(s) de cerveau (post-mortem ou IRM) (Zilles, Armstrong et al. 1988). La

variabilité des résultats de ces études s’explique essentiellement par des éléments

méthodologiques, comme le choix de la coupe d’IRM utilisée pour calculée l’index (i.e.

la région corticale analysée) et le nombre de coupes analysées. Deux études de 2008

(Cachia, Paillere-Martinot et al. 2008 ; Penttila, Paillere-Martinot et al. 2008) utilisent

une nouvelle méthode de mesure globale et automatisée à partir de reconstruction

cérébrale en 3D (Cachia, Paillere-Martinot et al. 2008). Les résultats des études 2D

analysant un grand nombre de coupes (Kulynych, Luevano et al. 1997 ; Sallet, Elkis et

al. 2003) sont convergents la diminution des index de gyrification obtenus avec les

mesures 3D (Cachia, Paillere-Martinot et al. 2008 ; Penttila, Paillere-Martinot et al.

2008) .

En complément des anomalies quantitatives mesurées par les index de gyrification, des

anomalies qualitatives de la gyrification ont également été mises en évidence dans la

schizophrénie : asymétrie de présence du sillon paracingulaire dans le cortex cingulaire

26

Page 27: Gyrification corticale et signes neurologiques mineurs dans les ...

antérieur chez des patients (Yucel, Stuart et al. 2002 ; Le Provost, Bartres-Faz et al.

2003 ; Fujiwara, Hirao et al. 2007) et des sujets à risque (Yucel, Wood et al. 2003),

déplacement de la jonction sulcale temporo-pariétale (Plaze, Paillere-Martinot et al.

2009). Les variations de gyrification corticale sont corrélées à des symptômes cliniques,

tels les hallucinations acoustico-verbales (Plaze, Paillere-Martinot et al. 2009) et des

anomalies cognitives (Artiges, Martelli et al. 2006 ; McIntosh, Moorhead et al. 2009).

Ceci conforte la corrélation entre la gyrification et la fonctionnalité cérébrale sous-

jacente (Mangin, Jouvent et al. 2010).

Les études de la gyrification corticale dans la schizophrénie ont amené à considérer les

anomalies de la gyrification corticale à la fois comme un reflet de dysfonctions

cérébrales et à la fois comme un marqueur de la vulnérabilité liée aux atteintes

cérébrales précoces dans la schizophrénie (Mangin, Jouvent et al. 2010).

2 Hypothèse et objectif de l'étudeL'objectif primaire de ce projet est d'étudier les variations de la gyrification corticale,

marqueur du développement cérébral, chez des patients lors de leur premier épisode

psychotique selon la présence ou non de SNM. Les SNM étant associées à des atteintes

du développement cérébral précoce (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007) et la gyrification corticale étant un marqueur morphologique du développement

cérébral (Mangin, Jouvent et al. 2010), notre hypothèse est que les patients avec des

SNM présentent une diminution de gyrification par rapport à ceux n'ayant pas, ou peu,

de SNM.

L'objectif secondaire de ce projet est d'étudier les variations de gyrification régionale

corrélées aux dimensions coordination motrice, intégration sensorielle, intégration

motrice et de tester leurs corrélats anatomiques présumés dans la littérature. Notre

hypothèse est que chacune de ces dimension impliquent des régions spécifiques. Les

dimensions des différentes échelles d'évaluation des SNM ayant été construites en

s'inspirant de la démarche neurologique, consistant à regrouper les signes en fonction de

la localisation de l'atteinte neurologique présumée (Heinrichs & Buchanan 1988), les

trois dimensions principales des SNM ont ainsi été établies en référence à une atteinte

27

Page 28: Gyrification corticale et signes neurologiques mineurs dans les ...

frontale pour les dimensions motrices et pariétale pour la dimension d'intégration

sensorielle (Bombin, Arango et al. 2005 ; Chan & Gottesman 2008).

3 Sujets et méthodes 3.1 Sujets

3.1.1 Inclusion

52 sujets ont été recrutés entre 2004 et 2007 au cours d'un premier épisode psychotique

dans le Service Hospitalo-Universitaire de Santé Mentale et de Thérapeutique de

l’Hôpital Sainte Anne (Pr J.P. Olié), où ils ont été pris en charge et suivis au décours de

ce premier épisode.

Le recrutement des sujets s’est déroulé dans le cadre d’une étude longitudinale

d’évaluation des patients au décours du premier épisode psychotique (étude PRIMEPI).

Les patients ont été inclus sur les critères de survenue d’un premier épisode délirant

aigu en cours, attesté par un score sur l’échelle BPRS (Brief Psychiatric Rating Scale)

total > 50, avec soit hallucinations > 3, contenu inhabituel de la pensée > 4, discours

désorganisé > 4 ou retrait affectif > 4 (critères définis par Yung, Phillips et al. 2004). Les

critères d'inclusion étaient : un âge compris entre 18 et 45 ans, l'absence de traitement

neuroleptique pendant plus de 12 semaines (sur la vie entière) et plus d’une semaine

durant le mois précédant l’étude. Les critères d’exclusion étaient : l’abus ou la

dépendance aux toxiques de plus de 5 ans, l’existence d’une pathologie somatique

grave, la prise de traitements multiples, les antécédents de traumatisme crânien, une

grossesse, une contre-indication à la réalisation d’une IRM (corps étranger métallique,

matériel implanté ferromagnétique).

Les patients ont donné leur consentement à l’étude après une information détaillée.

3.1.2 Evaluation clinique

Une évaluation clinique a été réalisée par le Dr. Mouchet-Mages, psychiatre et D.

Willard, psychologue de recherche à l’aide de la DIGS (Diagnostic Interview for

Genetic Studies, traduction Krebs et coll.). Une évaluation psycho-pathologique a été

effectuée à l’aide des échelles BPRS-E (Brief Psychiatric Rating Scale Expanded,

Velligan, Prihoda et al. 2005) et PANSS pour la symptomatologie psychotique (Positive

28

Page 29: Gyrification corticale et signes neurologiques mineurs dans les ...

& Negative Symptom Scale, Kay, Fiszbein et al. 1987). Dans le cadre de leur prise en

charge, les sujets ont aussi été évalués cliniquement par les praticiens hospitaliers du

Service Hospitalo-Universitaire de Santé Mentale et de Thérapeutique de l’Hôpital

Sainte Anne (Pr J.P. Olié) selon les critères de la Classification Internationale des

Maladies (CIM10 – OMS). Les diagnostics ont été établis en fonction de l'évaluation

initiale et du suivi longitudinal selon les critères du DSM IV (cf. Annexe 1). Les sujets

présentant un trouble de la section « Schizophrénie et autres troubles psychotiques » ou

« bipolaires avec caractéristiques psychotiques » ont été retenus. Parmi les 52 patients,

deux sujets ont été exclus après analyse du dossier clinique, du fait d'un diagnostic

longitudinal (trouble bipolaire sans caractéristique psychotique) ne s'intégrant pas dans

le spectre des troubles psychotiques.

La recherche des signes neurologiques mineurs (SNM) a été réalisé à l’aide d’un

examen neurologique standardisé (Krebs, Gut-Fayand et al. 2000 – cf. Annexe 2) avec

un coefficient de fidélité inter-juge de 0,82. Un score total a été calculé pour chaque

sujet. Un score-seuil de 10 a servi à définir la présence d'un dysfonctionnement

neurologique significatif (Krebs, Gut-Fayand et al. 2000 ; Ouali, Cherif et al. 2006) et a

permis de déterminer deux groupes au sein de notre population d'étude : les patients

avec signes neurologiques mineurs (SNM+ : score total > 10) et les patients avec pas ou

peu de signes neurologiques mineurs (SNM- : score total < 10). Des sous-scores ont

également été calculés pour chacune des cinq dimensions de l'échelle : intégration

sensorielle, intégration motrice, coordination motrice, mouvements involontaires et

qualité de la latéralisation (Krebs, Gut-Fayand et al. 2000).

3.1.3 Acquisition des images

Les sujets ont effectué un examen d'imagerie cérébrale par résonance magnétique (IRM

anatomique) au Département d’Imagerie Morphologique et Fonctionnelle du Centre

Hospitalier Sainte Anne (Pr JF Meder, Pr C Oppenheim) avec un appareil IRM 1,5 T

General Electric (GE Medical Systems, Milwaukee, antenne tête 8 canaux). Une série

de coupes couvrant l'ensemble du cerveau ont été acquises à l’aide d’une séquence Fast

SGPR (TR : 10,34 ; TE : 2,196 ; flip angle : 15° ; BdW 11,9 Khz ; TI 450 ms ;

épaisseur coupe : 1,2 mm ; coupes jointives ; volume voxels : 0,9375 * 0,9375 * 1,2

29

Page 30: Gyrification corticale et signes neurologiques mineurs dans les ...

mm3 ; FOV : 24 x 16,8 ; durée 6 mn 58 s ; matrice 256x256).

3.2 Analyse des imagesPour chaque patient, la gyrification corticale globale (hémisphérique) et régionale a été

mesurée avec le logiciel Brainvisa (http://brainvisa.info) à partir des données brutes

IRM selon une procédure automatisée en plusieurs étapes (Cachia, Paillere-Martinot et

al. 2008). Cette méthode a déjà été utilisée pour l'étude des anomalies de la gyration

corticale chez des patients schizophrènes (Cachia, Paillere-Martinot et al. 2008 ;

Penttila, Paillere-Martinot et al. 2008).

Figure 3 – Analyse de la gyrification corticale à partir d'IRM.

(Haut) Segmentation 3D du cerveau et des sillons corticaux à partir d'une IRM standard T1. (Bas)

Mesure de la gyrification corticale à partir de l'index de gyrification 3D : rapport entre l'aire sulcale

totale (en vert) et l'aire de l'enveloppe cérébrale externe (en bleu).

La première étape concerne, à partir d'images non-normalisées, la segmentation

automatisée des tissus cérébraux (liquide céphalo-rachidien LCR, matière grise MG,

substance blanche SB) et pour chaque hémisphère, le calcul du volume intracrânien

total (somme des volumes de MG+SB+LCR) et de l'aire de cortex externe. Pour tous les

30

Page 31: Gyrification corticale et signes neurologiques mineurs dans les ...

sujets, chaque étape de traitement des images a été contrôlée visuellement et aucune

erreur majeure de segmentation n'a été détectée. Quelques erreurs de segmentation

minimes, le plus souvent au niveau de la limite entre les lobes occipitaux et le cervelet,

ont été corrigées manuellement.

Pour chaque hémisphère, la surface du cortex externe est définie comme l'aire d'une

enveloppe « lisse » du masque cérébral. Cette enveloppe est obtenue par une fermeture

morphologique du masque cérébral ; une fermeture isotropique de 5mm est utilisé pour

assurer le caractère lisse des limites. Les sillons corticaux sont ensuite automatiquement

segmentés et extraits du cortex à partir du squelette du masque MG/LCR et convertis en

représentation graphique du cortex incluant les informations relatives à la morphologie

(longueur, profondeur, aire, et plusieurs autres paramètres : ouverture du sillon,

épaisseur du ruban cortical entourant le sillon...) et à l'organisation spatiale (position et

orientation relatives). Les données IRM natives ne subissent aucune normalisation

spatiale pour éviter les biais potentiels liés aux déformations de la forme des sillons

induites par les processus de normalisation.

Figure 4 – Étiquetage régionale automatisée des sillons dans Brainvisa

31

Page 32: Gyrification corticale et signes neurologiques mineurs dans les ...

L'index de gyrification global (g-SI) est calculé pour chaque hémisphère comme le

rapport entre l'aire sulcale totale (i.e. la somme des aires de tous les sillons corticaux

segmentés) et l'aire externe totale du cortex (Figure 3). Un cortex fortement gyrifié a un

g-SI élevé, tandis qu'un cortex faiblement gyrifié a un g-SI faible. A surface de cortex

externe constante, le g-SI augmente avec le nombre et/ou l'aire des sillons ; au contraire,

le g-SI d'un cortex lissencéphalique est égal à zéro. Le g-SI décrit l'enfouissement du

cortex. Il diffère de l'index de gyrification 2D, sensible à l'épaisseur corticale et à

l'ouverture des sillons (Zilles, Armstrong et al. 1988).

Les sillons sont ensuite reconnus, identifiés et étiquetés dans chaque hémisphère (Figure

4) par un algorithme de reconnaissance automatique (Perrot, Riviere et al. 2009). La

gyrification corticale locale est mesurée par un index sulcal local (l-SI), défini comme le

rapport entre l'aire des sillons dans la région d'intérêt et l'aire totale du cortex externe.

Le l-SI peut être calculé pour un sillon unique ou pour un regroupement de plusieurs

sillons. Le l-SI augmente avec la longueur et/ou la profondeur des sillons. La somme

des l-SI de chaque région d'un hémisphère est égale au g-SI.

G-SI et l-SI ont été calculés de manière automatisée sans correction manuelle.

3.3 Analyses statistiquesPour cinq sujets, la qualité des images n'a pas permis l'analyse de la gyrification

(artéfact de mouvement). Les analyses statistiques ont donc porté sur 45 sujets.

Deux types d'analyses des index de gyrification (g-SI et l-SI) ont été réalisées :

comparaisons entre SNM+ et SNM- (analyses inter-groupes) et corrélations avec les

trois dimensions principales de l'échelle des SNM (analyses dimensionnelles). Les

analyses ont été réalisées avec le logiciel R 2.9 (www.r- project.org/ ).

Les caractéristiques démographiques et cliniques ont été comparées entre les deux

groupes SNM+ et SNM- à l'aide de tests bilatéraux (t de Student, pour les variables

quantitatives) et de tables de contingence (Chi-2, pour les variables catégorielles). Les

corrélations entre ces caractéristiques ont été mesurées par le coefficient de corrélation

de Pearson (r).

Les différences d'index de gyrification globaux (g-SI) et locaux (l-SI) entre les deux

groupes (SNM+ et SNM-) ont été analysées séparément pour chaque hémisphère avec

32

Page 33: Gyrification corticale et signes neurologiques mineurs dans les ...

des modèles linéaires univariés, avec l'âge et le nombre d'années d'études comme

covariables numériques et le sexe comme facteur catégoriel. L'âge, le sexe ont été inclus

a priori aux analyses statistiques du fait de leur effet connu sur la gyrification corticale

(Kochunov, Mangin et al. 2005 ; Duchesnay, Cachia et al. 2007) ; le nombre d'années

d'études a été inclus comme reflet du quotient intellectuel, qui a un effet connu sur la

gyrification corticale (McIntosh, Moorhead et al. 2009). Des tests de Shapiro ont été

utilisés pour contrôler la normalité des résidus des modèles linéaires.

Des analyses dimensionnelles ont également été réalisées pour tester des associations

entre les index de gyrification et les scores aux différentes dimensions de l'échelle des

signes neurologiques pour les trois dimensions principales des SNM : coordination et

intégration motrices, intégration sensorielle. Les analyses ont été réalisées séparément

pour chaque dimension. Les index de gyrification g-SI et l-SI droits et gauches ont été

analysés comme variables dépendantes au sein d'un modèle linéaire incluant le score à

la dimension étudiée, ainsi que l'âge, le sexe et le nombre d'années d'études.

Pour toutes les analyses, le seuil statistique alpha a été fixé à p <0,05.

4 Résultats 4.1 Caractéristiques de la population d'étudeLa population d'étude comporte 45 patients, dont 19 SNM+ et 26 SNM-. 37 sujets

présentent une schizophrénie, 5 un trouble schizo-affectif, 1 un trouble

schizophréniforme, 2 un trouble bipolaire avec caractéristiques psychotiques. La

répartition des sujets selon leur diagnostic ne diffère pas significativement entre les

deux groupes SNM+/SNM- (Tableau 3).

Tableau 3 – Répartition des diagnostics parmi les SNM+ et SNM-

Diagnostic (DSM IV) DifférenceSNM+ versus SNM-

Schizophrénie(n=37)

Tr. schizo-affectif(n=5)

Tr. schizophréniforme(n=1)

Tr. bipolaire(n=2) Χ² p value

SNM+ 17 1 1 04,05 0,26

SNM- 20 4 0 2

Tableau 4 – Caractéristiques démographiques et cliniques

33

Page 34: Gyrification corticale et signes neurologiques mineurs dans les ...

* différence significative pour p < 0,05. a : médiane et écart-type robuste (moyenne peu informative car

deux patients ont reçu des doses de traitement élevées dans le groupe SNM-).

Caractéristiques démographiques et cliniquesmoyenne (écart-type)

Différence SNM+ versus SNM-

Population totale(n=45)

SNM+(n=19)

SNM-(n=26) t / Χ² p value

Age à l'inclusion (années) 26,1 (5,7) 29,7 (6,1) 23,4 (3,8) t = 4,24 p = 0,0001*

Sexe (H:F) 33:12 13:6 20:6 Χ ² = 0,41 p = 0,52

Nombre d'années d'études 13,7 (2,1) 14,4 (1,9) 13,1 (2,1) t = 2,03 p = 0,048*

Age de début - 1er épisode (années) 23,6 (5,5) 27,0 (6,1) 21,3 (3,7) t = 3,54 p = 0,001*

DUP (années) 2,6 (3,6) 3,8 (5,2) 1,7 (1,7) t = 1,74 p = 0,09

PANSS 87,2 (21,0) 92,7 (20,9) 82,9 (20,5) t = 1,54 p = 0,13

Dose de traitement reçu (mg) 86 (127)a 208 (289) 106 (158)a t = -0,97 p = 0,34a

Dans notre population, l'âge du premier épisode est compris entre 16 et 36 ans. Par

rapport aux patients SNM-, les patients SNM+ présentent un âge à l'inclusion plus élevé

(p = 0,0001), un nombre supérieur d'années d'études (p = 0,048), un âge de début du

premier épisode plus élevé (p=0,001). Aucune différence pour la durée de psychose

non-traitée (DUP), délai entre le début du premier épisode et la première prise en charge

(qui est concomitante pour la plupart des sujets de l'inclusion dans l'étude) n'a été

détectée entre les deux groupes de patients (p = 0,09). A l'exception de deux patients du

groupe SNM- déjà traités, les patients n'ont pas reçu plus de trois jours de traitement

neuroleptique (dose totale de traitement reçu-vie entière en équivalent chlorpromazine :

médiane : 86 mg , min : 0, max : 1800 ; dose maximale journalière de chlorpromazine :

600 mg) ; les doses moyennes de traitement reçu entre SNM+ et SNM- ne sont pas

significativement différentes (p = 0,34). Lors de l'évaluation clinique initiale à

l'inclusion, les deux groupes ne diffèrent pas pour le score moyen à la PANSS (p =

0,13). Les détails des analyses sont rapportés dans le Tableau 4.

L''âge à l'inclusion est corrélé de manière significative avec le nombre d'années d'études

(r = 0,40, p = 0,015) et avec la durée de psychose non-traitée (r = 0,33, p = 0,03).

Aucune autre corrélation significative n'a été retrouvée entre les caractéristiques

démographiques et cliniques présentées.

34

Page 35: Gyrification corticale et signes neurologiques mineurs dans les ...

Tableau 5 – Scores total et par dimension à l'échelle des SNM

* différence significative pour p < 0,05.

Examen neurologique standardisé – Scores de SNMmoyenne (écart-type)

Différence SNM+ versus SNM-

Population totale(n=45)

SNM+(n=19)

SNM-(n=26) t / Χ² p value

Score total de SNM 10,7 (6,3) 16,7 (5,0) 6,4 (2,5) t = 9,15 p = 1,2.10-11*

Coordination motrice 5,1 (3,9) 8,3 (3,5) 2,8 (2,2) t = 6,37 p = 1,3.10-7*

Intégration motrice 2,3 (2,1) 3,7 (2,4) 1,3 (1,1) t = 4,44 p = 0,0001*

Intégration sensorielle 1,8 (1,7) 2,5 (2,0) 1,4 (1,4) t = 2,11 p = 0,04*

Latéralisation 0,9 (1,2) 0,9 (1,1) 0,9 (1,3) t = 0,22 p = 0,82

Mouvements anormaux 0,5 (1,0) 1,1 (1,4) 0,1 (0,3) t = 3,59 p = 0,0009*

Pour l'examen neurologique standardisé, les patients SNM+ présentent des scores plus

élevés que les patients SNM- pour le score total de SNM (p = 1,2.10-11) et les

dimensions coordination motrice (p = 1,3.10-7), intégration motrice (p = 0,0001),

intégration sensorielle (p = 0,04) et mouvements anormaux (p = 0,0009). Les deux

groupes ne diffèrent pas pour la dimension qualité de la latéralisation (p = 0,82).

Les détails des analyses sont rapportés dans le Tableau 5.

4.2 Comparaison SNM+ versus SNM-

4.2.1 Gyrification hémisphérique

Une diminution bilatérale des index de gyrification hémisphériques (g-SI) est retrouvée

chez les patients SNM+ par rapport aux patients SNM- (hémisphère gauche : - 4,2% , p

= 0,03 ; hémisphère droit : - 5,3% , p = 0,03) (Figure 5). Il est important de noter que les

mesures volumétriques hémisphériques (volume cérébral et volumes relatifs de matière

grise et substance blanche) ne diffèrent pas entre les deux groupes de patients.

Le nombre d'années d'étude présente un effet principal significatif bilatéral (gauche : F

= 7,08, p = 0,01 ; droite : F = 5,44, p = 0,03). Le genre présente un effet principal

significatif à gauche (F = 6,95, p = 0,01). Aucune interaction significative n'a été

détectée entre le facteur groupe et les autres variables des modèles linéaires.

Les détails des analyses sont rapportés dans le Tableau 6.

35

Page 36: Gyrification corticale et signes neurologiques mineurs dans les ...

Tableau 6 – Différences d'index de gyrification et volumes hémisphériques entre SNM+ et SNM-

* différence significative pour p < 0,05. GM : matière grise, WM : substance blanche. Analyses ajustées

linéairement pour l'âge, le sexe et le nombre d'années d'études.

SNM+ SNM- SNM+ versus SNM-

Hémisphère gauche Moyenne (écart-type) Différence (%) F p value

Index de gyrification global 1.60 (0,10) 1,67 (0,09) - 4,2 4,93 0,03*

Volume brut cérébral (cm3) 537 405 (56 062) 553 511 (49 630) - 2,9 3,8 0,06

Vol GM rapporté au vol hémisphérique (%) 54,7 (3,0) 56,5 (2,7) - 3,2 0,54 0,47

Vol WM rapporté au vol hémisphérique (%) 45,3 (3,0) 43,5 (2,7) + 4,1 0,54 0,47

Hémisphère droit

Index de gyrification global 1,60 (0,11) 1,69 (0,09) - 5,3 5,03 0,03*

Volume brut cérébral (cm3) 538 165 (56 264) 554 433 (50 375) - 2,9 3,62 0,06

Vol GM rapporté au vol hémisphérique (%) 54,6 (3,0) 56,5 (2,8) - 3,4 0,76 0,39

Vol WM rapporté au vol hémisphérique (%) 45,4 (3,0) 43,5 (2,8) + 4,4 0,76 0,39

Figure 5 – Variations des index de gyrification hémisphériques entre SNM+ et SNM-

Index de gyrification global en ordonnées ; A : hémisphère gauche ; B : hémisphère droit. Analyses

ajustées linéairement pour l'âge, le sexe et le nombre d'années d'études.

4.2.2 Gyrification régionale

Des diminutions significatives d'index de gyrification régionaux (l-SI) sont retrouvées

36

Page 37: Gyrification corticale et signes neurologiques mineurs dans les ...

chez les patients SNM+ par rapport aux patients SNM- au niveau du cortex préfrontal

dorso-latéral gauche (p = 0,01) et du cortex occipital latéral droit (p = 0,009).

Figure 6 – Régions présentant une variation d'index de gyrification entre SNM + et SNM-

Régions présentant un index de gyrification plus bas dans le groupe SNM+ : cortex préfrontal dorso-

latéral gauche (A, en rouge) et cortex occipital latéral droit (B, en bleu). Analyses ajustées linéairement

pour l'âge, le sexe et le nombre d'années d'études.

4.3 Corrélation avec les dimensions des SNM

4.3.1 Gyrification hémisphérique

Aucune corrélation significative n'est retrouvée entre les scores des dimensions de SNM

et les index de gyrification hémisphériques.

4.3.2 Gyrification régionale

Des corrélation négatives sont retrouvées entre les scores des dimensions de SNM et des

index de gyrification régionaux (l-SI). Le score de coordination motrice est corrélé

négativement avec l-SI du cortex préfrontal dorso-latéral gauche (p = 0,02) et du cortex

occipital latéral droit (p = 0,005). Le score d'intégration motrice est corrélé

négativement au l-SI du cortex pariéto-occipital médial gauche (p = 0,03). Le score

d'intégration sensorielle est corrélé négativement au l-SI du cortex pariétal supérieur

latéral droit (p = 0,04) et du cortex frontal médial gauche (p = 0,03).

37

Page 38: Gyrification corticale et signes neurologiques mineurs dans les ...

Figure 7 – Régions dont l'index de gyrification est corrélé avec une dimension de SNM

Les scores des dimensions de SNM (coordination motrice en rouge, intégration motrice en violet,

intégration sensorielle en bleu) sont corrélés négativement aux index de gyrification de différentes

régions (p < 0,05). A : hémisphère gauche – vue latérale (cortex préfrontal dorso-latéral en rouge). B :

hémisphère droit – vue latérale (cortex pariétal latéro-supérieur en bleu). C : hémisphère gauche – vue

médiale (cortex pariéto-occipital en violet, cortex frontal en bleu). D : hémisphère droit – vue médiale.

Analyses ajustées linéairement pour l'âge, le sexe et le nombre d'années d'études.

5 DiscussionDans cette première étude portant sur les variations de la gyrification corticale et les

signes neurologiques mineurs (SNM) chez des patients lors du premier épisode

psychotique, nous avons mis en évidence une réduction bilatérale des index de

gyrification hémisphériques (g-SI) chez les patients présentant des SNM (SNM+) par

rapport à ceux qui n'en présentent pas ou peu (SNM-). Une réduction des index de

gyrification régionaux (l-SI) a également été détectée au niveau du cortex préfrontal

dorso-latéral gauche et du cortex occipital latéral droit. Enfin, des corrélations négatives

38

Page 39: Gyrification corticale et signes neurologiques mineurs dans les ...

entre les index régionaux et les scores des trois dimensions principales des SNM

(coordination et intégration motrices, intégration sensorielle - Bombin, Arango et al.

2005) ont également été mises en évidence : au niveau des cortex préfrontal dorso-

latéral gauche et occipital latéral droit pour la coordination motrice, du cortex pariéto-

occipital médial gauche pour l'intégration motrice, des cortex pariétal supéro-latéral

droit et frontal médial gauche pour l'intégration sensorielle. Ces résultats confirment nos

hypothèses d'une diminution de gyrification associée à la présence de SNM et de

l’association de régions cérébrales spécifiques avec chacune de ces dimensions, leur

apportant une validité neuro-anatomique.

5.1 SNM, gyrification corticale et développement cérébral dans la

schizophrénieCes résultats montrent une convergence entre les SNM, marqueur clinique d'anomalies

neurodéveloppementales précoces (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007) et des variations de gyrification corticale, marqueur morphologique du

développement cérébral (Welker 1990 ; Mangin, Jouvent et al. 2010). Cette

convergence est cohérente avec le modèle neurodéveloppemental de la schizophrénie,

en particulier l'existence d'atteintes du développement cérébral précoce (Rapoport,

Addington et al. 2005 ; Fatemi & Folsom 2009) . Elle est également cohérente avec le

postulat que les SNM permettent de distinguer des sous-groupes de patients

psychotiques partageant des processus physiopathogéniques communs (Chan &

Gottesman 2008). A l'inverse, les SNM étant associés à des anomalies

neurodéveloppementales précoces (Bombin, Arango et al. 2005 ; Krebs & Mouchet

2007), la détection d'une diminution d'index de gyrification corticale chez les patients

SNM+ par rapport aux SNM- est un argument quant à l'intérêt et au potentiel de ces

index comme marqueur d'atteintes cérébrales précoces. Cette interprétation est

convergente avec les travaux chez des nouveaux-nés montrant que la gyrification est un

marqueur d'anomalies précoces (Dubois, Benders et al. 2008). La diminution des g-SI

chez les SNM+ par rapport aux SNM- (-4,2% à gauche et -5,3% à droite) est à

rapprocher de la diminution de gyrification bilatérale de g-SI par rapport à des sujets

sains retrouvée chez des sujets schizophrènes adolescents (-5% - Penttila, Paillere-

39

Page 40: Gyrification corticale et signes neurologiques mineurs dans les ...

Martinot et al. 2008) ou chroniques (-4% - Cachia, Paillere-Martinot et al. 2008). Cette

différence de gyrification entre SNM+ et SNM- pourrait être ainsi interprétée en terme

de différence de charge neurodéveloppementale, comme cela est le cas entre patients

schizophrènes et sujets sains (Cachia, Paillere-Martinot et al. 2008 ; Penttila, Paillere-

Martinot et al. 2008).

Des atteintes du cortex préfrontal dorso-latéral gauche dans les SNM ont été mises en

évidence dans des études antérieures de volumétrie cérébrale (Thomann, Wustenberg et

al. 2009 ; Mouchet-Mages, Rodrigo et al. en révision). Les SNM étant liés à des

anomalies des processus d'intégration sensori-motrice (Heinrichs & Buchanan 1988),

ces atteintes préfrontales sont cohérentes avec l'implication du cortex préfrontal dans les

circuits associatifs d'intégration hétéromodal (Mesulam 2000).

Il est intéressant de noter que les deux régions présentant des différences de gyrification

entre patients avec et sans SNM, cortex préfrontal gauche et cortex occipital droit, sont

des régions cérébrales diamétralement opposées. L’implication conjointe de ces deux

régions pourrait être rapprochées de la perte d'asymétrie cérébrale normale, ou « torque

», impliquant les lobes frontaux et occipitaux (Weinberger, Luchins et al. 1982 ;

Kertesz, Polk et al. 1990) et rapportées dans la schizophrénie (Guerguerian & Lewine

1998 ; Petty 1999 ; Crow 2008). Cette anomalie de torque serait compatible avec

l’origine précoce des atteintes cérébrales associées aux SNM (Bombin, Arango et al.

2005 ; Krebs & Mouchet 2007) car la torque apparait très précocement lors du

développement cérébral in utero (Weinberger, Luchins et al. 1982 ; Best 1988).

5.2 Dimensions des SNM et gyrification régionale Pour la coordination motrice, dimension regroupant des tâches de séquences motrices,

notre résultat est conforme à l'hypothèse initiale d’une atteinte frontale avec une baisse

du l-SI du cortex préfrontal dorso-latéral (DLPFC) gauche. Ce résultat est cohérent avec

la construction de la dimension, puisque celle-ci regroupe des items inspirés des tests de

Luria pour étudier les déficits des patients présentant des lésions frontales (Luria 1966).

Ce résultat est également cohérent avec l’implication de cette région dans les processus

40

Page 41: Gyrification corticale et signes neurologiques mineurs dans les ...

de planification des actes moteurs (Mesulam 2000), la plupart des items de la

dimensions consistant à réaliser des séquences motrices plus ou moins complexes. Un

rapprochement pourrait également être fait avec un déficit des processus de mémoire de

travail, déficit retrouvé associé à un dysfonctionnement du DLPFC dans la

schizophrénie (Kebir & Tabbane 2008). Les items de la coordination motrice impliquant

la réalisation de séquences motrices, une atteinte des processus de mémoire de travail

pourrait participer aux baisses de performances à ces items. Enfin, l'atteinte conjointe du

PFC gauche et du cortex occipital droit peut être le reflet d'une diminution de la torque

cérébrale, comme discutée précédemment.

Pour l'intégration motrice, l’implication du cortex pariéto-occipital médial gauche

diffère de l'hypothèse initiale d'une atteinte des aires motrices frontales (Bombin,

Arango et al. 2005 ; Chan & Gottesman 2008). Néanmoins, si les tâches associées à

cette dimension impliquent des réponses motrices (voir détails Annexe 2), elles

impliquent aussi – en particulier pour les items ‘marche talon-pointe’, ‘équilibre’,

‘épreuve doigt-nez-oreille’ – l'intégration d'informations sensorielles, notamment

proprioceptives, vestibulaires, voire visuelles. La dimension d'intégration motrice

pourrait être reconsidérer comme une dimension d'intégration sensori-motrice

puisqu'elle implique aussi des processus d'intégration sensorielle. Cela permettrait de

rendre compte de l'atteinte que nous retrouvons de la partie médiale des aires pariétales

associatives (aires de Brodman 5 et 7 - Mesulam 2000).

Le score de la dimension d'intégration sensorielle est corrélé, conformément à

l'hypothèse initiale, à une baisse du l-SI du cortex pariétal droit dans la portion latérale

des aires associatives (aires de Brodman 5 et 7 - Mesulam 2000). Ce score est aussi

corrélé à une baisse du l-SI du cortex frontal médial gauche. L’implication de cette

région dans la dimension d’intégration sensorielle est cohérente compte-tenu de

l'implication du cortex cingulaire antérieur dans le contrôle des conflits sensoriels

(Kelly, Di Martino et al. 2009). L'atteinte du cortex cingulaire antérieur pourrait

également être rapprochée des déficits cognitifs - comme les atteintes des processus

attentionnels, de la mémoire de travail, de la résolution de problème - parfois retrouvés

associés aux SNM (Bombin, Arango et al. 2005), et qui impliquent les régions

41

Page 42: Gyrification corticale et signes neurologiques mineurs dans les ...

cingulaires antérieures (Kelly, Di Martino et al. 2009).

5.3 Caractéristiques cliniques associées aux SNM Dans notre étude, le groupe contrôle n’est pas composé de sujets sains mais de patients

avec pas ou peu de SNM. Ce dessin expérimental sans sujet sain a été utilisé dans

plusieurs études antérieures d'imagerie sur les SNM, qui ne portent que sur des patients

psychotiques (Kolakowska, Williams et al. 1985 ; King, Wilson et al. 1991 ; Rubin,

Vorstrup et al. 1994 ; Dazzan, Morgan et al. 2004 ; Bersani, Paolemili et al. 2007 ;

Mouchet-Mages, Canceil et al. 2007 ; Janssen, Diaz-Caneja et al. 2009 ; Mouchet-

Mages, Rodrigo et al. en révision). Un groupe de patients SNM- est en effet un bon

groupe contrôle car il permet d'étudier spécifiquement les corrélats cérébraux des SNM,

indépendamment de la maladie.

Les deux groupes de patients diffèrent sur certaines caractéristiques démographiques et

cliniques. L'âge à l'inclusion est ainsi plus élevé chez les SNM+ que chez les SNM-,

probablement en raison d’un âge de début du premier épisode plus tardif pour les

SNM+ que pour les SNM-. Bien que cette différence soit significative, l'âge moyen de

début des deux groupes s’inscrit dans la tranche d'âge typique d’entrée dans la maladie

(18-30 ans – Tandon, Nasrallah et al. 2009). Les SNM+ ont également une légère

augmentation du nombre d'années d'études, de l’ordre d’une année, par rapport aux

SNM-. Cette différence est vraisemblablement liée à l'âge de début du premier épisode

qui est plus tardif parmi les SNM+, l'entrée dans la maladie s'accompagnant souvent

d'un décrochage scolaire, à un âge où les sujets n'ont pas encore terminé leurs études.

En revanche, il est intéressant de noter que les deux groupes ne diffèrent pas pour le

délai entre le début du premier épisode et le début de la prise en charge : la durée de

psychose non traitée (DUP). La DUP étant associée à la qualité du fonctionnement

cognitif et social ultérieurs (Marshall, Lewis et al. 2005 ; Perkins, Gu et al. 2005) et à

l’intégrité de l’anatomie cérébrale (Dell'osso & Altamura 2010), cette absence de

différence entre les deux groupes est importante pour leur comparabilité.

Concernant la symptomatologie, les deux groupes ne diffèrent pour le score à la

42

Page 43: Gyrification corticale et signes neurologiques mineurs dans les ...

PANSS, échelle d'évaluation des symptômes psychotiques (Kay, Fiszbein et al. 1987).

Les sujets ont été inclus au cours de leur premier épisode. Pour la majorité, il s'agissait

du début de leur prise en charge, ils n'avaient donc pas encore été traités

pharmacologiquement ou le traitement était instauré de manière concomitante à leur

inclusion dans l'étude. A l'exception de deux sujets déjà traités, les doses de traitement

neuroleptique reçu en dose cumulée-vie entière ne dépassaient pas 1800mg d'équivalent

chlorpromazine, soit l'équivalent de trois jours de traitement à dose maximale

chlorpromazine (600mg/jour). Étudier des patients à l'occasion du premier épisode

permet d les biais liés aux anomalies survenant tardivement après l'entrée dans la

maladie (Gupta & Kulhara 2010) et ceux liés aux effets potentiels des traitements

neuroleptiques sur les SNM (Whitty, Owoeye et al. 2009) et sur l’anatomie cérébrale

(Navari & Dazzan 2009).

Parmi ces 45 patients, nous avons inclus des patients présentant des troubles schizo-

affectif (n=5), schizophréniforme (n=1), bipolaire avec caractéristiques psychotiques

(n=2). L'inclusion de sujets présentant un trouble schizo-affectif ou schizophréniforme

est une pratique courante dans les études sur la schizophrénie (cf. Tableaux 1 et 2), car

ces diagnostics sont peu stables au cours du temps et évoluent souvent par la suite vers

un diagnostic de schizophrénie caractérisée (Malhi, Green et al. 2008). L'inclusion de

sujets bipolaires avec caractéristiques psychotiques se justifie par le fait que leur trouble

se rattacherait à l'extrémité du spectre des troubles psychotiques, liant la schizophrénie

aux troubles bipolaires en passant par les troubles schizo-affectifs (Malhi, Green et al.

2008). De plus, la constitution des groupes de patients homogènes quant à certaines

dimensions symptomatiques (plus qu'à la catégorie diagnostique) semble une stratégie

pertinente face à l’hétérogénéité clinique des troubles (Frith 1996).

A l'examen neurologique, les deux groupes diffèrent logiquement pour le score de SNM

total et pour les sous-scores des trois dimensions étudiées. En revanche, il est intéressant

de noter qu'ils ne diffèrent pas pour la dimension qualité de la latéralisation. Cette

absence de différence est importante compte-tenu des interactions possibles entre

latéralisation et gyrification (Mangin, Riviere et al. 2004).

43

Page 44: Gyrification corticale et signes neurologiques mineurs dans les ...

5.4 Aspects méthodologiquesL'échelle que nous avons utilisée pour évaluer les SNM est un outil validé (Krebs, Gut-

Fayand et al. 2000). Les cinq dimensions de l'échelle ont également été validées par une

analyse factorielle (Krebs, Gut-Fayand et al. 2000). Trois d'entre elles (coordination

motrice, intégration motrice, intégration sensorielle) correspondent aux trois dimensions

principales de SNM étudiées (Bombin, Arango et al. 2005). Les deux autres dimensions

de l'échelle (qualité de la latéralisation et mouvements anormaux) ne sont pas étudiées

dans les études d'imagerie des SNM (Tableau 1). Les problématiques reliées à ces deux

dimensions sont le plus souvent distinctes des problématiques des SNM ; leur étude se

fonde sur d'autres échelles spécifiques.

Nous avons mesuré la gyrification corticale un index de gyrification 3D utilisé dans des

études précédentes dans la schizophrénie (Cachia, Paillere-Martinot et al. 2008 ;

Penttila, Paillere-Martinot et al. 2008) et les troubles bipolaires (Penttila, Cachia et al.

2009 ; Penttila, Paillere-Martinot et al. 2009). Les sillons corticaux étant des structures

tridimensionnelles dont la forme est difficile à décrire à partir de coupes

bidimensionnelles, l'index de gyrification 3D est plus apte à analyser leur forme

complexe (Cachia, Paillere-Martinot et al. 2008) que l’index de gyrification 2D (Zilles,

Armstrong et al. 1988). Cet index 3D, fondé sur le squelette du masque matière grise /

LCR, est peu sensible aux effets du traitement car il n'est pas influencé par le contraste

gris/blanc de l'IRM, l'ouverture des sillons ni par l'épaisseur corticale (Mangin, Riviere

et al. 2004 ; Cachia, Paillere-Martinot et al. 2008). Il s'agit de la première étude

employant cette mesure de gyrification pour l'étude des SNM et de la schizophrénie.

Les études morphométriques antérieures reposaient principalement sur des analyses

volumétriques (Tableau 1). L'index de gyrification apporte des informations

complémentaires des données volumétriques (Panizzon, Fennema-Notestine et al.

2009). Ainsi, au niveau hémisphérique, notre étude retrouve des différences de

gyrification entre SNM+ et SNM- mais non de volumes globaux (Tableau 6).

44

Page 45: Gyrification corticale et signes neurologiques mineurs dans les ...

5.5 LimitesPlusieurs éléments peuvent limiter l’interprétation des résultats de cette étude. Tout

d'abord, l'absence de contrôles sains ne nous permet pas de confronter parfaitement nos

résultats aux études antérieures de gyrification dans la schizophrénie, qui elles,

comparaient des patients à des contrôles sains (Cachia, Paillere-Martinot et al. 2008 ;

Penttila, Paillere-Martinot et al. 2008 ; Penttila, Cachia et al. 2009 ; Penttila, Paillere-

Martinot et al. 2009). L'inclusion de contrôles sains aurait permis de savoir si les sujets

SNM- présentent un profil de gyrification intermédiaire entre SNM+ et sujets sains : les

SNM seraient alors un marqueur d'anomalies précoces plus marquées que celles

également présentes, mais à un moindre degré, chez les SNM-. Toutefois pour étudier

séparément l'effet de la présence des SNM et l'effet de la maladie, il conviendrait d'avoir

deux sous-groupes de contrôles non psychotiques sains : avec et sans SNM. Or les SNM

étant peu répandus dans la population générale (5% de la population - Bombin, Arango

et al. 2005) et le plus souvent non diagnostiqués en l'absence d'un examen spécifique, le

recrutement de sujets sains avec SNM s'avèrerait difficile.

La schizophrénie est associée avec une moins bonne qualité de la latéralisation

(Klimkeit & Bradshaw 2006). Et des interactions sont décrites entre gyrification et

latéralisation (Mangin, Riviere et al. 2004). Nos deux groupes ne présentent pas de

différence en terme de qualité de latéralisation au vue du score à cette dimension de

l'échelle des SNM, même si l'absence d'évaluation par une échelle standard de la

latéralisation (comme l'échelle d'Edinburgh - Oldfield 1971, ou l'Annett - Annett 1970)

ne nous a pas permis d'étudier plus spécifiquement cette question.

Notre étude s’est focalisée sur les corrélats corticaux des SNM et n’a pas investigué les

structures sous-corticales et cérébelleuses, même si la gyrification est indirectement

influencée par les connexions cortico-sous-corticales (Van Essen 1997 ; Toro & Burnod

2005). Le cervelet est une structure présentant des plissements en surface, mais leur

analyse n'est pas possible avec la résolution spatiale des IRM anatomiques actuelles.

Notre population d'étude comprend des sujets psychotiques chez lesquels des déficits

45

Page 46: Gyrification corticale et signes neurologiques mineurs dans les ...

cognitifs sont rapportés (Palmer, Dawes et al. 2009). Notre étude ne prend pas en

compte des interactions possibles entre ces déficits cognitifs (troubles attentionnels, de

la mémoire de travail...) et les SNM. Bien qu'il ne semble pas exister de relation linéaire

entre eux, des déficits cognitifs pourraient influer sur les performances aux échelles de

SNM (Bombin, Arango et al. 2005). La gyrification s'est aussi révélée influencée par le

niveau de fonctionnement intellectuel (étude de McIntosh sur le QI - McIntosh,

Moorhead et al. 2009). Dans notre étude, le QI a été estimé par le nombre d'années

d'études. Néanmoins, cette mesure n’est qu'un reflet imparfait du QI du fait de

l'interaction avec d'autres facteurs comme par exemple l'âge d'apparition des troubles.

6 Conclusion et perspectivesAinsi, notre étude retrouve une convergence chez des patients psychotiques lors du

premier épisode de deux marqueurs d'anomalies neurodéveloppementales : la présence

de SNM et des variations de gyrification corticale. Ce résultat est conforme à notre

hypothèse initiale et se révèle compatible avec le modèle neurodéveloppemental de la

schizophrénie.

De nouveaux rapprochements pourront être recherchés par des études ultérieures

associant d'autres marqueurs d'anomalies neurodéveloppementales comme les

anomalies morphologiques mineurs ou des anomalies des dermatoglyphes, données

auxquelles nous pouvons avoir accès pour notre population d'étude.

La mesure automatisée des index de gyrification 3D s'est révélée un outil simple

d'utilisation et sensible pour mettre en évidence des anomalies morphologiques entre

deux groupes de patients à partir d'IRM T1 standard. Après avoir mis en évidence une

différence quantitative à l'aide d'index de gyrification, nous pourrons étudier la

morphologie sulcale de manière qualitative, notamment au niveau du cortex cingulaire,

région présentant une atteinte dans notre étude et dans laquelle des anomalies

morphologiques ont déjà été rapportées (Yucel, Stuart et al. 2002 ; Le Provost, Bartres-

Faz et al. 2003 ; Fujiwara, Hirao et al. 2007).

Les anomalies de gyrification témoignant d'atteintes neurodéveloppementales précoces,

celles-ci pourront être recherchées et devraient être retrouvées chez les sujets présentant

un état mental à risque d'évolution vers la schizophrénie. L'étude de la gyrification

46

Page 47: Gyrification corticale et signes neurologiques mineurs dans les ...

pourrait alors ouvrir des perspective pour une aide au dépistage précoce et à la

prévention du trouble schizophrénique.

47

Page 48: Gyrification corticale et signes neurologiques mineurs dans les ...

7 Bibliographie

Akbarian, S., W. E. Bunney, Jr., et al. (1993). "Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development." Arch Gen Psychiatry 50(3): 169-177.

Akbarian, S., A. Vinuela, et al. (1993). "Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development." Arch Gen Psychiatry 50(3): 178-187.

Allen, A. J., M. E. Griss, et al. (2009). "Endophenotypes in schizophrenia: a selective review." Schizophr Res 109(1-3): 24-37.

American Psychiatric Association, A. (2003). "DSM-IV-TR : Manuel diagnostique et statistique des troubles mentaux - Texte revise." 2003; 4e edition; 1065 p.; index, ann.

Andreasen, N. C. (1999). "A unitary model of schizophrenia: Bleuler's "fragmented phrene" as schizencephaly." Arch Gen Psychiatry 56(9): 781-787.

Annett, M. (1970). "A classification of hand preference by association analysis." Br J Psychol 61(3): 303-321.Armstrong, E., A. Schleicher, et al. (1995). "The ontogeny of human gyrification." Cereb Cortex 5(1): 56-63.Artiges, E., C. Martelli, et al. (2006). "Paracingulate sulcus morphology and fMRI activation detection in schizophrenia

patients." Schizophr Res 82(2-3): 143-151.Ashburner, J. (2009). "Computational anatomy with the SPM software." Magn Reson Imaging.Bartley, A. J., D. W. Jones, et al. (1997). "Genetic variability of human brain size and cortical gyral patterns." Brain 120

( Pt 2): 257-269.Bayer, T. A., P. Falkai, et al. (1999). "Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the

"two hit hypothesis"." J Psychiatr Res 33(6): 543-548.Bersani, G., M. Paolemili, et al. (2007). "Neurological soft signs and cerebral measurements investigated by means of

MRI in schizophrenic patients." Neurosci Lett 413(1): 82-87.Best, C. T. (1988). The emergence of cerebral asymmetries in early human development: a literature review and a

neuroembryological model. Brain Lateralization in Children: Developmental Implications. . D. L. Molfese, Segalowitz, S.J. . New York, Guilford Press: 5-34.

Biswas, P., S. Malhotra, et al. (2007). "Comparative study of neurological soft signs in schizophrenia with onset in childhood, adolescence and adulthood." Acta Psychiatr Scand 115(4): 295-303.

Bleuler, E. (1993). Dementia praecox ou Groupe des schizophrénies suivi de La conception d'Eugen Bleuler. Paris, Epel Grec.

Bombin, I., C. Arango, et al. (2005). "Significance and meaning of neurological signs in schizophrenia: two decades later." Schizophr Bull 31(4): 962-977.

Bonnici, H. M., T. William, et al. (2007). "Pre-frontal lobe gyrification index in schizophrenia, mental retardation and comorbid groups: an automated study." Neuroimage 35(2): 648-654.

Bottéro, A. (2008). Un autre regard sur la schizophrénie - De l'étrange au familier. Paris, Odile Jacob.Bottmer, C., S. Bachmann, et al. (2005). "Reduced cerebellar volume and neurological soft signs in first-episode

schizophrenia." Psychiatry Res 140(3): 239-250.Bramon, E., M. Walshe, et al. (2005). "Dermatoglyphics and Schizophrenia: a meta-analysis and investigation of the

impact of obstetric complications upon a-b ridge count." Schizophr Res 75(2-3): 399-404.Brown, A. S. and E. J. Derkits (2010). "Prenatal infection and schizophrenia: a review of epidemiologic and

translational studies." Am J Psychiatry 167(3): 261-280.Buchanan, R. W. and D. W. Heinrichs (1989). "The Neurological Evaluation Scale (NES): a structured instrument for

the assessment of neurological signs in schizophrenia." Psychiatry Res 27(3): 335-350.Bullmore, E., M. Brammer, et al. (1994). "Fractal analysis of the boundary between white matter and cerebral cortex in

magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients." Psychol Med 24(3): 771-781.

48

Page 49: Gyrification corticale et signes neurologiques mineurs dans les ...

Cachia, A., J. F. Mangin, et al. (2003). "A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns." IEEE Trans Med Imaging 22(6): 754-765.

Cachia, A., M. L. Paillere-Martinot, et al. (2008). "Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations." Neuroimage 39(3): 927-935.

Cannon, M., P. B. Jones, et al. (2002). "Obstetric complications and schizophrenia: historical and meta-analytic review." Am J Psychiatry 159(7): 1080-1092.

Cannon, T. D., S. A. Mednick, et al. (1993). "Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contributions of genetic and perinatal factors." Arch Gen Psychiatry 50(7): 551-564.

Chan, R. C. and Gottesman, II (2008). "Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star?" Neurosci Biobehav Rev 32(5): 957-971.

Chen, E. Y., C. L. Kwok, et al. (2000). "Progressive deterioration of soft neurological signs in chronic schizophrenic patients." Acta Psychiatr Scand 102(5): 342-349.

Chen, E. Y., J. Shapleske, et al. (1995). "The Cambridge Neurological Inventory: a clinical instrument for assessment of soft neurological signs in psychiatric patients." Psychiatry Res 56(2): 183-204.

Clarke, M. C., A. Tanskanen, et al. (2009). "Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia." Am J Psychiatry 166(9): 1025-1030.

Compton, M. T. and E. F. Walker (2009). "Physical manifestations of neurodevelopmental disruption: are minor physical anomalies part of the syndrome of schizophrenia?" Schizophr Bull 35(2): 425-436.

Connolly, C. (1950). External morphology of the primate brain. Illinois, Springfield.Craddock, N. and M. J. Owen (2010). "The Kraepelinian dichotomy - going, going... but still not gone." Br J Psychiatry

196(2): 92-95.Crow, T. J. (2008). "The 'big bang' theory of the origin of psychosis and the faculty of language." Schizophr Res 102(1-

3): 31-52.Daniel, G. J. and C. M. Antoine "DSM-IV-TR : Manuel diagnostique et statistique des troubles mentaux - Texte revise."

2003; 4e edition; 1065 p.Dazzan, P., K. D. Morgan, et al. (2006). "The structural brain correlates of neurological soft signs in healthy

individuals." Cereb Cortex 16(8): 1225-1231.Dazzan, P., K. D. Morgan, et al. (2004). "The structural brain correlates of neurological soft signs in AESOP first-

episode psychoses study." Brain 127(Pt 1): 143-153.Delay, J., P. Deniker, et al. (1952). "[Therapeutic use in psychiatry of phenothiazine of central elective action (4560

RP).]." Ann Med Psychol (Paris) 110(2:1): 112-117.Dell'osso, B. and A. C. Altamura (2010). "Duration of untreated psychosis and duration of untreated illness: new vistas."

CNS Spectr 15(4): 238-246.DeMyer, M. K., R. L. Gilmor, et al. (1988). "Magnetic resonance brain images in schizophrenic and normal subjects:

influence of diagnosis and education." Schizophr Bull 14(1): 21-37.Douaud, G., C. Mackay, et al. (2009). "Schizophrenia delays and alters maturation of the brain in adolescence." Brain

132(Pt 9): 2437-2448.Dubois, J., M. Benders, et al. (2008). "Primary cortical folding in the human newborn: an early marker of later

functional development." Brain 131(Pt 8): 2028-2041.Duchesnay, E., A. Cachia, et al. (2007). "Classification based on cortical folding patterns." IEEE Trans Med Imaging

26(4): 553-565.Erb, A. and N. Franck (2009). "Cytoarchitecture cérébrale dans la schizophrénie / Cerebral cytoarchitecture in

schizophrenia." Psychiatr Sci Hum Neurosci 7: 23-30.Falkai, P., W. G. Honer, et al. (2007). "Disturbed frontal gyrification within families affected with schizophrenia." J

Psychiatr Res 41(10): 805-813.Fanous, A. H. and K. S. Kendler (2008). "Genetics of clinical features and subtypes of schizophrenia: a review of the

recent literature." Curr Psychiatry Rep 10(2): 164-170.Fatemi, S. H. and T. D. Folsom (2009). "The neurodevelopmental hypothesis of schizophrenia, revisited." Schizophr

Bull 35(3): 528-548.Fatjo-Vilas, M., D. Gourion, et al. (2008). "New evidences of gene and environment interactions affecting prenatal

49

Page 50: Gyrification corticale et signes neurologiques mineurs dans les ...

neurodevelopment in schizophrenia-spectrum disorders: a family dermatoglyphic study." Schizophr Res 103(1-3): 209-217.

Frith, C. D. (1996). Neurospychologie cognitive de la schizophrénie. Paris, Presses universitaires de France.Frith, C. D. and D. J. Done (1988). "Towards a neuropsychology of schizophrenia." Br J Psychiatry 153: 437-443.Fujiwara, H., K. Hirao, et al. (2007). "Anterior cingulate pathology and social cognition in schizophrenia: a study of

gray matter, white matter and sulcal morphometry." Neuroimage 36(4): 1236-1245.Fukunishi, K., K. Sawada, et al. (2006). "Development of cerebral sulci and gyri in fetuses of cynomolgus monkeys

(Macaca fascicularis)." Anat Embryol (Berl) 211(6): 757-764.Garey, L. (2010). "When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of

microcircuits." J Anat.Geddes, J. R., H. Verdoux, et al. (1999). "Schizophrenia and complications of pregnancy and labor: an individual patient

data meta-analysis." Schizophr Bull 25(3): 413-423.Goldman-Rakic, P. S., L. D. Selemon, et al. (1984). "Dual pathways connecting the dorsolateral prefrontal cortex with

the hippocampal formation and parahippocampal cortex in the rhesus monkey." Neuroscience 12(3): 719-743.Guelfi, D. J. and F. Rouillon (2007). "Manuel de psychiatrie." 2007; 778 p.Guerguerian, R. and R. R. Lewine (1998). "Brain torque and sex differences in schizophrenia." Schizophr Res 30(2):

175-181.Gupta, S. and P. Kulhara (2010). "What is schizophrenia: A neurodevelopmental or neurodegenerative disorder or a

combination of both? A critical analysis." Indian J Psychiatry 52(1): 21-27.Hallett, M., M. K. Lebiedowska, et al. (1993). "Locomotion of autistic adults." Arch Neurol 50(12): 1304-1308.Harris, J. M., T. W. Moorhead, et al. (2007). "Increased prefrontal gyrification in a large high-risk cohort characterizes

those who develop schizophrenia and reflects abnormal prefrontal development." Biol Psychiatry 62(7): 722-729.

Harris, J. M., H. Whalley, et al. (2004). "Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia?" Biol Psychiatry 56(3): 182-189.

Harris, J. M., S. Yates, et al. (2004). "Gyrification in first-episode schizophrenia: a morphometric study." Biol Psychiatry 55(2): 141-147.

Hautecouverture, S., F. Limosin, et al. (2006). "[Epidemiology of schizophrenic disorders]." Presse Med 35(3 Pt 2): 461-468.

Heinrichs, D. W. and R. W. Buchanan (1988). "Significance and meaning of neurological signs in schizophrenia." Am J Psychiatry 145(1): 11-18.

Highley, J. R., L. E. DeLisi, et al. (2003). "Sex-dependent effects of schizophrenia: an MRI study of gyral folding, and cortical and white matter volume." Psychiatry Res 124(1): 11-23.

Highley, J. R., M. M. Esiri, et al. (1998). "Temporal-lobe length is reduced, and gyral folding is increased in schizophrenia: a post-mortem study." Schizophr Res 34(1-2): 1-12.

Hilgetag, C. C. and H. Barbas (2006). "Role of mechanical factors in the morphology of the primate cerebral cortex." PLoS Comput Biol 2(3): e22.

Ho, B. C., C. Mola, et al. (2004). "Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs." Biol Psychiatry 55(12): 1146-1153.

Iritani, S. (2007). "Neuropathology of schizophrenia: a mini review." Neuropathology 27(6): 604-608.Jakob, H. and H. Beckmann (1986). "Prenatal developmental disturbances in the limbic allocortex in schizophrenics." J

Neural Transm 65(3-4): 303-326.Jansiewicz, E. M., M. C. Goldberg, et al. (2006). "Motor signs distinguish children with high functioning autism and

Asperger's syndrome from controls." J Autism Dev Disord 36(5): 613-621.Janssen, J., A. Diaz-Caneja, et al. (2009). "Brain morphology and neurological soft signs in adolescents with first-

episode psychosis." Br J Psychiatry 195(3): 227-233.Jarskog, L. F., L. A. Glantz, et al. (2005). "Apoptotic mechanisms in the pathophysiology of schizophrenia." Prog

Neuropsychopharmacol Biol Psychiatry 29(5): 846-858.Jarskog, L. F., E. S. Selinger, et al. (2004). "Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2

ratio without caspase-3 activation." Am J Psychiatry 161(1): 109-115.

50

Page 51: Gyrification corticale et signes neurologiques mineurs dans les ...

Jou, R. J., A. Y. Hardan, et al. (2005). "Reduced cortical folding in individuals at high risk for schizophrenia: a pilot study." Schizophr Res 75(2-3): 309-313.

Kasanin, J. (1994). "The acute schizoaffective psychoses. 1933." Am J Psychiatry 151(6 Suppl): 144-154.Kay, S. R., A. Fiszbein, et al. (1987). "The positive and negative syndrome scale (PANSS) for schizophrenia."

Schizophr Bull 13(2): 261-276.Kebir, O. and K. Tabbane (2008). "[Working memory in schizophrenia: a review]." Encephale 34(3): 289-298.Kelly, A. M., A. Di Martino, et al. (2009). "Development of anterior cingulate functional connectivity from late

childhood to early adulthood." Cereb Cortex 19(3): 640-657.Kertesz, A., M. Polk, et al. (1990). "Sex, handedness, and the morphometry of cerebral asymmetries on magnetic

resonance imaging." Brain Res 530(1): 40-48.Keshavan, M. S. (1999). "Development, disease and degeneration in schizophrenia: a unitary pathophysiological

model." J Psychiatr Res 33(6): 513-521.Keshavan, M. S., R. D. Sanders, et al. (2003). "Diagnostic specificity and neuroanatomical validity of neurological

abnormalities in first-episode psychoses." Am J Psychiatry 160(7): 1298-1304.Keshavan, M. S., R. Tandon, et al. (2008). "Schizophrenia, "just the facts": what we know in 2008 Part 3:

neurobiology." Schizophr Res 106(2-3): 89-107.Kikinis, R., M. E. Shenton, et al. (1994). "Temporal lobe sulco-gyral pattern anomalies in schizophrenia: an in vivo MR

three-dimensional surface rendering study." Neurosci Lett 182(1): 7-12.King, D. J., A. Wilson, et al. (1991). "The clinical correlates of neurological soft signs in chronic schizophrenia." Br J

Psychiatry 158: 770-775.Klimkeit, E. I. and J. L. Bradshaw (2006). "Anomalous lateralisation in neurodevelopmental disorders." Cortex 42(1):

113-116.Klyachko, V. A. and C. F. Stevens (2003). "Connectivity optimization and the positioning of cortical areas." Proc Natl

Acad Sci U S A 100(13): 7937-7941.Kochunov, P., J. F. Mangin, et al. (2005). "Age-related morphology trends of cortical sulci." Hum Brain Mapp 26(3):

210-220.Kolakowska, T., A. O. Williams, et al. (1985). "Schizophrenia with good and poor outcome. III: Neurological 'soft'

signs, cognitive impairment and their clinical significance." Br J Psychiatry 146: 348-357.Kraepelin, E. (1970). Leçons cliniques sur la démence précoce et la psychose maniaco-dépressive Textes choisis et

présentés par Jacques Postel]. Toulouse, Privat.Krebs, M. O., A. Gut-Fayand, et al. (2000). "Validation and factorial structure of a standardized neurological

examination assessing neurological soft signs in schizophrenia." Schizophr Res 45(3): 245-260.Krebs, M. O. and S. Mouchet (2007). "[Neurological soft signs and schizophrenia: a review of current knowledge]."

Rev Neurol (Paris) 163(12): 1157-1168.Kulynych, J. J., L. F. Luevano, et al. (1997). "Cortical abnormality in schizophrenia: an in vivo application of the

gyrification index." Biol Psychiatry 41(10): 995-999.Le Provost, J. B., D. Bartres-Faz, et al. (2003). "Paracingulate sulcus morphology in men with early-onset

schizophrenia." Br J Psychiatry 182: 228-232.Le Strat, Y., N. Ramoz, et al. (2009). "The role of genes involved in neuroplasticity and neurogenesis in the observation

of a gene-environment interaction (GxE) in schizophrenia." Curr Mol Med 9(4): 506-518.Lloyd, T., P. Dazzan, et al. (2008). "Minor physical anomalies in patients with first-episode psychosis: their frequency

and diagnostic specificity." Psychol Med 38(1): 71-77.Lohmann, G., D. Y. von Cramon, et al. (1999). "Sulcal variability of twins." Cereb Cortex 9(7): 754-763.Luria, A. R. (1966). Cortical functions in Man. New York.Malhi, G. S., M. Green, et al. (2008). "Schizoaffective disorder: diagnostic issues and future recommendations." Bipolar

Disord 10(1 Pt 2): 215-230.Mangin, J. F., E. Jouvent, et al. (2010). "In-vivo measurement of cortical morphology: means and meanings." Curr Opin

Neurol.Mangin, J. F., D. Riviere, et al. (2004). "A framework to study the cortical folding patterns." Neuroimage 23 Suppl 1:

S129-138.

51

Page 52: Gyrification corticale et signes neurologiques mineurs dans les ...

Marshall, M., S. Lewis, et al. (2005). "Association between duration of untreated psychosis and outcome in cohorts of first-episode patients: a systematic review." Arch Gen Psychiatry 62(9): 975-983.

Martins-De-Souza, D., E. Dias-Neto, et al. (2010). "Proteome analysis of schizophrenia brain tissue." World J Biol Psychiatry 11(2): 110-120.

Mathalon, D. H., E. V. Sullivan, et al. (2001). "Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study." Arch Gen Psychiatry 58(2): 148-157.

Maynard, T. M., L. Sikich, et al. (2001). "Neural development, cell-cell signaling, and the "two-hit" hypothesis of schizophrenia." Schizophr Bull 27(3): 457-476.

McGlashan, T. H. (2006). "Is active psychosis neurotoxic?" Schizophr Bull 32(4): 609-613.McIntosh, A. M., T. W. Moorhead, et al. (2009). "Prefrontal gyral folding and its cognitive correlates in bipolar disorder

and schizophrenia." Acta Psychiatr Scand 119(3): 192-198.Meltzer, H. Y. and S. M. Stahl (1976). "The dopamine hypothesis of schizophrenia: a review." Schizophr Bull 2(1): 19-

76.Mesulam, M. M. (2000). Principles of behavioral and cognitive neurology. Oxford ; New York, Oxford University

Press.Mohr, F., W. Hubmann, et al. (1996). "Neurological soft signs in schizophrenia: assessment and correlates." Eur Arch

Psychiatry Clin Neurosci 246(5): 240-248.Moorhead, T. W., J. M. Harris, et al. (2006). "Automated computation of the Gyrification Index in prefrontal lobes:

methods and comparison with manual implementation." Neuroimage 31(4): 1560-1566.Mouchet-Mages, S., O. Canceil, et al. (2007). "Sensory dysfunction is correlated to cerebellar volume reduction in early

schizophrenia." Schizophr Res 91(1-3): 266-269.Mouchet-Mages, S., S. Rodrigo, et al. (en révision). "Correlations of cerebello-thalamo-prefrontal structure and

neurological soft signs in patients with first episode psychosis."Nair, T. R., J. D. Christensen, et al. (1997). "Progression of cerebroventricular enlargement and the subtyping of

schizophrenia." Psychiatry Res 74(3): 141-150.Narr, K., P. Thompson, et al. (2001). "Three-dimensional mapping of gyral shape and cortical surface asymmetries in

schizophrenia: gender effects." Am J Psychiatry 158(2): 244-255.Navari, S. and P. Dazzan (2009). "Do antipsychotic drugs affect brain structure? A systematic and critical review of

MRI findings." Psychol Med 39(11): 1763-1777.Noga, J. T., A. J. Bartley, et al. (1996). "Cortical gyral anatomy and gross brain dimensions in monozygotic twins

discordant for schizophrenia." Schizophr Res 22(1): 27-40.Oldfield, R. C. (1971). "The assessment and analysis of handedness: the Edinburgh inventory." Neuropsychologia 9(1):

97-113.Ouali, A., A. R. Cherif, et al. (2006). "Data mining based Bayesian networks for best classification." Computational

Statistics & Data Analysis 51: 1278-1292.Owen, M. J. and N. Craddock (2009). "Diagnosis of functional psychoses: time to face the future." Lancet 373(9659):

190-191.Palmer, B. W., S. E. Dawes, et al. (2009). "What do we know about neuropsychological aspects of schizophrenia?"

Neuropsychol Rev 19(3): 365-384.Panizzon, M. S., C. Fennema-Notestine, et al. (2009). "Distinct genetic influences on cortical surface area and cortical

thickness." Cereb Cortex 19(11): 2728-2735.Pantelis, C., M. Yucel, et al. (2005). "Structural brain imaging evidence for multiple pathological processes at different

stages of brain development in schizophrenia." Schizophr Bull 31(3): 672-696.Paul, L. K., W. S. Brown, et al. (2007). "Agenesis of the corpus callosum: genetic, developmental and functional aspects

of connectivity." Nat Rev Neurosci 8(4): 287-299.Paus, T., M. Keshavan, et al. (2008). "Why do many psychiatric disorders emerge during adolescence?" Nat Rev

Neurosci 9(12): 947-957.Penttila, J., A. Cachia, et al. (2009). "Cortical folding difference between patients with early-onset and patients with

intermediate-onset bipolar disorder." Bipolar Disord 11(4): 361-370.Penttila, J., M. L. Paillere-Martinot, et al. (2008). "Global and Temporal Cortical Folding in Patients With Early-Onset

52

Page 53: Gyrification corticale et signes neurologiques mineurs dans les ...

Schizophrenia." J Am Acad Child Adolesc Psychiatry.Penttila, J., M. L. Paillere-Martinot, et al. (2009). "Cortical folding in patients with bipolar disorder or unipolar

depression." J Psychiatry Neurosci 34(2): 127-135.Perkins, D. O., H. Gu, et al. (2005). "Relationship between duration of untreated psychosis and outcome in first-episode

schizophrenia: a critical review and meta-analysis." Am J Psychiatry 162(10): 1785-1804.Perrot, M., D. Riviere, et al. (2009). "Joint Bayesian cortical sulci recognition and spatial normalization." Inf Process

Med Imaging 21: 176-187.Petty, R. G. (1999). "Structural asymmetries of the human brain and their disturbance in schizophrenia." Schizophr Bull

25(1): 121-139.Piao, X. and C. A. Walsh (2004). "A novel signaling mechanism in brain development." Pediatr Res 56(3): 309-310.Plaze, M., M. L. Paillere-Martinot, et al. (2009). ""Where Do Auditory Hallucinations Come From?"--A Brain

Morphometry Study of Schizophrenia Patients With Inner or Outer Space Hallucinations." Schizophr Bull.Plum, F. (1972). "Prospects for research on schizophrenia. 3. Neurophysiology. Neuropathological findings." Neurosci

Res Program Bull 10(4): 384-388.Purcell, S. M., N. R. Wray, et al. (2009). "Common polygenic variation contributes to risk of schizophrenia and bipolar

disorder." Nature 460(7256): 748-752.Racamier, P.-C. (1980). Les Schizophrènes dessins de Jean Messagier. Paris, Payot.Rakic, P. (2004). "Neuroscience. Genetic control of cortical convolutions." Science 303(5666): 1983-1984.Rapoport, J. L., A. Addington, et al. (2005). "The neurodevelopmental model of schizophrenia: what can very early

onset cases tell us?" Curr Psychiatry Rep 7(2): 81-82.Regis, J., J. F. Mangin, et al. (2005). ""Sulcal root" generic model: a hypothesis to overcome the variability of the

human cortex folding patterns." Neurol Med Chir (Tokyo) 45(1): 1-17.Richmann, D., R. Stewart, et al. (1975). "Mechanical model of brain convolutional development." Science 189: 18-21.Rubin, P., S. Vorstrup, et al. (1994). "Neurological abnormalities in patients with schizophrenia or schizophreniform

disorder at first admission to hospital: correlations with computerized tomography and regional cerebral blood flow findings." Acta Psychiatr Scand 90(5): 385-390.

Sallet, P. C., H. Elkis, et al. (2003). "Reduced cortical folding in schizophrenia: an MRI morphometric study." Am J Psychiatry 160(9): 1606-1613.

Schneider, K. (1957). Psychopathologie clinique Avant-propos du Dr Ch. Rouvroy. LouvainSchroder, J., R. Niethammer, et al. (1991). "Neurological soft signs in schizophrenia." Schizophr Res 6(1): 25-30.Shaw, P., N. J. Kabani, et al. (2008). "Neurodevelopmental trajectories of the human cerebral cortex." J Neurosci

28(14): 3586-3594.Simpson, G. M. and J. W. Angus (1970). "A rating scale for extrapyramidal side effects." Acta Psychiatr Scand Suppl

212: 11-19.Southard, E. (1915). "On the topographic distribution of cortex lesions and anomalies in dementia praecox with some

account of their functional significance." American Journal of Insanity 71: 603-671.Stanfield, A. C., T. W. Moorhead, et al. (2008). "Increased right prefrontal cortical folding in adolescents at risk of

schizophrenia for cognitive reasons." Biol Psychiatry 63(1): 80-85.Tandon, R., H. A. Nasrallah, et al. (2009). "Schizophrenia, "just the facts" 4. Clinical features and conceptualization."

Schizophr Res 110(1-3): 1-23.Thomann, P. A., M. Roebel, et al. (2009). "Cerebellar substructures and neurological soft signs in first-episode

schizophrenia." Psychiatry Res 173(2): 83-87.Thomann, P. A., T. Wustenberg, et al. (2009). "Neurological soft signs and brain morphology in first-episode

schizophrenia." Psychol Med 39(3): 371-379.Toro, R. and Y. Burnod (2005). "A morphogenetic model for the development of cortical convolutions." Cereb Cortex

15(12): 1900-1913.Turetsky, B. I., P. Crutchley, et al. (2009). "Depth of the olfactory sulcus: a marker of early embryonic disruption in

schizophrenia?" Schizophr Res 115(1): 8-11.Van Essen, D. C. (1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system."

Nature 385(6614): 313-318.

53

Page 54: Gyrification corticale et signes neurologiques mineurs dans les ...

Velligan, D., T. Prihoda, et al. (2005). "Brief psychiatric rating scale expanded version: How do new items affect factor structure?" Psychiatry Res 135(3): 217-228.

Venkatasubramanian, G., P. N. Jayakumar, et al. (2008). "Neuroanatomical correlates of neurological soft signs in antipsychotic-naive schizophrenia." Psychiatry Res 164(3): 215-222.

Vogeley, K., T. Schneider-Axmann, et al. (2000). "Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study." Am J Psychiatry 157(1): 34-39.

Vogeley, K., R. Tepest, et al. (2001). "Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: a morphometric mri study." Am J Psychiatry 158(3): 494-496.

Walker, M. C. and M. D. O'Brien (1999). "Neurological examination of the unconscious patient." J R Soc Med 92(7): 353-355.

Weinberger, D. R. (1984). "Computed tomography (CT) findings in schizophrenia: speculation on the meaning of it all." J Psychiatr Res 18(4): 477-490.

Weinberger, D. R. (1987). "Implications of normal brain development for the pathogenesis of schizophrenia." Arch Gen Psychiatry 44(7): 660-669.

Weinberger, D. R., D. J. Luchins, et al. (1982). "Asymmetrical volumes of the right and left frontal and occipital regions of the human brain." Ann Neurol 11(1): 97-100.

Weinberger, D. R., R. L. Wagner, et al. (1983). "Neuropathological studies of schizophrenia: a selective review." Schizophr Bull 9(2): 193-212.

Welker, W. (1989). " Why does the cerebral cortex fissure and fold." Cereb. Cortex 8B: 3-135.Welker, W. I. (1990). "The significance of foliation and fissuration of cerebellar cortex. The cerebellar folium as a

fundamental unit of sensorimotor integration." Arch Ital Biol 128(2-4): 87-109.Wheeler, D. G. and C. G. Harper (2007). "Localised reductions in gyrification in the posterior cingulate: schizophrenia

and controls." Prog Neuropsychopharmacol Biol Psychiatry 31(2): 319-327.White, T., N. C. Andreasen, et al. (2003). "Gyrification abnormalities in childhood- and adolescent-onset

schizophrenia." Biol Psychiatry 54(4): 418-426.White, T., S. Su, et al. (2010). "The development of gyrification in childhood and adolescence." Brain Cogn 72(1): 36-

45.Whitty, P. F., O. Owoeye, et al. (2009). "Neurological signs and involuntary movements in schizophrenia: intrinsic to

and informative on systems pathobiology." Schizophr Bull 35(2): 415-424.Wiegand, L. C., S. K. Warfield, et al. (2005). "An in vivo MRI study of prefrontal cortical complexity in first-episode

psychosis." Am J Psychiatry 162(1): 65-70.Wood, S. J., C. Pantelis, et al. (2008). "Progressive changes in the development toward schizophrenia: studies in

subjects at increased symptomatic risk." Schizophr Bull 34(2): 322-329.Wright, I. C., P. Sham, et al. (2002). "Genetic contributions to regional variability in human brain structure: methods

and preliminary results." Neuroimage 17(1): 256-271.Yucel, M., G. W. Stuart, et al. (2002). "Paracingulate morphologic differences in males with established schizophrenia:

a magnetic resonance imaging morphometric study." Biol Psychiatry 52(1): 15-23.Yucel, M., S. J. Wood, et al. (2003). "Morphology of the anterior cingulate cortex in young men at ultra-high risk of

developing a psychotic illness." Br J Psychiatry 182: 518-524.Yung, A. R., L. J. Phillips, et al. (2004). "Risk factors for psychosis in an ultra high-risk group: psychopathology and

clinical features." Schizophr Res 67(2-3): 131-142.Zhang, W. and D. L. Benson (2000). "Development and molecular organization of dendritic spines and their synapses."

Hippocampus 10(5): 512-526.Zilles, K., E. Armstrong, et al. (1988). "The human pattern of gyrification in the cerebral cortex." Anat Embryol (Berl)

179(2): 173-179.

54

Page 55: Gyrification corticale et signes neurologiques mineurs dans les ...

8 Annexes

8.1 Annexe 1 – Critères diagnostiques des troubles psychotiques (DSM IV-TR)

Critères issus du DSM IV-TR (American Psychiatric Association 2003).

SCHIZOPHRÉNIE ET AUTRES TROUBLES PSYCHOTIQUES

F20.xx Schizophrénie

A) Symptômes caractéristiques : Deux (ou plus) des manifestations suivantes sont présentes, chacune pendant une partie significative du temps pendant une période d'1 mois (ou moins quand elles répondent favorablement au traitement) : 1) idées délirantes2) hallucinations 3) discours désorganisé (c.-à-d., coq-à-l'âne fréquents ou incohérence) 4) comportement grossièrement désorganisé ou catatonique 5) symptômes négatifs, p. ex., émoussement affectif, alogie, ou perte de volonté N.-B. : Un seul symptôme du critère A est requis si les idées délirantes sont bizarres ou si les hallucinations consistent en une voix commentant en permanence le comportement ou les pensées du sujet, ou si, dans les hallucinations, plusieurs voix conversent entre elles.

B) Dysfonctionnement social/des activités : Pendant une partie significative du temps depuis la survenue de la perturbation, un ou plusieurs domaines majeurs du fonctionnement tels que le travail, les relations interpersonnelles, ou les soins personnels sont nettement inférieurs au niveau atteint avant la survenue de la perturbation (ou, en cas de survenue dans l'enfance ou l'adolescence, incapacité à atteindre le niveau de réalisation interpersonnelle, scolaire, ou dans d'autres activités auquel on aurait pu s'attendre).

C) Durée : Des signes permanents de la perturbation persistent pendant au moins 6 mois. Cette période de 6 mois doit comprendre au moins 1 mois de symptômes (ou moins quand ils répondent favorablement au traitement) qui répondent au Critère A (c.-à-d., symptômes de la phase active) et peut comprendre des périodes de symptômes prodromiques ou résiduels. Pendant ces périodes prodromiques ou résiduelles, les signes de la perturbation peuvent se manifester uniquement par des symptômes négatifs ou par deux ou plus des symptômes figurant dans le Critère A présents sous une forme atténuée (p. ex., croyances bizarres, perceptions inhabituelles).

D) Exclusion d'un Trouble schizo-affectif et d'un Trouble de l'humeur : Un Trouble schizo-affectif et un Trouble de l'humeur avec caractéristiques psychotiques ont été éliminés soit (1) parce qu'aucun épisode dépressif majeur, maniaque ou mixte n'a été présent simultanément aux symptômes de la phase active ; soit (2) parce que si des épisodes thymiques ont été présents pendant les symptômes de la phase active, leur durée totale a été brève par rapport à la durée des périodes actives et résiduelles.

E) Exclusion d'une affection médicale générale/due à une substance : La perturbation n'est pas due aux effets physiologiques directs d'une substance (c.-à-d. une drogue donnant lieu à abus, un médicament) ou à une affection médicale générale.

F) Relation avec un Trouble envahissant du développement : En cas d'antécédent de Trouble autistique ou d'un autre Trouble envahissant du développement, le diagnostic additionnel de Schizophrénie n'est fait que si des idées délirantes ou des hallucinations prononcées sont également présentes pendant au moins un mois ou moins quand elles répondent favorablement au traitement.

F20.8 Trouble schizophréniforme A) Répond aux critères A, D, et E de la Schizophrénie. B) L'épisode pathologique (englobant les phases prodromique, active et résiduelle) dure au moins 1 mois mais moins de 6 mois. (Quand on doit faire un diagnostic sans attendre la guérison, on doit qualifier celui-ci de « provisoire »).

F25.x Trouble schizo-affectif A) Période ininterrompue de maladie caractérisée par la présence simultanée, à un moment donné, soit d'un Épisode dépressif majeur, soit d'un Épisode maniaque, soit d'un Épisode mixte, et de symptômes répondant au critère A de la Schizophrénie. N.-B. : L'Épisode dépressif majeur doit comprendre le Critère A1 : humeur dépressive. B) Au cours de la même période de la maladie, des idées délirantes ou des hallucinations ont été présentes pendant au moins 2 semaines, en l'absence de symptômes thymiques marqués.

55

Page 56: Gyrification corticale et signes neurologiques mineurs dans les ...

C) Les symptômes qui répondent aux critères d'un épisode thymique sont présents pendant une partie conséquente de la durée totale des périodes actives et résiduelles de la maladie. D) La perturbation n'est pas due aux effets physiologiques directs d'une substance (p. ex., une substance donnant lieu à abus, un médicament) ou d'une affection médicale générale.

TROUBLE BIPOLAIRE AVEC CARACTÉRISTIQUES PSYCHOTIQUES

F31.xx Trouble bipolaire A) Les critères sont actuellement réunis (ou l'ont été lors de l'épisode le plus récent) pour un diagnostic d'Épisode maniaque, hypomaniaque, mixte ou dépressif majeur.

B) Au moins un antécédent d'Épisode maniaque ou mixte.

C) Les symptômes thymiques entraînent une souffrance cliniquement significative ou une altération du fonctionnement social, professionnel, ou dans d'autres domaines importants.

D) Les symptômes thymiques évoqués aux critères A et B ne sont pas mieux expliqués par un Trouble schizo-affectif et ils ne sont pas surajoutés à une

Schizophrénie, un Trouble schizophréniforme, un Trouble délirant, ou un Trouble psychotique non spécifié.

E) Les symptômes thymiques évoqués aux critères A et B ne sont pas dus aux effets physiologiques directs d'une substance (p. ex., une substance donnant lieu à abus, un médicament ou un autre traitement) ou d'une affection médicale générale (p. ex., une hypothyroïdie).

__.x4 Sévère avec caractéristiques psychotiques idées délirantes ou hallucinations. Spécifier dans la mesure du possible, si les caractéristiques psychotiques sont congruentes ou non congruentes à l'humeur :

Caractéristiques psychotiques congruentes à l'humeur : le contenu des idées délirantes ou des hallucinations concorde entièrement avec les thèmes maniaques ou dépressifs typiques ;

Caractéristiques psychotiques non congruentes à l'humeur : le contenu des idées délirantes ou des hallucinations ne comporte pas les thèmes maniaques ou dépressifs typiques. On retrouve des symptômes tels que des idées délirantes de persécution (non liées directement à des thèmes de grandeur ou dépressifs), de pensée imposée ou des idées délirantes d'influence.

56

Page 57: Gyrification corticale et signes neurologiques mineurs dans les ...

8.2 Annexe 2 – Examen neurologique standardisé (Krebs et al. 2000)

EXAMEN STANDARDISE NEUROLOGIQUE pour l'évaluation des SIGNES NEUROLOGIQUES MINEURS

Avant l'examen lui-même, observez votre patient dans des conditions informelles (dans la salle d'attente, lorsqu'il rentre dans la pièce, pendant les premières phrases de présentation). Le sujet doit être examiné sans chaussures. Vous devez avoir un marteau à réflexe, un crayon, les objets pour la reconnaissance et une feuille de papier si vous remplissez le MMS.

Tout au long de l'examen, vous devez être attentif aux postures, aux mouvements anormaux et aux syncinésies, à la qualité des gestes effectués sur commande, aux erreurs de latéralisation D / G

Les syncinésies seront cotées globalement à la fin.Les éventuels mouvements anormaux seront cotés par l'AIMS, avec les manœuvres des procédures d'examen de l'AIMS. Les items correspondant à la Simpson-Angus (cotés de 0 à 4) sont indiqués par le symbole S-A. Ils sont cotés séparément à droite et à gauche puis globalement (moyenne arrondie à l’entier supérieur).

• Marche- Station deboutFaire la démonstration et faîtes exécuter 10 pas.

• 1.MARCHE: Mbre Inf

"Faites quelques pas …(laisser faire une dizaine de pas)

"Maintenant faites demi-tour"

0: normale, demi-tour facile1: un peu lente, hésitante ou à pas diminués2: marche difficile nécessitant une aide (blocages, propulsion, festination…) 3: marche impossible ou presque même avec une aide

• 2.MARCHE : Ballant des bras (S-A)

Observer le ballant des bras lors de la marche et l'allure générale

Cotation globale :

D00,5

1

1,5

2

NormaleDiminution du ballant du bras à la marcheDiminution importante du ballant du bras avec évidente rigidité Démarche raide, le bras maintenu de manière rigide devant l'abdomenDémarche voûtée, traîne des pieds. Progresse par propulsion rétropulsion

G00,5

1

1,5

2

• 3.Marche talon-pointe

Les déviations, le fait que le talon ne soit pas collé à la pointe de l'autre pied sont comptés comme erreur

"En suivant la ligne, marchez comme moi en gardant bien les pieds en ligne et en collant le talon à la pointe du pied …"Montrer au patient sur quelques pas

0: épreuve correctement effectuée1: rattrape son équilibre avec les bras sans dévier; pas plus de 2 erreurs2: déviations liées au manque d'équilibre, nombreuses erreurs3: épreuve impossible

• 4.EQUILIBRE (Romberg)pieds joints (15 sec)± rétropulsion

AIMS : Regarder si mouvements anormaux du buste (regarder de face et de profil)

"Mettez-vous pieds joints, les bras à l'horizontal devant vous, les paumes vers le bas. Fermez les yeux et restez sans bouger" (15 sec)

(Si bon équilibre spontané, apprécier la stabilité en poussant le sujet vers l'arrière)

0: Stabilité posturale normale1: Légère instabilité lors de la rétropulsion, se rattrape sans aide2: Tendance à la chute lors de la rétropulsion, tomberait sans l'aide de l'examinateur3: Tendance à la chute spontanée (tient moins de 15 sec)

57

Page 58: Gyrification corticale et signes neurologiques mineurs dans les ...

• 5.EQUILIBRE EN LIGNEpied en ligne : talon-pointe (15 sec)

"Mettez les pieds en ligne, prenez votre équilibre et fermez les yeux. Essayer de ne pas bouger "

0: Stabilité posturale normale ≥15 sec, sans bouger les bras1: Tient au moins 10 sec pieds en ligne et/ou utilise les bras en balancier pour tenir l'équilibre.2: Tient entre 5 et 9 sec 3: < 5 sec ou épreuve impossible

• 6.PROTRUSION DE LA LANGUE

"Tirez la langue et essayez de la maintenir hors de la bouche le plus longtemps possible"

0: Normale (≥15sec)1: 10< <152: 5< <103: <5 ou impossible

AIMS: Regarder si mouvements anormaux de la langue

"Rentrez la langue en gardant la bouche ouverte…" (15 sec) si mouvements coter l'AIMS

• 7. SALIVATION (S-A)

"Ouvrez la bouche et levez la langue"Pour la cotation, tenir compte de votre observation du patient quand il parle et demander au patient si l'excès de salive le gêne parfois

0: Normale1: Salivation excessive au point où une flaque apparaît quand la bouche est ouverte et la langue levée2 : L'excès de salivation est présent et peut parfois gêner la parole3: Parole difficile en raison d'un excès de salivation4: Franc bavage

• 8.CHUTE DES BRAS (S-A) "Ouvrez les yeux, mettez les bras à l'horizontal latéralement et laissez les retomber"

Cotation globale :

D0

0,5

11,5

2

Normal. Chute libre avec fort claquement et rebondChute légèrement ralentie avec contact moins audible, petit rebondChute ralentie. Pas de rebond.Chute très ralentie. Aucun claquement.Le bras tombe comme contre une résistance ou au travers de la colle.

G0

0,5

11,5

2

• 9.EPREUVE DOIGT / NEZ / OREILLE

Mettez votre bras droit à l'horizontal puis touchez le bout de votre nez avec votre index droit…encore… (faire répéter 3 fois puis interrompre le patient), toucher maintenant le lobe de l'oreille G…(3 fois) … le lobe de l'oreille D… (3 fois) "Avec votre index G… (idem : nez… lobe de l'oreille G; … lobe de l'oreille D"

D00.5

1

1.5

NormaleLéger crochetage au début mais s'améliore, correct au 3è essaiRate clairement la cible au moins une fois ou crochetage systématiqueRate plusieurs fois la cible

G00.5

1

1.5

Item 10 voir après item 14

• 11.RECONNAISSANCE D/G SUR L'EXAMINATEUR

"Montrez moi ma main droite"(se placer devant le sujet bras croisés, la main droite dessous, puis en se retournant, bras croisés dans le dos puis bras décroisés de dos et enfin bras décroisés de face en se retournant à nouveau)

0 : normale1 : une erreur ou hésitation à deux reprises2 : deux erreurs3 : trois erreurs ou plus

• Examen au litCette case n'appartient pas à l a cotation et n'est destinée qu'à recueillir les anomalies éventuelles de l'examen neurologique "habituel", à adapter selon les cas. (optionnel)

58

Page 59: Gyrification corticale et signes neurologiques mineurs dans les ...

• EXAMEN STANDART (sauf SD extra-pyramidal)• ROT Hyperréflexie 0 1

hyporéflexie 0 1Réf. Asym 0 1

• RCP Babinski D / G• Steward Holmes 0 1• Force musculaire Diminution 0

1Asymétrie 0 1

• Tonus Augmentation 0 1Diminution 0 1Asymétrie 0 1

• Sensibilité : Diminution 0 1 Asymétrie 0 1• Paires crâniennes• Réflexes Primitifs : Grasping 0 1 Réf de succion 0 1Réf palmo-mentonnier0 1 Réf de la moue 0 1

• 12. TONUS AXIAL (Chute de la tête) (S-A)

(le sujet étant allongé, soulevez la tête du patient et laissez-la retomber)

0: La tête retombe complètement avec un bruit distinct1: Léger ralentissement dans la chute de la tête, absence de claquement2: Ralentissement modéré de la chute, presque visible à l'œil nu3: La tête tombe avec résistance, lentement4: La tête n'atteint pas la table d'examen.

• 13. RÉF GLABELLAIRE (S-A)

Nombre :

(le sujet étant allongé, percutez à vitesse rapide et régulière la glabelle, sans obstruer le regard)"Regardez droit devant vous en essayant de ne pas cligner les yeux"

0: 0-5 clignements1: 6-10 clignements2: 11-15 clignements3: 16-20 clignements4: 21 clignements et plus

• Assis sur le bord du lit

• 14. EXTINCTION D / G(hand-face)

"Je vais toucher votre main ou votre visage, à droite ou à gauche, parfois simultanément. Fermez les yeux et dîtes-moi où vous sentez que je touche"

0 : normale1 : une erreur ou hésitation à deux reprises2 : deux erreurs3 : trois erreurs ou plus

Touchez dans l'ordre : main droite, main gauche, main droite+ joue gauche, main droite + joue droite, main gauche + joue gauche, main gauche + joue droite, les deux mains, les deux joues.

• 10. RECONNAISSANCE D/G SUR LE SUJET LUI-MÊME ("prend sa droite pour sa gauche")

Coter en fonction de ce que vous observez en 9 et 14.

0 : normale1 : une erreur2 : deux erreurs3 : trois erreurs ou plus

• 15. Tremblements (S-A) Coter les tremblements présents lorsque le sujet est au repos.

Cotation globale :

D00,5

1

1,5

2

NormalLéger tremblement évident à la vue et au toucherTremblement de la main ou du bras de façon intermittenteTremblement persistent d'un ou plusieurs membresTremblement de tout le corps

G00,5

1

1,5

2

59

Page 60: Gyrification corticale et signes neurologiques mineurs dans les ...

• 16. MOUVEMENTS PASSIFS DE L'EPAULE (S-A)

Tenir d'une main le coude maintenu à angle droit, de l'autre la main du patient et effectuer des mouvements d'anté/rétropulsion du bras et rotation externe de l'humérus

Cotation globale :

D00,51

1,5

2

NormalRigidité et résistance légèresRigidité et résistance moyennesRigidité importante, mouvements passifs difficilesRigidité et résistance extrêmes, articulation presque gelée

G00,51

1,5

2

• 17. RIGIDITÉ DU COUDE (S-A)

AIMS :Observez d'éventuels mvts anormaux et appréciez la rigidité.

Chaque bras est mobilisé en flexion -extension, en palpant le biceps

Cotation globale :

D00,51

1,5

2

NormalRigidité et résistance légèresRigidité et résistance moyennesRigidité importante, mouvements passifs difficilesRigidité et résistance extrêmes, articulation presque gelée

G00,51

1,5

2

• 18. RIGIDITÉ DU POIGNET (S-A)

Tenir le poignet d'une main et les doigts de l'autre et mobiliser le poignet en flexion-extension

Cotation globale :

D00,51

1,5

2

NormalRigidité et résistance légèresRigidité et résistance moyennesRigidité importante, mouvements passifs difficilesRigidité et résistance extrêmes, articulation presque gelée

G00,51

1,5

2

• 19. MOUVEMENT PENDULAIRE JAMBES (S-A)

"Mettez vos jambes à l'horizontale et laissez les retomber"

Cotation globale :

D00,5

1

1,5

2

La jambe balance librementLégère diminution du ballant des jambesRésistance au ballant moyenneRésistance et limitation du ballant importantsAbsence complète de ballant

G00,5

1

1,5

2

• 20. LATÉRALISATION "Montrez moi comment vous…"

Oeil D G "regardez par le trou de ce papier"Tendre une feuille roulée comme une longue vue

20o : D G

Pied D GD G

…shootez dans un ballon?…écrasez une cigarette par terre?

20p : D G M

60

Page 61: Gyrification corticale et signes neurologiques mineurs dans les ...

Main D GD GD GD G

D GD GD GD G

D GD G

hors cotation : D G

…vous peignez ? …vous brossez les dents ?…coupez avec des ciseaux ?…lancez une balle ? …utilisez un couteau et une

fourchette? (notez le côté du couteau)…plantez un clou avec un marteau ?…utilisez un décapsuleur ? …distribuez des cartes? (notez la main qui distribue)…ouvrez une porte avec la clef.…grattez une allumette sur la boîte?

De quelle main écrivez-vous ?

20m : D G M

20 glob : 0: latéralisation homogène (précisez droite ou gauche)1: latéralisation oculaire différente du corps2: latéralisation différente main /pied3: latéralisation mixte à la main ou au pied

(A la main, mixte si au moins 2 ≠ en dehors de la main d'écriture)

20e : D G

• 21. QUALITÉ DES PRAXIES (coter en fonction des gestes effectués en 20.) 0: gestes précis1: gestes imprécis ou un geste très mal fait2: au moins 3 gestes mal faits3: gestes à peine reconnaissables ou erreurs grossières

• Assis sur une chaise devant une tableGestes répétitifs : Montrez le geste demandé au patient à une vitesse modérée en s'assurant qu'il le reproduise bien, puis donner la consigne :" Faîtes cela le plus vite possible et le plus régulièrement possible."Si le sujet effectue le geste très rapidement, mais très irrégulièrement, lui rappeler "Essayer de rester le plus régulier possible". Observer la vitesse, la régularité du geste et une éventuelle asymétrie.Noter les mouvements anormaux et les syncinésies (faire poser la main libre sur sa cuisse en supination).

• MOUVEMENTS ALTERNATIFS DU PIED

• 22. VITESSE PIEDBattEMENT

talon-pointe

"Tapez du pied, comme si vous étiez impatient en gardant le talon au sol " (15 fois)"Touchez le sol alternativement avec la pointe du pied puis le talon du même pied " (10 fois)

D00.511.5

Vitesse normaleLéger ralentissementVitesse ralentieEpreuves effectuées très difficilement ou nécessitant une grande concentration

G00.511.5

• 23. DYSRYTHMIE PIED D00.511.5

Rythme régulierDysrythmie discrèteDysrythmie nette à une épreuveRythme très irrégulier

G00.511.5

• MOUVEMENTS ALTERNATIFS DE LA MAIN

• 24. VITESSE MAINPronosupination

OPPOSITION I-II

"Maintenant, tapez sur le bord de la table avec le dos puis la paume de votre main le plus vite possible…"(10 fois) "Tapez le pouce et l'index de la même main le plus vite… (15 fois)"Faîtes les marionnettes …" (5 fois)

Coter la vitesse "moyenne" à ces 3 épreuves

D00.511.5

NormaleLéger ralentissementVitesse ralentieEpreuves effectuées très difficilement ou nécessitant une grande concentration

G00.511.5

61

Page 62: Gyrification corticale et signes neurologiques mineurs dans les ...

• 25. OPPOSITION I-V

AIMS : observer si mvts anormaux du visage, des extrémités ou du tronc

"Avec le pouce, touchez l'extrémité de chacun des doigts de la même main, le plus vite possible… (5 fois)

Cotation de l’AIMS

D00.51

1.5

NormaleLéger ralentissement ou 1 erreurVitesse nettement ralentie ou 2 erreursEpreuve effectuée très difficilement (très lente, grande concentration)

G00.51

1.5

• 26. POING-TRANCHE-PAUME

"Faîtes comme moi…Effectuer le geste lentement avec le patient pour qu'il l'apprenne (jusqu'à 5 fois) puis lui demander de continuer seul en lui demandant d'accélérer s'il effectue correctement la consigne (5 fois)

D00.511.5

NormaleLéger ralentissement ou 1 erreurVitesse ralentie ou 2 erreursEpreuve effectuée très difficilement (très lente, 3 erreurs ou plus)

G00.511.5

• 27. DYSRYTHMIE DE LA MAIN Cotez la régularité des gestes de la main

observée lors des 3 items précédents 24-26

D00.511.5

Rythme régulierDysrythmie discrèteDysrythmie nette à une épreuveDysrythmie nette à plusieurs épreuves

G00.511.5

• 28. SYNCINÉSIES Cotez les éventuelles syncinésies observées au cours de l'ensemble de l'examen

D00.51

1.5

AbsenceSyncinésies discrètes à 1 épreuveSyncinésies nettes à 1 épreuve ou syncinésies discrètes à plusieurs épreuvesSyncinésies nettes à plusieurs épreuves

G00.51

1.5

• 29. MOUVEMENTS ANORMAUX (Compléter l' AIMS si ≠ 0)

si mvts anormaux, demandez :"Avez-vous des problèmes dentaires?"Portez-vous habituellement un dentier ?"Avez-vous remarqué que vous aviez parfois des mouvements involontaires?"En êtes-vous gêné ?"

0: Aucun1: Discrets et limités à un seul territoire2: Nets mais non continuels et/ou touchant plus d'un territoire3: Importants continuels ou presque

+ complétez la cotation de l'AIMS

• 30. ASYMETRIE D/G 0: Pas asymétrie nette ou asymétrie variable selon les épreuves1: Meilleure habileté du côté dominant, mais l'asymétrie reste modérée2: Très nette asymétrie au profit du côté dominant ou asymétrie modérée en faveur du côté non dominant3: Asymétrie très importante

• 31. STÉRÉOGNOSIESérie 1 : Bouton, Pile, Taille crayon, visSérie 2 : Pièce, Pince à linge, Trombone, Dé

"Fermez les yeux et dîtes moi comment s'appelle l'objet que je mets dans votre main?"

0: Aucune erreur1: Une erreur2: 2 erreurs3: 3 erreurs ou plus

62

Page 63: Gyrification corticale et signes neurologiques mineurs dans les ...

• 32. DESSIN : CUBE (si le sujet hésite, précisez "dans l'espace" ou "en 3 dimensions")

0: Correctement effectué1: Déformation mais reste en 3 D2: 3 dimensions peu perceptible3: Dessin à plat

• 33. GRAPHESTHÉSIEUtilisez le bout d'un stylo dont la pointe est rétractée.Noter le nombre d'erreur sans dire au sujet s'il se trompe

(montrez au sujet ce que vous allez faire en dessinant un "1" dans votre paume) : Je vais dessiner des lettres ou des chiffres dans votre paume comme si votre poignet était le bas d'une page. Fermez les yeux et dîtes moi ce que je dessine dans votre main?"Dessiner les lettres ci-dessous dans un ordre variable . Pour la 2ème main, intercaler d'autres lettres (par exemple Z, 1, 4, 3, W, 9 …)

Droite 5 6 N P S D G

00.5

Aucune erreurune erreur

00.5

Gauche 5 6 N P S 1 deux erreurs 1

1.5 3 erreurs ou plus 1.5

• 34. REPRODUCTION DE TAPES

"Fermez les yeux et écoutez, puis refaites pareil"Tapez dans vos mains en suivant les exemples :

0: Correctement effectué1: Rythme un peu imprécis OU 1 essai raté 2: Rythme imparfait mais encore discernable ou 2/3 essais mal faits3: Rythme à peine ou non reconnaissable sur les 3 essais

• 35. INTEGRATION VISUO-SPATIALE

"tapez la main à plat sur la table un coup fort pour chaque "gros point" un coup faible pour chaque "petit point", comme je vous montre"Faîtes d'abord l'exemple sur la ligne 1 (hors cotationà, avec lui Demandez au sujet de le refaire pour s'assurer qu'il a compris, puis faîtes lui faire la tâche en lui montrant chaque ligne l’une après l’autre

0: Correctement effectué1: différence fort/faible pas bien perceptible OU erreurs dans 1 essai 2: différence fort/faible peu perceptible OU erreurs dans 2/3 essais 3: Différence fort/faible à peine ou non perceptible ou les 3 essais ratés

• 36.DESSIN : ECHELLE 0: Correctement effectué1: Un trait qui dépasse2: 2 traits qui dépassent3: 3 traits ou plus qui dépassent

63

Page 64: Gyrification corticale et signes neurologiques mineurs dans les ...

• 37.DESSIN : LIGNES COURBES Comptez le nombre de fois où le trait dessiné par le

patient touche les lignes du bord pré-dessinées.

0: Correctement effectué1: ≤2 contacts avec les traits2: ≤6 contacts avec les traits3: 7 ou plus contacts

• 38.MEMOIRE Cotation de la mémoire verbale du MMS (items 19-21) 0: Correctement effectué1: un oubli2: 2 oublis3: 3 oublis

• 39.CALCUL Cotation du calcul 7 en 7 du MMS (items 14-18) 0: Correctement effectué1: une erreur2: 2 erreurs3: 3 ou plus erreurs

Classification des items selon les cinq dimensions de l'échelle :Coordination motrice

5. Equilibre en ligne

22. Vitesse pied : battement / talon-pointe (D/G)

23. Dysrythmie pied (D/G)

24. Vitesse main : pronosupination / opposition I-II (D/G)

25. Opposition I-V (D/G)

26. Poing-tranche-paume (D/G)

27. Dysrythmie main (D/G)

30. Asymétrie D/G

Intégration motrice

1. Marche

3. Marche talon-pointe

4. Equilibre (Roomberg)

6. Protrusion de la langue

9. Epreuve doigt/nez/oreille

Intégration sensorielle

11. Reconnaissance D/G sur l'examinateur

14. Extinction D/G (main sur visage)

21. Qualité des praxies

31. Stéréognosie

32. Dessin cube

33. Graphesthésie

Mouvements anormaux

28. Syncinésies (D/G)

29. Mouvements anormaux

Qualité de la latéralisation

10. Reconnaissance D/G sur le sujet lui-même

20. Latéralisation

64

Page 65: Gyrification corticale et signes neurologiques mineurs dans les ...

Intégration visuo-spatiale

Recopiez ces deux pentagones ci dessous :

Dessinez un cube : Dessinez une échelle :

(5 traits minimum)

Suivre le chemin dessiné en essayant de ne pas lever le crayon, ni toucher les bords (sauf aux croisements ; temps limité à 1 mn)

Ecrivez une phrase :

65

Arrivée

Départ

essai, hors cotation 1

2

3

4

Page 66: Gyrification corticale et signes neurologiques mineurs dans les ...

8.3 Annexe 3 – Procédure d'analyses d'images avec Brainvisa

Extraction et analyse des sillons corticaux à partir d'IRM T1 avec le logiciel Brainvisa.Procédure établie et suivie au cours du master.

• Rassembler les données à analyser (IRM T1)• Regrouper au sein d'un même dossier les

fichiers images• Les fichiers image doivent correspondre aux

données IRM brutes non traitées• Normaliser le nom des fichiers :

◦ par exemple : les 4 premières lettres du nom de famille du sujet, ou le code sujet

◦ le nom du fichier image doit permettre de retrouver facilement le sujet analysé

• Connaître le format des fichiers image sources• Connaître l'orientation des images lors de

l'acquisition◦ radiologique ou neurologique◦ idéalement repérage avec une pastille

lors de l'acquisition

• Installer le logiciel Brainvisa (IRM T1)• Logiciel libre et gratuit, téléchargeable sur

www.brainvisa.com/ • En cas de besoin, se référer aux

documentations sur http://brainvisa.info/index_f.html

• Lancer l'application Brainvisa (Start Shell) : fenêtre « Configuration »

• Rubrique (à gauche) « BrainVISA »◦ Choisir le niveau de l'utilisateur◦ Choisir la langue◦ Pour les fichiers SPM : par défaut,

orientation radiologique sélectionnée• Création d'une base de données Brainvisa

◦ Rubrique (à gauche) « Databases »◦ Choisir l'emplacement de cette base de

données◦ Nommer cette base de données◦ Actualiser pour terminer sa création

effective• Pour revenir ultérieurement à cette fenêtre de

configuration◦ Menu « BrainVISA », « Preferences »

• Importer les images dans Brainvisa• « Boites à outils », rubrique « IRM T1 »

• « importation », « Importation d'une IRM T1 »

• comme pour toutes les opérations qui vont suivre, pour traiter plusieurs images selon le même protocole, choisir « Itérations »

• « input » : ouvrir le dossier contenant les images sources

• « output » : renseigner◦ la base de données brainvisa qui

contiendra les données (cette base doit avoir été créée préalablement à l'étape précédente)

◦ le type de données (Raw T1 MRI pour IRM brutes)

◦ le format qu'aura le fichier image importé dans la base de données brainvisa (NIFTI-1 est le format le plus récent)

◦ le protocole (à créer : par exemple : patients, témoins, ou T0, T12 ...)

• Exécuter• Attention ! Vérifier l'absence de flip lors de

l'importation• Actualiser la base de données (à faire

régulièrement, après toute modification)

• Traiter des images dans Brainvisa• « Boites à outils », rubrique « IRM T1 »• puis « Pipeline de segmentation », « Pipeline

T1 2007 »• Ouverture d’une fenêtre « Pipeline T1 2007

X » (X : nb d’utilisation de cette fenêtre)◦ tâches à effectuer dans la colonne de

gauche « Name »◦ toutes les étapes sélectionnées sont

effectuées : si elles ont déjà été faites, le nouveau traitement supprime les données précédentes◦ sélectionner les IRM à traiter (si

plusieurs, par « Itérations ») après avoir choisi les étapes de traitement : cliquer sur le bidon vert pour les IRM présentes dans une base de données brainvisa

• Les étapes peuvent s’effectuer toutes à la suite, ou selon les groupements suivants :◦ préparation du sujet pour le Pipeline

Anatomique◦ correction des biais de T1, analyse de

l’histogramme, segmentation du masque du

66

Page 67: Gyrification corticale et signes neurologiques mineurs dans les ...

cerveau◦ séparation du masque du cerveau◦ transformation Talairach, interface

gris/blanc, extraction de la surface ouverte d’un hémisphère, maillage de la tête, graphe des plis corticaux◦ sulci recognition

• Ce découpement permet un contrôle qualité et des corrections à différents niveaux d’analyses

• Penser à décocher toutes les étapes déjà effectuées !

• Pour accéder à la fenêtre correspondant à une étape, cliquer sur cette étape dans la colonne « Name »

• Préparation du sujet pour le Pipeline Anatomique

• Indiquer un point pour les commissures antérieure et postérieure, un point inter hémisphérique, un point de l’hémisphère gauche

• Cliquer sur l’icône du crâne trépané de la ligne commissure antérieure◦ une fenêtre de visualisation

« Anatomist » s’ouvre◦ la molette centrale de la souris permet

de zoomer◦ lorsque la souris est positionnée (très

précisément) sur le curseur de déplacement vertical (à droite), la molette permet de changer de coupe◦ Choisir les coupes axiales◦ Cliquer sur la CA pour enregistrer sa

position• Pour la CP : coupes sagittales : en arrière de

l’aqueduc de Sylvius• Pour les points IH et HG : coupes coronales

(+/- passant par le vortex)◦ point IH : choisir un point central près

de la calotte crânienne◦ point HG (Attention à l’orientation des

images !) : choisir un point dans le lobe temporal

• Cliquer sur « Exécuter » pour enregistrer avant de passer au sujet suivant

• Correction des biais de T1, analyse de l’histogramme, segmentation du masque du cerveau

• Vérifier sur quelques sujets la bonne correction du biais : une mauvaise correction de biais peut entraîner des anomalies du graphe des plis corticaux

• Des fortes valeurs dans l’histogramme

(par exemple du fait d’un hypersignal osseux) peuvent perturber les analyses ultérieures : il peut être nécessaires de « raboter » le spectre des images en supprimant les fortes valeurs (ceci nécessite une intervention spécialisée par un utilisateur chevronné)

• Vérifier la segmentation du masque◦ visualiser le résultat du traitement

automatique dans une fenêtre « Anatomist » en cliquant sur l’œil de la ligne « Brain Mask »◦ vérifier le résultat pour plusieurs sujets◦ si le résultat n’est pas satisfaisant

▪ essayer d’autres paramètres de segmentation automatique (standard, robust, fast …) et/ou d’autres niveaux d’érosion

▪ retenir les paramètres donnant les meilleurs résultats sur plusieurs images

▪ idéalement traiter toutes les images avec ces paramètres

▪ essayer de limiter au plus petit nombre d’image l’utilisation d’autres paramètres

◦ s’il est nécessaire d’apporter manuellement quelques corrections

▪ ouvrir la fenêtre de correction manuelle : cliquer sur le crayon (à côté de l’œil) sur la ligne « Brain Mask »

▪ mettre dans un coin de l’écran la petite fenêtre permettant d’enregistrer les corrections faites

▪ cliquer sur l’image (bouton gauche de la souris) pour intégrer des éléments non pris en compte

▪ cliquer sur l’image (bouton gauche de la souris) pour intégrer des éléments non pris en compte

▪ en cas de doute sur la nature d’un élément, comparer sur plusieurs types de coupes

▪ les paramètres (taille du pinceau) sont modifiables

▪ enregistrer les modifications• Fermer les fenêtres de visualisation

67

Page 68: Gyrification corticale et signes neurologiques mineurs dans les ...

« Anatomist » en cliquant sur l’œil pour le déselectionner

• Séparation du masque du cerveau• Vérifier tous les sujets (cliquer sur l’icône œil,

ligne « Split Mask »)• Les hémisphères (y compris les

circonvolutions extrêmes : au niveau apical, des lobes temporal ou orbito-frontal) et le cervelet doivent être complètement pris en compte (colorés) et bien séparés entre eux ; aucune structure extra-cérébrale ne doit être sélectionnée

• Vérifier sur différentes coupes • Pour corriger manuellement les erreurs de

séparation◦ ouvrir la fenêtre de correction

manuelle : cliquer sur le crayon (à côté de l’œil) sur la ligne « Split Mask »◦ mettre dans un coin de l’écran la petite

fenêtre permettant d’enregistrer les corrections faites ◦ les paramètres (taille du pinceau) sont

modifiables ; sélectionner dans la fenêtre de réglage des paramètres, la zone à corriger (HG, HD, cervelet) : elle apparaît en rouge◦ cliquer sur l’image (bouton gauche de

la souris) pour intégrer des éléments non pris en compte◦ cliquer sur l’image (bouton gauche de

la souris) pour intégrer des éléments non pris en compte◦ seule la zone sélectionnée peut être

modifiée ; pour modifier l’attribution d’un volume, il est d’abord nécessaire de le supprimer de la zone à laquelle il est rattaché, avant de l’intégrer dans une nouvelle zone ◦ enregistrer les modifications

• Transformation Talairach, interface gris/blanc, extraction de la surface ouverte d’un hémisphère, maillage de la tête, graphe des plis corticaux

• Ces étapes sont automatisées• Deux versions sont proposées pour le graphe

des sillons : 3.0 et 3.1• Vérifier les graphes des plis corticaux avant

l’étape de reconnaissance des sillons (icône œil sur les lignes left_ et right_graph)

• Pour manipuler les hémisphères 3D dans « Anatomist », cliquer sur la molette de la souris, et déplacer la souris en maintenant la molette enfoncée

• Si nécessaire, revenir à l’étape de séparation pour apporter des corrections, puis relancer à nouveau ces étapes

• Reconnaissance des sillons• Cette étape est automatisée• Les sillons sont ensuite identifiés selon un

code couleur• Le nom du sillon s’affiche lorsque la souris

est positionnée sur le sillon• Des corrections manuelles peuvent être faites

pour les petits sillons• Si la reconnaissance des sillons principaux

n’est pas satisfaisante, c’est le signe d’un problème important dans le traitement des images : faire appel à un utilisateur chevronné

• Données morphométriques• Différentes données morphométriques sont

automatiquement collectées lors des étapes de traitement décrites précédemment

• Cliquer sur « Morphométrie » dans la colonne « Boite à outils »

• Ces données peuvent être extraites de Brainvisa pour un traitement par des logiciels de statistiques (par exemple Datamind)

68

Page 69: Gyrification corticale et signes neurologiques mineurs dans les ...

Résumé

Contexte L'hypothèse neurodéveloppementale de la schizophrénie, qui postule des atteintes du développement cérébral précoce et à l’adolescence, est devenu le modèle physiopathologique de référence de cette maladie complexe. Les signes neurologiques mineurs (SNM) font partie des marqueurs cliniques de la schizophrénie liés à des anomalies cérébrales précoces. L‘étude de la gyrification corticale dans la schizophrénie connaît actuellement un intérêt grandissant car c’est un marqueur du développement cérébral.

Hypothèse Nous faisons les hypothèses d’une diminution de la gyrification corticale associée à la présence de SNM chez les patients présentant un trouble du spectre schizophrénique, et d'atteintes de régions spécifiques pour chacune des trois dimensions principales des SNM : coordination motrice, intégration motrice et intégration sensorielle.

Sujets et Méthodes 45 patients, recrutés lors du premier épisode psychotique, ont été évalués pour les signes neurologiques mineurs avec un examen neurologique standardisé. Pour chaque patient, la morphologie corticale a été mesurée par des index de gyrification 3D hémisphériques et régionaux obtenus à partir d’imagerie par résonance magnétique (IRM). Les index de gyrification ont ensuite été comparés entre les patients avec pas ou peu de SNM (SNM - ; N=26) et les patients avec des SNM (SNM + ; N=19). Enfin, une analyse de corrélation entre les index de gyrification et les trois dimensions principales des SNM a été réalisée chez l’ensemble des patients.

Résultats Par rapport aux patients SNM-, les patients SNM+ présentent une réduction bilatérale des index de gyrification hémisphériques et une réduction des index de gyrification régionale au niveau du cortex préfrontal dorso-latéral gauche et du cortex occipital latéral droit. Des corrélations négatives entre les index régionaux et les scores des dimensions de SNM sont retrouvées : au niveau du cortex préfrontal dorso-latéral gauche et du cortex occipital latéral droit pour la coordination motrice, du cortex pariéto-occipital médial gauche pour l'intégration motrice, du cortex pariétal supéro-latéral droit et frontal médial gauche pour l'intégration sensorielle.

Discussion Cette première étude investiguant la gyrification corticale chez des patients psychotiques présentant des SNM confirme nos hypothèses d'une diminution de gyrification associée à la présence de SNM, en accord avec l’hypothèse neurodéveloppementale de la schizophrénie. L’implication de régions cérébrales spécifiques avec chacune des dimensions des SNM apporte une validité neuroanatomique à l’échelle clinique des SNM utilisée.

Mots-clés : schizophrénie, hypothèse neurodéveloppementale, signes neurologiques mineurs, gyrification corticale, IRM