ec.gc

45
www.ec.gc.ca Qu’est-ce que le CRCM5 ? Qu’est-ce que le CRCM5 ? Et quel est son rapport avec Et quel est son rapport avec GEM-LAM, GEMCLIM et GEM(DM) GEM-LAM, GEMCLIM et GEM(DM) Bernard Dugas Bernard Dugas Division Division de la recherche Météorologique Météorologique Environnement Canada Environnement Canada Lunch Ouranos 8 juillet 2008

description

www.ec.gc.ca. Lunch Ouranos 8 juillet 2008. Qu’est-ce que le CRCM5 ? Et quel est son rapport avec GEM-LAM, GEMCLIM et GEM(DM). Bernard Dugas Division de la recherche Météorologique Environnement Canada. www.ec.gc.ca. Lunch Ouranos 8 juillet 2008. Contenu. CRCM5 ? Quid ? - PowerPoint PPT Presentation

Transcript of ec.gc

Page 1: ec.gc

www.ec.gc.ca

Qu’est-ce que le CRCM5 ?Qu’est-ce que le CRCM5 ?Et quel est son rapport avecEt quel est son rapport avec

GEM-LAM, GEMCLIM et GEM(DM)GEM-LAM, GEMCLIM et GEM(DM)

Bernard DugasBernard DugasDivisionDivision de la recherche MétéorologiqueMétéorologique

Environnement CanadaEnvironnement Canada

Lunch Ouranos 8 juillet 2008

Page 2: ec.gc

www.ec.gc.ca

ContenuContenu

•CRCM5 CRCM5 ? Quid ?? Quid ?

•GEM(DM) vs GEM(DM) vs GEMCLIMGEMCLIM

•Vertical StaggeringVertical Staggering (Vstag) ( (Vstag) (NouveauNouveau))

•Modèle Environnemental Couplé (MEC) (à venir)

Lunch Ouranos8 juillet 2008

Page 3: ec.gc

www.ec.gc.ca

Qu’est-ce que le CRCM5 ? Brièvement…Qu’est-ce que le CRCM5 ? Brièvement…

Lunch Ouranos8 juillet 2008

C’est une version du modèle de prévision météorologique GEM(DM) d’Environnement Canada qui pourra éventuellement être utilisée dans des études de scénarios de changement climatique. Mais auparavant, ce modèle pourra être utilisé par la communauté de recherche sur des plateformes informatiques massivement parallèles telle que ce qui est envisagé avec CLUMEQ2.

•Le climat régional pourra être simulé avec le CMRC5 soit avec une approche LAM ou avec une approche de grilles à mailles variables.

•Enfin, le CRCM5 pourra être utilisé avec une version native à GEM(DM) des paramètrages physiques (déjà disponible, RPN/CMC) ou bien avec celle utilisée par le CGCM4 du CCCma (en cours de développement, projet CRCMD 4.1.1). À partir de là, il sera possible d’implanter d’autres physiques dans le CRCM5.

Notons qu’une version climat de GEM(DM) est à l’essai à l’UQAM depuis maintenant deux années. Il s’agit de GEMCLIM v_3.3.0 installé sur le « cluster » Linux Sunfire appellé marvin.

Page 4: ec.gc

GEMCLIM vs GEM(DM)GEMCLIM: a way of running climate-long simulations with GEM

• automatic re-launching multi-month jobs• optional, automatic and large amount of post-processing (comprehensive set of time averages and variances on pressure- and model-levels, and time series of frequently used variables)

GEMCLIM: a library (routines, scripts)

• GEMCLIM versus GEM(DM)- compared with GEM(DM) 3.3: 92% of 570 dynamics routines are the same- compared with PHY 4.5: 98% of 577 physics routines are the same

• “mode-backward” compatible: can run non-climate mode with GEMCLIM

• Main differences:- post-processing / diagnostic scripts- size-reducing of pilot files from analyses data on pressure levels

GEMCLIM: people involved in development at Dorval

M. Desgagné, B. Dugas, P. Vaillancourt, K. Winger (UQAM), A. Zadra(in alphabetical order) + plus several others

Page 5: ec.gc

GEMCLIM vs GEM(DM)

There may come a time when the GEM(DM) and GEMCLIM model versions are fully synchonized. Or not. Be that as it may, as long as Environment Canada supports GEM(DM), there will be a corresponding version of GEMCLIM.

Finally, the upcoming version of GEMCLIM (v_4.0.x) which should be available by the end of 2008, can be considered as the first CMRC5 release candidate.

Page 6: ec.gc

About GEMCLIMGEMCLIM: raison d’etre

• test bed for new code and model development- changes can be implemented faster than in operations (e.g. CCCma Corr.-K radiation; GCM4 physics in GEM)- code changes may be evaluated with robust statistics

• collaboration with climate modelling community

GEMCLIM: computer time per simulation

• “short” 2-year simulation, global uniform at 2º resolution:- as little as 1 day with 16 CPUs on the Dorval AIX clusters

• a 41-year simulation, LAM over Europe, 0.22º resolution:- nearly a month, with 4X the resources above

GEMCLIM: documentation and support

GEMCLIM versions 3.2.1 and 3.2.2 are currently documented on

http://collaboration.cmc.ec.gc.ca/science/rpn/gem/gem-climate/

Version 3.3.0 web site is in preparation.

Page 7: ec.gc

GEMCLIM: simulations performed at Dorval and UQAM

• various simulations to test new versions of model / physics:- e.g. mesoglobal, meso-strato, new radiation, aerosols, geophysical fields, etc.

• climate-related projects (Global) SGMIP1: 12-year 1987-1998, 0.45 - 1.8 deg SG, 318x226 (core 135x146 NA) SGMIP2: 26-year 1978-2004, 0.5 - 1.5 deg SG, 304x204 (core 79x110 NA/EU) 26-year 1978-2004, 1.0 deg UG, 360x180

And with each new model version, at least one AMIP2 1978-200* global 1.5 deg and one 2.0 deg reference simulations are run.

(LAM) ICTS (multiple sets, after finding a problem with the SSTs NA/EU domains driven by GEMCLIM or ERA40, usually at 0.5 deg EU ENSEMBLES 41-year at 0.22 deg ERA40 (i.e. current climate only !)

Recently, GEMCLIM configured for CLUMEQ LAM Benchmarks 1) 45-day runs, 640x592x48 0.125 deg, delt= 450 s, Dorval/AIX : 10 x 11h with 112 CPUs (7x 4x4) UQÀM/Linux: 10 x 17h with 84 CPUs (7x12x1) 2) 45-day runs, 320x296x48 0.25 deg, delt= 900 s Dorval/AIX : 20 x 2h45 with 64 CPUs (4x 4x4) UQÀM/Linux: 20 x 4h30 with 56 CPUs (8x 7x1)

About GEMCLIM

Page 8: ec.gc

The Vstag Project, i.e. GEM 4.0.2- Charney-Phillips vertical staggering in

GEM(DM)- New vertical coordinate z=lnp*- Highlights of results

Claude Girard, André Plante and

Sylvie Gravel : Staggered Semi-Lagrangian Scheme Abdessamad Qaddouri : Non-symmetric Elliptic Solver

Stéphane Chamberland : Staggered physics interface Lubos Spacek : Staggered physics

Vivian Lee : Staggered Input/Output Michel Desgagné : Staggered Coordination

Page 9: ec.gc

The New equations of GEM vertically discretized on a Charney-Phillips grid

Boundary Conditions: 0 TS const];;0/ln[ toptopoSTtopT pgzpq

0

/'

0

0'

0ln

ln

'1x

*

*

*

*

Bs

RT

T

T

Bs

q

gwRTdt

d

BsqBs

dt

d

Tc

QqBs

T

T

dt

d

Fgdt

dw

qBsTRfdt

d

h

p

wHH

hhh

V

FVkVVh

w

T

q,(s)

8: :8

diag

diag

Page 10: ec.gc

Pappp

levelsmodel-likeedunnormalizspecified

levelsmodel-likenormalizedcalculated

sB

rrrrBppBA

BABA

refreftopT

T

S

TS

rtoprefSS

TSTS

5

minmaxmax

10 ;/

:1

ln :1/ln10

/ln ;

300 ; ;/ln ;

/ln/ln ;

π

π

ionapproximatchydrostati

operatorngdifferenci

operatoraveraging

pressuresurfacelogps

onacceleratinalgravitatiotoonaccelerativerticalofratioq

dtdcoordinateverticalmodel

definitionnewaRTpressurechydrostatipressurep

deviationpressurelogchydrostatinonpq

RTalgeopotenti

constTTTTetemperaturvirtualT

velicityverticalwwindhorizontal

H

refS

T

S

h

:0

:

:

:/ln

:ln/

/ ; :/ln

:ln/ ; : ;:

:/ln

;' ; :

;' ; :

: :

*

***

**

V

ln(p/ptop)=ln(p/)+ln(/*)+ln(*/T)

ln(p/ptop)= q + B s +

Page 11: ec.gc

1

2

N-1

N

2-1/2

1/2

N-1/2

N+1/2

3-1/2

1-1/4

N+1/4

......

TVh, q

T, ,w

1

2

N-1

N

3/2

1/2

N-1/2

5/2

3/4

N+1/4

......

N+1

0

T

T

, q

Vh, qT, ,w

Vh, qT, ,w

Vh, qT, ,w

Vh, q

, q

,wS, qS N+1/2

,wT, qT

momentumlevels

thermodynamiclevels

Charney-Phillips Grid

Virtual

Virtual

Page 12: ec.gc
Page 13: ec.gc

Table 1. The new equations derived in 6 steps

RTp

dt

d

c

Q

dt

dp

cdt

dT

gpfdt

d

pp

0ln

1

1x

V

FkVkV

0/ln

lnln

lnx

V

FkVkV

dt

Tpd

Tc

Q

dt

pd

dt

Td

gpRTfdt

d

p

Vertical coordinate transformation: z to (unspecified)

),,(

0

0ln/ln

lnln

ln

lnlnx

tzz

wdt

dz

z

dt

d

dt

Tpd

Tc

Q

dt

pd

dt

Td

Fgp

zRT

dt

dw

p

zzpRTf

dt

d

h

p

wHH

hhh

r

V

FVkV

zz

zzz

1 2

3

Elimination of

V,T,p,: V,T,p :5

V,T,p, ,z :7

Page 14: ec.gc

1ln

ln

ln

p

gz

RT

Bs

RT

p

gwdt

d

dt

d

dt

pd

Tc

Q

dt

pd

dt

Td

Fgdt

dw

pRTfdt

d

T

h

p

wHH

hhh

/ln

0ln

0ln

/ln

0

0ln

lnln

lnln

1lnx

V

FVkV

Vertical coordinate transformation: z to (specified)

4

V,T,p, ,:9

Page 15: ec.gc

Going to model thermodynamic variables T’,’,q,s,

Bs

qp

TTT

T

/ln

lnln

'

'

*

*

0

/'

0

0'

0ln

ln

'1x

*

*

*

*

Bs

RT

T

T

Bs

q

gwRTdt

d

BsqBs

dt

d

Tc

QqBs

dt

d

T

T

dt

d

Fgdt

dw

qBsRTfdt

d

h

p

wHH

hhh

V

FVkV

5

V,T,q, ,:8

Page 16: ec.gc

Discretizing in the vertical

,,,

,',

,,,

Tw

q

Tw

hV

0

/'

0

0'

0ln

ln

'1x

*

*

*

*

Bs

RT

T

T

Bs

q

gwRTdt

d

BsqBs

dt

d

Tc

QqBs

dt

d

T

T

dt

d

Fgdt

dw

qBsRTfdt

d

h

p

wHH

hhh

V

FVkV

6

8 equations; 8 variables; 2 diagnostic

{{

{

{

{

Page 17: ec.gc

-5. A modified definition of hydrostatic pressure:

-1. Introduction of Charney-Phillips grid (staggering).-2. Logarithmic differencing in the hydrostatic equation. From Z to

lnZ.-3. Incomplete coordinate transformation. From Z to lnZ.-4. Complete coordinate transformation. From lnZ to . Vertical

motion

Table 2. The new equations coded in 5 steps

RT ln/

*Z

RT ln/ /1/

T /ln *

pRT //

Page 18: ec.gc

Step 4

0

/'

011

0'

0ln

0ln

0

0'1x

*

*

*

*

Bs

RTe

T

T

Bs

qe

gwRTdt

d

BsBs

dt

d

qBsT

T

dt

d

gdt

dw

qBsTRfdt

d

q

q

h

H

hh

V

VkV

Step 1

0'

111

1/1

011

1/1"11

01/1ln"'

0'

01

ln

0'ln

0

0'1'x

*

"

*

"

*

*

RT

Z

eb

eZbe

T

T

eb

eZbqZe

eZbqq

gwZ

ZRT

dt

d

ZZ

ebZ

dt

d

Z

Zq

T

T

dt

d

gdt

dw

qTRfdt

d

Zs

Z

sZZ

q

sZ

sZ

Z

Zq

s

Z

ZhZ

s

Z

H

Z

Z

Z

Z

hh

V

VkV

Tlinlinlin DqT , ,' ,' *Z

T /ln *

Page 19: ec.gc

Step 4

0

/'

011

0'

0ln

0ln

0

0'1x

*

*

*

*

Bs

RTe

T

T

Bs

qe

gwRTdt

d

BsBs

dt

d

qBsT

T

dt

d

gdt

dw

qBsTRfdt

d

q

q

h

H

hh

V

VkV

Step 5

0

/'

0

0'

0ln

0ln

0

0'1x

*

*

*

*

Bs

RT

T

T

Bs

q

gwRTdt

d

BsqBs

dt

d

qBsT

T

dt

d

gdt

dw

qBsTRfdt

d

h

H

hh

V

VkV

RT ln/ /1/

Page 20: ec.gc

Definitions & synonyms

• Terms that apply to the current model :– Regular grid;– PSEUDO.

• Terms that apply to the current model :– Regular grid;– PSEUDO.

• For the Development model :– Staggered grid;– Staggered;– STG.– CP

• For the Development model :– Staggered grid;– Staggered;– STG.– CP

Page 21: ec.gc

Step 1 (staggering)MesoGlobal 42 winter cases

Page 22: ec.gc

Step 2 (+log hyd. eq.) MesoGlobal 42 winter cases

Page 23: ec.gc

Srep 4 (all in log)Step 2 vs 4

Page 24: ec.gc

Step 5 (pi, continuity) 1 case, step 5 validates with 4

Page 25: ec.gc

Step 5 Hydro vs non-hydro (Mesoglobal)

Page 26: ec.gc

Highlights of results obtained in preliminary test runs

Page 27: ec.gc

Temperature at model Lid

• Users have often reported noise problems with several variables. This is particularly true with temperature at the

model lid.

• Users have often reported noise problems with several variables. This is particularly true with temperature at the

model lid.

• Problem corrected by the vertical staggering (step1 ).– Possible reduction/removal of sponge on T

• Problem corrected by the vertical staggering (step1 ).– Possible reduction/removal of sponge on T

Page 28: ec.gc

No sponge at lid : P_PBL_SPNG=0., CSTV_UVDF_8=0.0, CSTV_PHIDF_8=0.0Weak horizontal diffusion : HZD_TYPE_S=HO, HZD_PWR=6, HZD_LNR=0.04

28 level Global

STG

PSEUDO

Page 29: ec.gc

Noise at Tropical Tropopause

• Users have often reported noisiness near the tropical tropopause

• Users have often reported noisiness near the tropical tropopause

• Problem corrected by the vertical staggering (step1 ).– Possibility of reducing vertical resolution near the tropopause.

• Problem corrected by the vertical staggering (step1 ).– Possibility of reducing vertical resolution near the tropopause.

Page 30: ec.gc

28 lev.

Page 31: ec.gc

STGPSEUDO

Page 32: ec.gc

STG

PSEUDO

Page 33: ec.gc

Two Delta Z noise

• A 2DZ temperature decoupling has often been observed near the surface.

• A 2DZ temperature decoupling has often been observed near the surface.

• Greatly reduced by the vertical staggering (step 1)• Greatly reduced by the vertical staggering (step 1)

Page 34: ec.gc

STGPSEUDO

• LAM example, no physics and no diffusionTemperature profiles near the surface

Page 35: ec.gc

STG PSEUDO

• Same as previous slide (LAM)– With pseudo, zigzags amplify.– With staggering, zigzags propagate and disappear

Page 36: ec.gc

MEC (dernier rapport d’étape)Automne 2007

Par Michel Desgagné, Stéphane Chamberland, Ron McTaggart-Cowan, Michel Valin et Yves Chartier

Page 37: ec.gc

MEC Overview (Modèle Environnemental Couplé)

The objective of the MEC project is to design and develop the next-generation environmental modelling system at RPN

Primary design considerations: Flexibility – component models must be “plug-and-

play” compatible Modularity – components must be able to operate as

independent units Extensibility – the MEC system must be able to

respond to future unforseen requirements

Page 38: ec.gc

MEC Conceptual Model MEC sequencer

controls time stepping, component ordering, distributed parallelism and some basic data flow

“Components” are identified by green boxes called by the sequencer

The GMM (and Whiteboard – not shown) subsystems are responsible for handling data flow requests once the model has been initialized

Page 39: ec.gc

Component API Layer Each component provides a set of Application

Programming Interface (API) “entry points” prescribed by MEC

These APIs have a simple calling sequence, and serve to abstract the component functionality from the sequencer:

Initialization API Timestepping API Services API

The APIs are different for each component, but the same for each pluggable module

Page 40: ec.gc

Component API Layer The sequencer will only communicate with components

via the initialization or timestepping APIs When necessary, components may communicate

directly with each other via the services API

The team is also considering using callbacks rather than services APIs – functionality is similar

The use of strict APIs is necessary to enforce the modularity of all components

Page 41: ec.gc

GMM Subsystem The General Memory Manager is a generic subsystem

that will control access to large data structures (e.g. model fields from 1 to 4 dimensions) in MEC

GMM stores data in a memory space allocated on demand along with related metadata, and returns pointers to this space following a get() operation

GMM is fully checkpointable, therefore capable of independently handling the restart procedure for all GMM variables

A prototype GMM subsystem has been created, but a full set of design requirements has not yet been generated

Page 42: ec.gc

Whiteboard Subsystem Early in the development stage of the top-down simplified

model, the need for a storage structure for scalar and one dimensional data became apparent

The Whiteboard acts as a minimalist storage class in its MEC implementation, allowing important limitations to be placed on variable scopes that are not available using standard strategies such as public variables and common blocks

Like GMM, the Whiteboard is fully checkpointable, allowing the subsystem to assist with restarts

A prototype Whiteboard has been developed, and is implemented in the current simplified MEC model

Page 43: ec.gc

MEC Timeline Two simplified development models are under active

development:

bottom-up – GEM dynamics are connected to a minimalist sequencer, but modularization is incomplete

top-down – highly simplified components are connected to a realistic sequencer, but much of the complexity is absent

Projected dates:

spring 2008: design of I/O components complete and subsystem prototypes implemented

summer 2008: modularized, functional GEM dynamics attached to a realistic sequencer

Sept

2007 2008

April December

Whiteboard Subsystem

GMM Subsystem

Top-down MEC Prototype

Bottom-up MEC PrototypeFunctional Prototype

I/O Component

Project Documentation

Active DevelopmentPrevious DevelopmentPrototype ImplementedDesign / Planning

Page 44: ec.gc

Additional MEC Information(Environment Canada Internal sites)

Extensive documentation of discussions within the team are available online, as are preliminary documents describing the component requirement and subsystem attributes: http://mrbdoc/doc/dev/mec/mec

A complete set of development tools and simplified models is available from the project subversion repository at: svn://mrbsvn/modeles/mec

The MEC discussion blog is available as a medium for exchanging design concepts and documents the development process – it is available for all contributors at: http://mrbdoc/doc/dev/mec/blog

Page 45: ec.gc

www.ec.gc.ca

Merci Merci bienbien

Lunch Ouranos8 juillet 2008

Conclusion

•CRCM5 (v1.0) = GEMCLIM (v_4.0.x)

•Vstag disponible dans GEMCLIM cet automne

•MEC premier prototype fonctionnel en début 2009