Exo Corriges

22
L’énergie 8 CHAPITRE CORRIGÉ DES EXERCICES

description

Exercices

Transcript of Exo Corriges

Page 1: Exo Corriges

L’énergie

8CHAPITRE

13098_meca_ch08-a_ep2.qxd:Layout 1 3/30/11 4:33 PM Page 269

CORRIGÉ DES EXERCICES

Page 2: Exo Corriges
Page 3: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 285

8.1 Le concept d’énergie1. Les compagnies qui distribuent de l’électricité la facturent habituellement en kilowatts-heures. Est-ce

une mesure de force, d’énergie ou de puissance ? Expliquez votre réponse.C’est une mesure d’énergie puisque le kilowatt-heure peut être converti en joules et que le joule

est l’unité de mesure de l’énergie.

2. Une boule de billard roule vers une autre boule de billard, au repos sur une table. Après la collision, la première boule est au repos et la seconde se déplace avec la même vitesse et la même orientationqu’avait la première boule au départ. Que s’est-il passé ?Lors de la collision, la première boule de billard a exercé un travail sur la seconde boule. En d’autres

termes, elle lui a transféré sa vitesse et son orientation, c’est-à-dire une partie de son énergie.

3. a) La machine A exécute deux fois plus de travail que la machine B. Pouvez-vous en conclure que la machine A est deux fois plus puissante que la machine B ? Expliquez votre réponse.Non, parce que je ne connais pas le temps pris par la machine A pour exécuter son travail

ni le temps pris par la machine B pour exécuter le sien.

b) La machine A est deux fois plus puissante que la machine B. Pouvez-vous en conclure que la machine A exécute deux fois plus de travail que la machine B ? Expliquez votre réponse.Non, parce que je ne connais pas le temps pris par chaque machine pour exécuter son travail.

Par exemple, si la machine A travaille deux fois moins longtemps que la machine B, toutes les deux

exécuteront la même quantité de travail.

ExercicesS E C T I O N 8 .1

Ex. 12

Ex. 3

Ex. 4

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 285

Page 4: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

286 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

8.2 Les formes d’énergie1. a) Un sac à provisions se trouve dans le coffre d’une voiture qui accélère. Que devient l’énergie

cinétique du sac ? Expliquez votre réponse.Selon la verticale, deux forces s’exercent sur le sac : la force gravitationnelle, orientée vers le bas,

et la force normale, orientée vers le haut. Ces deux forces ont la même grandeur, elles s’exercent

dans des sens inverses et elles s’annulent. À l’horizontale, la force de poussée de la voiture, orientée

vers l’avant, ainsi que la force de frottement, exercée par le plancher du coffre et orientée vers

l’arrière, s’exercent sur le sac. La poussée étant plus grande que le frottement, la vitesse horizontale

augmente donc. L’énergie cinétique augmente en même temps que la vitesse.

b) Un attelage de chiens tire un traîneau à vitesse constante sur un lac enneigé. Que devient l’énergiecinétique du traîneau ? Expliquez votre réponse.Quatre forces s’exercent sur l’attelage : la force gravitationnelle, orientée vers le bas, la

force normale, orientée vers le haut, la force de traction des chiens, orientée vers l’avant, et la force

de frottement du sol, orientée vers l’arrière. Comme le traîneau n’effectue aucun déplacement

vertical et que sa vitesse horizontale est constante, la résultante de toutes ces forces est nulle et

l’énergie cinétique du traîneau ne varie donc pas.

2. a) Un camion semi-remorque peut-il avoir plus d’énergie cinétique qu’une motocyclette ? Expliquez votre réponse.

Oui. À vitesses égales, l’énergie cinétique d’un camion est plus élevée que celle d’une

motocyclette, puisque la masse du camion est plus élevée que celle de la motocyclette.

b) Un camion semi-remorque peut-il avoir moins d’énergie cinétique qu’une motocyclette ? Expliquez votre réponse.Oui. Une motocyclette en mouvement possède plus d’énergie cinétique qu’un camion immobile.

3. Certains goélands transportent des huîtres au-dessus d’une région rocheuse. Ils laissent alors tomberl’huître, qui gagne de la vitesse et va se fracasser contre les rochers. Expliquez ce comportement du point de vue de l’énergie.Lorsqu’un goéland transporte une huître dans les airs, il augmente son énergie potentielle

gravitationnelle. Lorsqu’il la laisse tomber, il lui permet de transformer cette énergie potentielle en

énergie cinétique.

Ex. 1

S E C T I O N 8 . 2

Ex. 27

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 286

Page 5: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 287

Ex. 4

Ex. 3

4. Quelle quantité d’énergie cinétique possède un sprinter de 75 kg qui court 100 m en 10 s ?

1. Ek = ?

2. m = 75 kgΔx = 100 mΔt = 10 s

3. v = ΔxΔt

Ek = mv212

4. v =

= 10 m/s

Ek = × 75 kg × (10 m/s)2

= 3750 J

12

100 m 10 s

5. Ce sprinter possède 3800 J d’énergie cinétique.

b) Que devient cette puissance en chevaux-vapeur ? (Indice : Le facteur de conversion entre les chevaux-vapeur et les watts est de 1 hp = 746 W.)La puissance requise est de 40 chevaux-vapeur.

5. a) Quelle est la puissance requise pour faire passer une voiture de l’immobilité à une vitesse de 90 km/h en 10 s ? (Indice : La masse de la voiture est de 950 kg.)

1. P = ?

2. vi = 0 km/h, soit 0 m/svf = 90 km/h, soit 25 m/sΔt = 10 sm = 950 kg

3. Ek = mv2

W = ΔEk

P = WΔt

12

4. Eki = × 950 kg × (0 m/s)2

= 0 J

12

Ekf = × 950 kg × (25 m/s)2

= 296 875 J

W = Ekf — Eki= 296 875 J — 0 J= 296 875 J

P =

= 29 687,5 W

296 875 J 10 s

12

5. La puissance requise est de 30 000 W.

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 287

Page 6: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

288 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

6. Dans un marché public, une cliente place six bananes dans le plateau d’une balance à ressortsuspendue au plafond. Le ressort s’étire et le plateau descend.

a) Comment l’énergie potentielle élastique du ressort varie-t-elle ?Elle augmente.

b) Comment l’énergie potentielle gravitationnelle des bananes varie-t-elle ?Elle diminue.

7. Quelle est l’énergie potentielle gravitationnelle acquise par une alpiniste de 58 kg qui se trouve au sommet du mont Everest, dont l’altitude est de 8848 m ?

1. Epg = ?

2. m = 58 kgΔy = 8848 m

3. Epg = mgΔy

4. Epg = 58 kg × 9,8 m/s2 × 8848 m= 5 029 203 J

5. L’énergie potentielle gravitationnelle acquise par cette alpiniste est de 5,0 MJ.

Ex. 59

Ex. 68

8. Quelle quantité d’énergie maximale peut être emmagasinée dans un ressort dont la constante derappel est de 500 N/m et qui peut être comprimé sur une distance de 30 cm ?

1. Epé = ?

2. k = 500 N/mΔx = 30 cm, soit 0,30 m

3. Epé = kΔx212

4. Epé = × 500 N/m × (0,30 m)2

= 22,5 J

12

5. L’énergie maximale pouvant être emmagasinée dans ce ressort est de 23 J.

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 288

Page 7: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 289

Ex. 10

9. Pour étirer un ressort sur une distance de 3,50 cm, il faut appliquer une force de 150 N.

Δ x1 = 3,50 cm

0x

= 150 N➞ F1

a) Quelle est la force nécessaire pour comprimer le ressort sur une distance de 2,25 cm ?

Δ x2 = –2,25 cm

0x

= ?➞ F2

1. F2 = ?

2. Δx1 = 3,50 cm, soit 0,0350 mF1 = 150 NΔx2 = –2,25 cm, soit –0,0225 m

3. F = kΔx

4. Je dois d’abord trouver la constante de rappel du ressort.

k = F1

Δx1

=

= 4286 N/m

F2 = kΔx2= 4286 N/m × –0,0225 m= –96,4 N

150 N 0,0350 m

5. Pour comprimer ce ressort sur une distance de 2,25 cm, il faut appliquer une force de 96,4 N

dans le sens inverse de l’axe des x.

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 289

Page 8: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

290 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

b) Quelle quantité d’énergie potentielle élastique est emmagasinée dans ce ressort lorsqu’il estcomprimé sur une distance de 2,25 cm ?

1. Epé = ?

2. k = 4286 N/mΔx = 0,0225 m

3. Epé = kΔx212

4. Epé = × 4286 N/m × (0,0225 m)2

= 1,08 J

12

5. Lorsque ce ressort est comprimé sur une distance de 2,25 cm, il emmagasine 1,08 J

d’énergie potentielle élastique.

10. Lorsqu’on appuie sur la pompe d’un distributeur de savon liquide, on comprime un petit ressort.L’énergie potentielle élastique accumulée par ce ressort est de 2,5 mJ lorsqu’on le comprime sur une distance de 0,50 cm. Sur quelle distance faut-il le comprimer pour que son énergie potentielleélastique passe à 8,5 mJ ?

1. Δx2 = ?

2. Δx1 = 0,50 cm, soit 0,0050 mEpé1 = 2,5 mJ, soit 0,0025 JEpé2 = 8,5 mJ, soit 0,0085 J

3. Epé = kΔx212

4. Je cherche d’abord la valeur de la constantede rappel de ce ressort.

k = 2Epé1

Δx12

=

= 200 N/m

Δx2 =

= 0,0092 m

2 × 0,0085 J200 N/m

2 × 0,0025 J (0,0050 m)2

5. Il faut comprimer ce ressort sur une distance de 9,2 mm.

D’où Δx = 2 Epé

k

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 290

Page 9: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 291

11. Au cours d’une partie de base-ball, un joueur frappe la balle et l’envoie au-delà de la clôture quidélimite le jeu. La balle est attrapée par une spectatrice, située à 5,16 m au-dessus de la hauteur initialede la balle. La masse de la balle est de 150 g et sa vitesse initiale est de 130 km/h.

a) Au moment où elle est attrapée par la spectatrice, quelle est l’énergie cinétique de la balle ?

1. Ek = ?

2. Δy = 5,16 mm = 150 g, soit 0,150 kgvi = 130 km/h, soit 36,1 m/s

3. Ek = mv2

Epg = mgΔy

Em = Ek + Epg

4. Au moment où la balle est frappée, touteson énergie est cinétique. Elle vaut donc :

Eki = mvi21

2

12

= × 0,150 kg × (36,1 m/s)2

= 97,7 J

Epgi = 0 J

Em = 97,7 J + 0 J= 97,7 J

Au moment où la balle est attrapée, sonénergie est en partie cinétique et en partiepotentielle. Elle vaut donc :

Epgf = 0,150 kg × 9,8 m/s2 × 5,16 m= 7,59 J

Ekf = Em — Epgf= 97,7 J — 7,59 J= 90,1 J

12

5. L’énergie cinétique de la balle, au moment où elle est attrapée, est de 90,1 J.

b) Au moment où elle est attrapée par la spectatrice, quelle est la vitesse de la balle ?

c) La direction du stade sportif où se déroule ce match devrait-elle recommander aux spectateurs qui prennent place à cet endroit d’apporter un gant de base-ball s’ils veulent attraper les balles qui y tombent ? Pourquoi ?Oui. Les balles qui atteignent cette partie du stade ont une vitesse très élevée. Il serait dangereux

de tenter de les attraper à mains nues.

1. vf = ?

2. Ekf = 90,1 Jm = 0,150 kg

3. Ek = mv212

4. vf =

= 34,67 m/s

2 × 90,1 J0,150 kg

5. Au moment où elle est attrapée, la vitesse de la balle est de 34,7 m/s (ou de 125 km/h).

D’où v = 2 Ek

m

Ex. 111213

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 291

Page 10: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

292 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

12. Une fronde peut propulser une pierre de 15 g jusqu’à une hauteur de 32 m.

a) Quelle quantité d’énergie potentielle élastique est emmagasinée dans cette fronde ?

1. Epé = ?

2. m = 15 g, soit 0,015 kgΔy = 32 m

3. Epg = mgΔy

4. Au sommet de sa trajectoire, toute l’énergiede la pierre est potentielle. Elle vaut alors :Epgf = mgyf

= 0,015 kg × 9,8 m/s2 × 32 m= 4,7 J

Juste avant que la pierre soit lancée, touteson énergie est élastique. Elle vaut alors :

Epé = 4,7 J

5. L’énergie potentielle élastique emmagasinée dans la fronde est de 4,7 J.

b) Jusqu’à quelle hauteur la même énergie potentielle élastique pourrait-elle propulser une pierre de 30 g ?

1. Δy = ?

2. Epé = 4,7 Jm = 30 g, soit 0,030 kg

3. Epg = mgΔy

D’où Δy = Epg

mg

4. Δy =

= 15,99 m

4,7 J (0,030 kg × 9,8 m/s2)

5. La hauteur maximale de la pierre pourrait être de 16 m.

13. Une assiette de pâtes est placée dans un four à micro-ondes. Si la puissance du four est de 280 W et qu’il faut fournir 33,6 kJ d’énergie pour réchauffer ce plat, durant combien de temps ce four à micro-ondes devrait-il fonctionner ?

1. Δt = ?

2. P = 280 WΔE = 33,6 kJ, soit 33 600 J

3. W = ΔE

P = WΔt

D’où Δt = WP

4. W = 33 600 J

Δt =

= 120 s

33 600 J 280 W

5. Ce four à micro-ondes devrait fonctionner durant 120 s, soit 2 min.

Ex. 14

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 292

Page 11: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 293

8.3 La loi de la conservation de l’énergie1. La plupart des satellites en orbite autour de la Terre décrivent une trajectoire elliptique plutôt qu’une

trajectoire circulaire. Cela implique qu’à certains moments ils sont plus éloignés de la Terre, tandis qu’à d’autres moments ils en sont plus rapprochés. À quel moment leur vitesse est-elle la plus grande ?Expliquez votre réponse.Lorsque les satellites s’éloignent de la Terre, leur énergie potentielle augmente et leur énergie

cinétique diminue. Inversement, lorsqu’ils se rapprochent de la Terre, leur énergie potentielle diminue

et leur énergie cinétique augmente. Donc, plus ils sont près de la Terre, plus leur vitesse est élevée.

2. Nommez le ou les types d’énergie en cause dans chacun des cas suivants.

a) Un éclair illumine le ciel.L’énergie électrique et l’énergie électromagnétique.

b) Un bonhomme de neige fond.L’énergie thermique.

c) Une dentiste prend une radiographie dentaire.L’énergie électromagnétique.

d) Une personne se trouve à bord d’un ascenseur qui monte.L’énergie potentielle gravitationnelle et l’énergie cinétique.

e) Une bille roule sur une table.L’énergie cinétique.

3. Quelle transformation d’énergie est décrite dans chacun des exemples suivants ?

a) Un enfant remonte le ressort d’une boîte à musique.L’enfant transforme son énergie musculaire (d’origine chimique) en énergie potentielle élastique.

b) Nathaniel met en marche son grille-pain.Nathaniel transforme l’énergie électrique du grille-pain en énergie thermique.

c) Une pomme tombe d’un arbre.L’énergie potentielle gravitationnelle de la pomme se transforme en énergie cinétique.

S E C T I O N 8 . 3

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 293

Page 12: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

294 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

d) Un panneau solaire est exposé au Soleil.Le panneau transforme l’énergie électromagnétique du Soleil en énergie électrique.

4. Si l’énergie ne peut être ni créée ni détruite,pourquoi nous demande-t-on de faire desefforts pour l’économiser ?L’énergie est inépuisable. Par contre, il existe

des sources d’énergie qui ne sont pas

renouvelables, comme les combustibles

fossiles. Une société qui dépend

de ces sources d’énergie peut donc venir

à manquer d’énergie. Pour éviter cela, il faut

économiser ces sources d’énergie ou les

remplacer par des sources d’énergie

renouvelables.

5. Dans le vide, un objet en chute libre voit son énergie passer de la forme potentielle à la formecinétique, le total de ces deux formes d’énergie demeurant toujours constant. Dans l’air cependant, un objet en chute libre atteint plus ou moins rapidement une vitesse limite. Son énergie cinétiquedemeure alors constante, tandis que son énergie potentielle continue de diminuer. Qu’arrive-t-il à l’énergie manquante ?L’énergie manquante est en fait l’énergie liée au frottement de l’objet avec l’atmosphère. Cette énergie

prend souvent la forme d’une énergie thermique.

Ex. 13

Ex. 2

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 294

Page 13: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 297

Exercices sur l’ensemble du chapitre 8Ex. 16

E N S . C H A P. 8

1. a) Quelle est la quantité de travail nécessaire pour faire passer une voiture de 1200 kg de 0 km/h à 50 km/h ?

1. WT = ?

2. m = 1200 kg

vi = 0 km/h

vf = 50 km/h, soit 13,9 m/s

3. Ek = mv2

WT = Ek

12

4. Eki = 0 J

Ekf = × 1200 kg × (13,9 m/s)2

= 115 926 J

WT = Ekf — Eki

= 115 926 J — 0 J= 115 926 J

12

5. Pour passer de 0 km/h à 50 km/h, la voiture a besoin de 116 000 J d’énergie cinétique.

b) Quelle est la quantité de travail nécessaire pour faire passer une voiture de 1200 kg de 50 km/h à 100 km/h ?

1. WT = ?

2. m = 1200 kg

vi = 50 km/h, soit 13,9 m/s

vf = 100 km/h, soit 27,8 m/s

3. Ek = mv2

WT = Ek

12

4. Eki = × 1200 kg × (13,9 m/s)2

= 115 926 J

Ekf = × 1200 kg × (27,8 m/s)2

= 463 704 J

WT = Ekf — Eki

= 463 704 J — 115 926 J= 347 778 J

12

12

5. Pour passer de 50 km/h à 100 km/h, la voiture a besoin de 348 000 J d’énergie cinétique.

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 297

Page 14: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

298 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

1. vf = ?

2. m = 53 kgr = 3,0 mvi = 0 m/s

3. Epg = mgΔyEm = Ek + Epg

Ek = mv212

Comme la vitesse de départ est nulle, sonénergie cinétique initiale est nulle.Eki = 0 J

Em = Epgi + Eki= 1558 J + 0 J= 1558 J

Au bas du module, toute l’énergie deThomas est cinétique. Je peux alors isoler sa vitesse finale.Epgf = 0 J

Ekf = Em — Epgf= 1558 J — 0 J= 1558 J

vf =

= 7,67 m/s

2 × 1558 J53 kg

5. La vitesse finale de Thomas sera de 7,7 m/s.

D’où v =

4. Puisque le rayon du cercle est de 3,0 m, la différence entre la hauteur initiale et lahauteur finale de Thomas est donc de 3,0 m.Je peux donc trouver son énergie potentiellegravitationnelle.Epgi = mgyi

= 53 kg × 9,8 m/s2 × 3,0 m= 1558 J

2Ekm

2. Thomas fait de la planche à roulettes. La masse totale de Thomas et de sa plancheest de 53 kg. Le module qu’il utilise a laforme d’un quart de cercle dont le rayon est de 3,0 m. Si Thomas part du sommet du module à une vitesse nulle, quelle sera savitesse lorsqu’il atteindra le bas du module ?

Ex. 2

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 298

Page 15: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 299

Ex. 3

3. Un ingénieur en bâtiment et une experte en énergie doivent concevoir un système de sécurité pour un ascenseur. Au cas où le câble de l’ascenseur se briserait et que la cabine tomberait en chute libre, ils envisagent de fixer au sol un énorme ressort qui permettrait d’amortir la décélération de la cabinesur une longueur de 3,0 m. Si la masse de la cabine est de 2 tonnes et que sa vitesse maximale est de 18 m/s, que devra valoir la constante de rappel de ce ressort ?

1. k = ?

2. Δx = 3,0 mm = 2000 kgv = 18 m/s

3. Em = Ek + Epg + Epé

Ek = mv212

Epé = kΔx2 12

4. Lorsque l’ascenseur est sur le point detoucher au ressort, une partie de sonénergie est cinétique et une partie estpotentielle (puisque l’ascenseur peut encoredescendre de 3,0 m). On trouve alors que :

Eki = × 2000 kg × (18 m/s)2

= 324 000 J

Epgi = 2000 kg × 9,8 m/s2 × 3,0 m= 58 800 J

Epéi = 0 J

Em = 324 000 J + 58 800 J + 0 J= 382 800 J

Trois mètres plus bas, toute l’énergie del’ascenseur est potentielle élastique.Ekf = 0 JEpgf = 0 JEpéf = 382 800 J

Je peux maintenant isoler la constante de rappel.

k =

= 85 067 N/m

2 × 382 800 J(3,0)2

12

5. La constante de rappel de ce ressort devra valoir 85 000 N/m.

D’où k =

Epg = mgΔx

2 × Epé

Δx2

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 299

Page 16: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

300 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

4. Un morceau de glace de 150 g se détache d’une cheminée. Il tombe d’abord de 1,0 m, puis glisse de 4,5 m le long d’un toit verglacé dont la pente est de 60° au-dessus de l’horizontale pour, finalement,chuter de 9,5 m jusqu’au sol. Quelle est la vitesse finale du morceau de glace ?

1. vf = ?

2. m = 150 g, soit 0,150 kgy1 = 1,0 mΔx = 4,5 mθ = 60°y3 = 9,5 m

3. y = r sin θEpg = mgΔy

Em = Ek + Epg

Ek = mv212

Au départ, la vitesse du morceau de glaceest nulle et toute son énergie est potentielle.

Eki = 0 J

Epgi = 0,150 kg × 9,8 m/s2 × 14,4 m= 21,2 J

Em = Eki + Epgi= 0 J + 21,2 J= 21,2 J

Au moment de toucher le sol, toute l’énergiedu morceau de glace est cinétique.

Epgf = 0 J

Ek = Em — Epgf= 21,2 J — 0 J= 21,2 J

Je peux donc isoler la vitesse finale.

vf =

= 16,8 m/s

2 × 21,2 J0,150 kg

5. La vitesse finale du morceau de glace est de 17 m/s.

D’où v =

4. Je trouve d’abord la hauteur totaleparcourue par le morceau de glace.

y2 = 4,5 m × sin 60°= 3,9 m

Δy = y1 + y2 + y3= 1,0 m + 3,9 m + 9,5 m= 14,4 m

2Ek

m

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 300

Page 17: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 301

5. Un joueur de basket-ball lance verticalement un ballon de 624 g dans le panier, situé à 3,05 m du sol.Au moment où le ballon quitte la main du joueur, il se trouve à 2,05 m du sol. Quelle vitesse minimalele joueur doit-il donner au ballon pour qu’il atteigne le panier ?

1. vi = ?

2. m = 624 g, soit 0,624 kg

Δy = 1,00 m

3. Ek = mv2

Epg = mgΔy

Em = Ek + Epg

12

4. Lorsque le ballon quitte la main du joueur,toute son énergie est cinétique. Lorsqu’iltouche le panier, toute son énergie estpotentielle.

Eki = mvi2

Epgi = 0 J

Ekf = 0 J

Epgf = mgΔy

= 0,624 kg × 9,8 m/s2 × 1,00 m

= 6,12 J

Je peux donc isoler la vitesse initiale.

vi = 2 Eki

m

12

5. Pour que le ballon atteigne le panier, le joueur doit lui donner une vitesse initiale de 3,50 m/s.

=

= 3,50 m/s

2 × 6,12 J1,00 m

6. À quelle vitesse une voiture de 1000 kg doit-elle rouler pour avoir la même énergie cinétique qu’uncamion de 20 000 kg roulant à 30 km/h ?

1. v1 = ? (vitesse de la voiture)

2. m1 = 1000 kg (masse de la voiture)

m2 = 20 000 kg (masse du camion)

v2 = 30 km/h, soit 8,33 m/s (vitesse ducamion)

3. Ek = mv212

4. Ek2 = × 20 000 kg × (8,33 m/s)2

= 694 000 J

v1 =

= 37,3 m/s

2 × 694 000 J 1000 kg

12

5. La voiture doit rouler à 37 m/s (soit 134 km/h).

D’où v = 2 Ek

m

Ex. 4

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 301

Page 18: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

302 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

7. Quel est le travail nécessaire pour empiler 5 boîtes sur le sol si chaque boîte a une hauteur de 30 cm et une masse de 14 kg ? (Indice : Les boîtes sont préalablement alignées sur le sol.)

1. W = ?

2. Δy1 = 0 mΔy2 = 30 cm, soit 0,30 mΔy3 = 0,30 m + 0,30 m, soit 0,60 mΔy4 = 0,60 m + 0,30 m, soit 0,90 mΔy5 = 0,90 m + 0,30 m, soit 1,20 mm = 14 kg

3. W = ΔEpgEpg = mgΔy

4. Epg1 = 14 kg × 9,8 m/s2 × 0 m= 0 J

Epg2 = 14 kg × 9,8 m/s2 × 0,30 m= 41,16 J

Epg3= 14 kg × 9,8 m/s2 × 0,60 m= 82,32 J

Epg4 = 14 kg × 9,8 m/s2 × 0,90 m= 123,48 J

Epg5 = 14 kg × 9,8 m/s2 × 1,20 m= 164,64 J

W = Epg1 + Epg2 + Epg3 + Epg4 + Epg5= 0 J + 41,16 J + 82,32 J + 123,48 J + 164,64 J= 411,6 J

5. Le travail nécessaire pour empiler ces 5 boîtes est de 412 J.

Ex. 5

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 302

Page 19: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 303

8. Une pierre de 50 g est placée dans une fronde. Le graphique ci-contre décrit la force exercée par l’élastique de la fronde sur la pierre.

a) Est-ce que cet élastique obéit à la loi de Hooke ?Expliquez votre réponse.Oui, parce que ce graphique est en tous points

semblable à ceux que produisent les ressorts

qui obéissent à la loi de Hooke.

b) Quelle est la constante de rappel de cet élastique ?

1. k = ?

2. Fél = 30 N

Δx = –15 cm, soit –0,15 m

3. Fél = –kΔx

D’où k = –Fél

Δx

4. k =

= 200 N/m

–30 N –0,15 m

5. La constante de rappel de l’élastique de cette fronde est de 200 N/m.

c) Si l’élastique est étiré sur une distance de 15 cm, puis relâché, quelle sera la vitesse de la pierre ?

1. vf = ?

2. k = 200 N/m

Δx = –0,15 m

m = 50 g, soit 0,050 kg

3. Epé = kΔx212

4. Lorsque l’élastique est étiré, toute sonénergie est potentielle.

Epéi = × 200 N/m × (–0,15 m)2

= 2,25 J

Lorsque la pierre quitte la fronde, toute sonénergie est cinétique.

Ekf = 2,25 J

Je peux donc isoler la vitesse finale.

vf =

= 9,49 m/s

2 × 2,25 J 0,050 kg

12

5. Lorsque la pierre quittera la fronde, sa vitesse sera de 9,5 m/s (soit 34 km/h).

Ek = mv212

D’où v = 2Ek

m

–20 –15 –10 –5 0 5 10 15 20

–40

–30

–20

–10

10

20

30

40

x (cm)

Fél (N)

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 303

Page 20: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

304 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

Défis1. Une planchiste part du point A, se rend au point B et s’élève jusqu’au point C, qui se trouve à 2,4 m

au-dessus du point B. Quelle est sa vitesse initiale ?

1. vi = ?

2. yf = 2,4 m

3. Ek = mv2

Epg = mgΔy

ΔEk = ΔEpg

4. Lorsque la planchiste atteint le point B, sa hauteur et sa vitesse sont les mêmesqu’au point A. On peut donc fixer le point Bcomme étant la hauteur de départ, soit la hauteur zéro (yi = 0 m).

Eki = mvi2

Epgi = mgyi= 0 J

12

12

Lorsque la planchiste atteint le point C, sa vitesse est nulle (vf = 0 m/s).

Ekf = mvf2

= 0 J

Epgf = mgΔy

Comme l’énergie mécanique est la mêmeen tout point, on peut poser que :

Eki + Epgi = Ekf + Epgf

mvi2 = mgΔy

La masse peut alors être éliminée et l’onpeut isoler la vitesse initiale.

vi = 2gΔy

= 2 × 9,8 m/s2 × 2,4 m= 6,8 m/s

12

12

5. La vitesse initiale de la planchiste est de 6,8 m/s.

C

B

2,4 m

A

= ?➞ vi

vf = 0

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 304

Page 21: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

PHY

SIQ

UE

CH

AP

IT

RE

8

CHAPITRE 8 ❙ L’ É N E R G I E ❙ EXERCICES 305

2. Yanick roule à 35 km/h sur une route. Il aborde une côte qui le fait descendre de 15 m vers le fondd’une vallée. Yanick cesse d’appuyer sur la pédale de l’accélérateur et laisse la voiture descendrelibrement. Au bas de la côte, il croise un panneau indiquant que la vitesse maximale est de 70 km/h.

a) Yanick excède-t-il la limite de vitesse permise ?

1. vf = ?

2. vi = 35 km/h, soit 9,72 m/syi = 15 myf = 0 m

3. Ek = mv2

Epg = mgΔy

ΔEk = ΔEpg

4. Eki = mvi2

Epgi = mgyi

Ekf = mvf2

Epgf = mgyf

Eki + Epgi = Ekf + Epgf

mvi2 + mgyi = mvf

2 + mgyf12

12

12

12

12

Je peux éliminer la masse et isoler la vitesse finale.

vi2 + gyi = vf

2 + gyf12

12

( × 9,72 m/s × 9,72 m/s) + (9,8 m/s2 × 15 m) 12

= ( × vf2) + (9,8 m/s2 × 0 m)

vf = 19,7 m/s, soit 70,96 km/h

12

5. Au moment où il croise le panneau, Yanick roule à 71 km/h. Il excède donc légèrement la limite de

vitesse permise.

b) Si l’on tient compte des forces de frottement, comment ce problème se trouve-t-il modifié ?Le frottement est une force qui s’exerce en sens inverse du déplacement. Le frottement des roues

sur la chaussée vient donc ralentir le mouvement descendant de la voiture de Yanick. Sa vitesse

sera donc moindre et, par conséquent, il n’excédera pas la limite de vitesse permise.

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 305

Page 22: Exo Corriges

Nom : Groupe : Date :

© E

RP

I Rep

rodu

ctio

n in

terd

ite

306 PARTIE III ❙ L E T R AVA I L E T L’ É N E R G I E ❙ EXERCICES

3. Une entraîneuse de saut à l’élastique prépare un groupe de participants à sauter d’un pont situéà 100 m au-dessus d’une rivière. Elle utilise unélastique de 30 m dont la constante de rappel est de 40 N/m. Si la masse du premier participantest de 80 kg, à quelle distance de la rivière se trouvera-t-il lorsque l’élastique sera étiré au maximum de sa capacité ?

1. Δy2 = ?

2. m = 80 kg

k = 40 N/m

3. Em = Ek + Epg + Epé

Epé = kΔx2

ΔEpg = mgΔy

Ek = mv2

ax2 + bx + c = 0

12

12

5. Lorsque l’élastique sera étiré au maximum, le participant se trouvera à 11 m au-dessus de la rivière.

D’où x =

4. Lorsque le participant est sur le pont, il se trouve à son point le plus haut. Toute son énergie est alors potentiellegravitationnelle.

Eki = 0 J

Epéi = 0 J

Epgi = 80 kg × 9,8 m/s2 × (30 m + y)= 23 520 J + 784 y J

–b ± b2 — 4ac2a

Lorsque l’élastique est étiré au maximum de sa capacité, le participant est à son point le plus bas. À cet instant, toute son énergie est potentielle élastique.

Eki = 0 J

Epgf = 0 J

Epéf = × 40 N/m × ( y)2

= 20( y)2 J

Comme l’énergie mécanique est égale en touspoints, nous savons que Epgi = Epéf

23 520 J + 784 y J = 20( y)2 J

Nous pouvons donc isoler y à l’aide de l’équation du second degré.

20( y)2 — 784 y — 23 520 = 0

D’où y =

= 59 m

La distance entre le participant et la rivière seradonc de 100 m — 30 m — 59 m, soit de 11 m.

784 ± 7842 — (4 × 20 × –23 520)2 × 20

12

13098_meca_ch08-b_ep3.qxd:Layout 1 3/30/11 4:35 PM Page 306