Graphene adhesion under high pressure

30
Graphene adhesion under high pressure Alfonso San Miguel J. Nicolle, D. Machon, Ph. Poncharal, O. Pierre-Louis Laboratoire de Physique de la Matière Condensée et Nanostructures Université de Lyon 1 et CNRS

description

Graphene adhesion under high pressure. Alfonso San Miguel J. Nicolle, D. Machon , Ph. Poncharal , O. Pierre-Louis Laboratoire de Physique de la Matière Condensée et Nanostructures Université de Lyon 1 et CNRS. Probing graphene adhesion. Measure of graphene adhesion energy. - PowerPoint PPT Presentation

Transcript of Graphene adhesion under high pressure

Page 1: Graphene  adhesion under high pressure

Graphene adhesion underhigh pressure

Alfonso San Miguel

J. Nicolle, D. Machon, Ph. Poncharal, O. Pierre-Louis

Laboratoire de Physique de la Matière Condensée et NanostructuresUniversité de Lyon 1 et CNRS

Page 2: Graphene  adhesion under high pressure

Probing graphene adhesion

Page 3: Graphene  adhesion under high pressure

Measure of graphene adhesion energy

Adhesion energy :0.45 ± 0.02 J m−2 for monolayer graphene0.31 ± 0.03 J m−2 for samples containing two to five graphene sheets

S.P. Koenig et al, Nature Nanotechnology 6, 543–546 (2011)

Page 4: Graphene  adhesion under high pressure

Graphene under high pressure

J. Nicolle, D. Machon, P. Poncharal, O. Pierre-Louis and A. San Miguel

Nano Letters 11, 3564 (2011)

Page 5: Graphene  adhesion under high pressure

Graphene Raman signal

1200 1400 1600 1800 2400 2600 28000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Inte

nsity

(a.u

)

Raman shift (cm-1)

Raman of a single layer sample

G2D

D

Page 6: Graphene  adhesion under high pressure

Experimental : Raman in DAC

G 2D

Page 7: Graphene  adhesion under high pressure

Grap

hene

Bila

yer

λ =647.1 nm

1400 1600 2600 2800

R am an sh ift (cm -1)

1400 1600 2600 2800

Raman shift (cm -1)

Ambient Pressure

P=1.0 GPa

P=2.4 GPa

P=3.5 GPa

(i)

(i)

(X5)

(X2)

(b)

(i)

(i)

(i)

(i)

G

G

G

G2D

2D

2D

2D

1400 1600 2600 2800

Raman shift (cm -1)

(i)

1400 1600 2600 2800

Ram an shift (cm -1)

Ambient Pressure

P=2.4 GPa

P=5.0 GPa

P=7.0 GPa

(i)

(a)

(i)

(i) (i)

(i)

G

G

G

G

2D

2D

2D

2D(X5)

(X2)

(X2)(X2)

1400 1600 2600 2800

R am an sh ift (cm -1)

1400 1600 2600 2800

Raman shift (cm -1)

1400 1600 2600 2800

R am an sh ift (cm -1)

1400 1600 2600 2800

R am an sh ift (cm -1)

1400 1600 2600 2800

R am an sh ift (cm -1)

1400 1600 2600 2800

Raman shift (cm -1)

Ambient Pressure

P=1.0 GPa

P=2.4 GPa

P=3.5 GPa

(i)

(i)

(X5)

(X2)

(b)

(i)

(i)

(i)

(i)

G

G

G

G2D

2D

2D

2D

1400 1600 2600 2800

Raman shift (cm -1)

(i)

1400 1600 2600 2800

Ram an shift (cm -1)

Ambient Pressure

P=2.4 GPa

P=5.0 GPa

P=7.0 GPa

(i)

(a)

(i)

(i) (i)

(i)

G

G

G

G

2D

2D

2D

2D(X5)

(X2)

(X2)(X2)

Page 8: Graphene  adhesion under high pressure

G-band position with pressure(PTM: 4:1 methanol ethanol)

Page 9: Graphene  adhesion under high pressure

G-band pressure slope

Page 10: Graphene  adhesion under high pressure

Graphene Raman G-band in hydrostatic conditions

Hooke law for an hexagonal system:

000

2 1211

44

44

331313

131112

131211

z

xy

zx

yz

zz

yy

xx

SSS

SSSSSSSSSS

In-plane Biaxial deformation: (z = 0)

..2 12112 SSD

In-plane Triaxial deformation: (z = )

..2 1312113 SSSD

11.5.7 GPacmPG

11.0.4 GPacmPG

Page 11: Graphene  adhesion under high pressure

BIAXIAL

TRIAXIAL

but why so … ?

Page 12: Graphene  adhesion under high pressure

Substrat (Si+300 nm SiO2)

What can be expected ?

can the substrate tract (at least partially) graphene ?

Page 13: Graphene  adhesion under high pressure

Graphene on SiO2

AFM: High-Fidelity Conformation of Graphene to SiO2 Topographic Features (99%)

SiO2 substrate

W.G. Cullen et al., PRL 105, 215504 (2010)

rms ~ 0.35 nm

Page 14: Graphene  adhesion under high pressure

O. Pierre-Louis, Phys. Rev. E 78, 021603 (2008)

Adhesion of a membrane on a sinusoidal surface

Perfect adhesion

Unbinding

Page 15: Graphene  adhesion under high pressure

A very familiar phenomena

Page 16: Graphene  adhesion under high pressure

1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of layers (n) =(keq/kg)2

kg : typical substrate curvaturekeq=(2gn/Cn)1/2 is the adhesion equilibrium curvature

gn : multilayer graphene adhesion energy on SiO2

Cn : bending rigidity.

Calculatedunbinding transition

Unbinding between n=2 and 3

Page 17: Graphene  adhesion under high pressure

BIAXIAL

TRIAXIAL

Page 18: Graphene  adhesion under high pressure

BIAXIAL

TRIAXIAL

Why this difference of~ 3 – 3.5 cm-1 GPa-1 ???

Page 19: Graphene  adhesion under high pressure

0 1 2 3 40

20

40

60

80

100

120

140

160

0 1 2 3 40

20

40

60

80

100

120

140

160

2D (P

)-2D (0) (cm

-1.GP

a-1)

2D1B

2D(P

)- 2D

(0) (

cm-1.G

Pa-1

)

Pressure (GPa)

2D1A

2D2A

2D2B

Alcohol Argon

2D

1B

2D1A

2D2A

2D2B

Splitting of the bilayer 2D band:an indication of doping

ArgonAlcohol

Predicted by: C. Attaccalite et al., Nano Letters 2010, 10, 1172-1176.

Page 20: Graphene  adhesion under high pressure

0 1 2 3 4 5 6 7 8

0,0

0,5

1,0

1,5 1 layer 2 layers

I(2

D)/I

(G)

Pressure (GPa)

Argon

I(2D)/I(G) evolution

Page 21: Graphene  adhesion under high pressure

0 1 2 3 4 5 6 7 8

0,0

0,5

1,0

1,5

Alcool

1 layer 2 layers 1 layer 2 layers

I(2D

)/I(G

)

Pressure (GPa)

Argon

I(2D)/I(G) evolution

Page 22: Graphene  adhesion under high pressure

Pressure effect

High pressure induced doping

A. Das et al., Nat Nano 2008, 3, 210-215.

Page 23: Graphene  adhesion under high pressure

n PTMn/ P (x1013)

(cm-2 GPa-1)

1alc. 0.70.2Ar 0.2 0.2

2alc. 0.80.2Ar 0.1 0.2N2 0.1 0.2

High pressure induced dopingn ~ 5 x1013 cm-2 at 7 GPa

(EF ~ 1 eV)

Page 24: Graphene  adhesion under high pressure

Doping effect on the G-band

Graphene : A. Das et al., Nat Nano 2008, 3, 210-215.Bilayer: A. Das et al., Phys. Rev. B 79, 155417 2009

Pressure effect

)(

6.31

grapheneGPacm

PG

)(

4.31

bilayerGPacm

PG

Page 25: Graphene  adhesion under high pressure

A last question : why no-doping for n=3 in alcohol ?

Substrate mediated doping !

Page 26: Graphene  adhesion under high pressure

Substrate mediated dopingby silanol groups

Si–O–H groups as e- donors

Si–O–Si + Alcohol → Si–O–H

Lee et al. J. Phys. Chem. C Lett. 111, 12504 (2007)

Page 27: Graphene  adhesion under high pressure

Conclusions

• Adhesion or unbinding decides on the graphene pressure behavior (2D vs 3D)

• Adhesion/unbinding transition observed between n=2 and n=3 (n =2 is different !!)

• Extreme surface P-mediated doping in alcohol

in the adhesive configurationApplications: pressure/stress sensors

Page 28: Graphene  adhesion under high pressure

n PTM

n/ P

(x1013)

(cm-2 GPa-1)

[G/ P]dop

(cm-1 GPa-1)

G/ P

(measured)

(cm-1 GPa-1)

[G/ P]mech

(cm-1 GPa-1)

1alc. 0.70.2 3.61.1 10.50.2 6.91.4

Ar 0.2 0.2 1.0 1.1 7.6±1.0 6.6 2.0

2

alc. 0.80.2 3.41.1 10.40.3 7.01.4

Ar 0.1 0.2 0.3 0.6 6.9±1.0 6.6 1.6

N2 0.1 0.2 0.3 0.6 6.9±0.2 6.6 0.8

Doping and mechanical (bi-axial, n=1,2) pressure effects

Page 29: Graphene  adhesion under high pressure

2550 2650 2750 2550 2650 2750

l=514 nm l=647.1 nm

n=1

n=2

n=3

n=4

n=5

HOPG

HOPG

n=5

n=3

n=2

n=1

(a) (b)

n=4

2D band: Identification of the number of layers

Page 30: Graphene  adhesion under high pressure