原子過程断面積データ集 2 - International Atomic Energy Agency...1976$ 、...

318
1976$ 原子過程断面積データ集 2 水紫・ヘリウム原子同位体とそのイオン および光子・電子を含む過程 1976 編集責任者 高柳和夫・鈴木洋・大谷俊介

Transcript of 原子過程断面積データ集 2 - International Atomic Energy Agency...1976$ 、...

  • 1976$

    原子過程断面積データ集

    第2集

    水紫・ヘリウム原子同位体とそのイオン

    および光子・電子を含む過程

    1976年

    編集責任者

    高柳和夫・鈴木洋・大谷俊介

  • K

    1

    Ra-Al-1

    Ra-All

    Ra-A2-3

    IU-A4-1

    E-Al-1

    E-A2-2

    E-A3-1

    E- A3- 13a

    E-A3-13t-

    E-A3-18

    E-A3-19

    E-A3-20

    E-Bl-1

    I-Al-1

    I-Al-2

    I-Al-2

    I-A2-6

    Re-B-1

    Re-D-2

    M-D-l

    M-D-l

    M-D-l

    O-Dl-3

    An-1

    IT JE ii m

    $. d . i )

    A (l.l) tnxmH

    tun FCJII*

    * * ! • . * " > r. f r l !

    * > c h f r f > i 8 t r U

    I-.*-*", 9 f i l l

    F*-'"> 2 t i l l

    mb > b 2 t i l l

    F * b Z h fi

    IWIW

    ISO*

    *>C hA'b 6 ff 13

    TfrMfrB

    K*vb 1 tiff

    F*'b 5 TTHT A1 h 3 ff H Sn3(t

    »>"> 2ffH

    A ( 3 ) Rolh三 (E27)

    McGowan (E~皇』

    Koller (E30)

    Dixlon (E29)

    …実験的にいういろ… | ・実験的にいろいろ…

    .. .p;・cenlini_,j十W:...一'Piacenlini~ ~十w:…測定されているE:I~ 1:11. E.・…i則定されているF.J , ~I'. [い..

    -・・抵ムネルギーの司11.... …低工*.J~ ギーの.. (.…

    …通常行なわれてい |…通常行なわれている

    Energy 2!. Ran酔‘・・ I Energy Ranll". …推定 Lて日 l…t肯定 LてH ・

    3) , . ,6,8. Schwa!tz: , , , I 3),.. 6.8. Schwa!tz: , , , .. Hiの金生成断面積,一 |… wの全生成断面積,・・・・田解躍すると考える このような…|…解躍すると考えるとこのような…

    ドかι6fi臼 I d:>> 1 本文上から 6行11加筆 "(10"・an')などと…

    …大きくこえ …大きくこえて

    d

  • (L)

    A:

    1 1 )

    ( 2 )

    i 3 )

    B: He'

    C: He

    D:

    E:

    (ME)

    A: He, He

    P: He, He

    A: -

    R a - A 1 I") fl - |'j EfiiS ft (free-free transition)

    p + He. + He'fn/) - H e " + e

    Ra-A 3 *«-^W)Sf?(bound-bound transition)

    Ra-A 4

    He; 2'S,, 2'S

    He-; 2'S,^

    Ra-Ar,

    He,. He,". He5\ He',". H«!*. HeH", HeH"

    B:Multiphoton Exciution (DecxciUtion)

    Multiphoton lonizition

    第 2集を出すに当って

    (L)エネルギー準位

    A: Heのエネルギー潮位

    11 ) 電子励起

    12) ltI: i欠tu

    i:ll 刻{-I拘起

    B: He ・のエネルギー湘似

    C: He""のエネルギー惜似

    D: W のエネルギー撤(i~

    E: H-ーのエネ)1-ギー潮位

    (ME) 多量励起状態

    目 次 (初版)

    A: He. He の多重励起状態のエネルギー峨位

    P: He. He-の多重励起状態の寿命

    (Ra)紋射過程

    A:一光子過程

    R.-Al (1由ー1'1由選符(free-f開., tn田 ition)

    • + He. ,+ Hザ.股射むよぴ吸収

    R.-A 2 東神戸 n由選梓(bound-fr鴨 tran.ition) hν+ Hc("J) "-Hc' +', He" + 2e hレ『十 Hc'(nJ) ""~ He'・+.

    R.-A3 来叫一束縛遷移(boundも由同dtransitlon )

    *動子強度f

    (!~放射標本 A

    励起状態の寿命 t

    Ra-A4 場安定状態の尊命

    He: 2'SI, 2¥S(I

    He'; 2'5,イ

    R.-A!i :J(,i f-系の民事f過程He,. He;. Hc¥'. Ho¥". Hel'. HeH". i!eH'・

    B:多光子過棺Multiphoton Exeitation (0瞬間itati。川

    Multiphoton Ionlzation

  • A: e + U

    E-AI

    E-A2

    B: e + He*

    C: e + He*

    (I)

    A: H' +H,(He)W*

    I-A iI-A 2

    I-A 3

    B: He*

    I - B l He* t ' -

    I -B 2 He' (He' * (2s) £ ftfc) fcf-

    I - B 3 He- •<

    C: He'*

    I - C l

    D: He"

    He

    I - D l He' \£-

    E:

    I

    F:

    G:

    (Re)

    A:

    B:

    C: -

    E l

    • + He'" - H e * W ) + *

    + e + He'(He" I - H

    + He- + He" - He(«/) + He

    + He" - He" - He* +h»,

    He* - H e + *v,

    - 2 -

    (E)電子衝突(全衝突断面積・弾刊:散乱・励起・電雄)

    A: e + He衝突

    E-Al 総本過程

    E-A2 高励起状態の生成

    B: e + He"衝突

    C: e+He+衝突

    (I)イオン衝突

    A: H' + H,(He)衝突l-A 1 稽伯作鋤

    }-A 2 照的の励起

    }-A 3 照的の電雌

    B: He'ピーム衝突

    I-B 1 He'ピームの散乱

    1 -B 2 He' (He'・(2s)を;rむ)ビームの電術移動I-B 3 He'イオンとイオンとの衝突

    C: He‘・ビーム衝突

    I-C 1 He" ビームの電{nT移動

    D: He-ビーム衝突

    I-D 1 He-ビームの電術移動

    E: H正およびH.ビーム衝突

    {-E 1 H正ビームの電術移動および解雌

    F:理諭の民主語

    G:腕反応

    (Re) 同結合

    A:放射を伴う再結合 . + H~' .-H~( IIi) + ̂ν • + H~“→ Hぜ(r.1) + ~ ν

    B:衝突放射再結合 r+'+ H.'(H.") .H.(~{)[He'("{IJ +~ ー+H.' + H~' → Hモ

  • (N)

    A.-

    (M)

    A: ',> M *He- •* Hi- ) Ho . He.M Mr

    Hi'- + H, • H.'ll' I II

    Mr ( Me • He,' 1 h *

    Hi'1 H II • HrH' -I h"

    He,' + h" • He' + Hi'

    Ho,' + r • He' + Hr f r

    ' - He* + He

    HeH' 4 r • He' + H + c

    He,' f M • He' + He + M

    HeH- + M -He- + H +M

    iM: Ar. Kr. NO. O,. CO, CO,.

    C: He (He*) + H2ffi

  • C: He-TyXvtpOZ.*:? h

    D: Zfy X-? ty

  • nft ••,&)• •*>

    x

  • C f J 4 Pfl Off '1 Ail i i. ) i: I £„ it: ^f*«fi: S t->T i> 4 #*#* • £ + *!!*. ; « i 5 SJ&M'tofcftBlUJE'

    T4fiAT. -MHW««(7)ltn ?• 0 lt T. ^«!fl'2 (6(t« 1 (fit |fl]MK WSJ

    •TtL T f -

    mm i-ft i-r » y--co(*(fti *,->*Him ? - ^ft-r-ttH ^ A-o^r-ttfifir- yatfeOTjisiHm f̂n^ H S » *'?f 5 M I 4 c i i: 5

    f - y AfM5t J UMX l-.if b h 4 w t

    l 52 ff- 9 li

    fI-A iffl W fil >;

    SCVfifW A- 'ff (ft it

    タ績が惜:しいのであっτ、本物のデー宇が入手できなければ、経験則からlf.かれる近似ftrt,でもよいから収鍬すべき花。都 1t匹のように、範l哨を挟〈限って伴 Lい収息をしても実地の慢に立たな L、。これらの批判:t、都 H匹とそのブLプリン l在員、l荷Iする t勺

    にできる限り l~ 'J入れるようにl..t~o また今慢の 11:事にもで与る tl け反映させでゆきたいρ

    d 内し干ムたちのとっている考え方かιすれば、このような系統的な分矧に媒づく綱廠的な収集l止、将来必警になると予想され

    る全般的なデータパンヲ作りの基礎となるものである。これらの耳障材を悲にして始めて、 占 ~4 1l的意占織値の lは4 つ F りしたデ-一F タ J

    価という jガf向へi進量fむJことができるのだと 4考号える。このような性信づけの結製1:.lて、この:?o2!1W:o再I悠と 1.,)様、附遣するすへ

    での週間を制緩L、実験データと理組計算結果を系統的に選択し, JJlillljとして生のまま収録することに Lたn この息11窃 II島と

    ともに色.のf世われ力がありうると思う。明jTiに一致しない数字の11111Qが、{列え liひとつの断面繍付術史エネルギー曲線に'I!r,円

    込人であることは、このヂ-j1~ プラ;;:..シュミレーンヨンに問う1I1~の人 lニと勺で lみ{町中IJでないかも知れない ニの".η・ι婦も

    伺何できるデータと Lでどれを選ぶかは、+のところ利JIII'1の判断に(f:されているわわれれれスタデイグループの ~tl創,'1正、 lJ/.

    s,の収自H 碁に vr;忙のt苦情でいわゆる押Ili,高みデータ告Il!る1l:棋に過f:1A円である n ごのために、'l-lflfrの SGの11*のひと

    つとしてヂ-$' ~~価のあ円 1j についての研究が保円J. i r.;れている。杭出・lil火学プうズ-,.fi:;4(.;附にI.)-(Ntから斬し〈械倣fr研究,11>1桶情報セ〆タ・が目世間島 11、干の".の・1¥111"1として柿刷frのため

    のIi;if回分 "'j'タセン eーの崎純atlつ制u帽の蝿泌が F泣きれでいるのごこではご *1:tt:'のSGのfl:事が1,l:1j(的に';1麟がれるとともに、 l同際的 Fータセン世凶闘の・湾,':L ,(、"ータ似棋の分机.,,"-l'

    また、イト僚の鰍崎直介研悦の迫u.によ "Jて'1:j'る斬たなず-v (1)'lI~内 1 ,:付して ι 、 ての輔l織が小心とな, ,解決してゆ11.~ j.うな体hl1lllりが明まれるe、

    鍋怖に、 l詞隙~ (-}J慣例(lA F:Al の J:.I~l によ p で厳近開始された、柑楓f干のための If,U 分 r 'l'- タ ~jl南jにつ i 、 7 ・汗した P.

    このi/ti柑 1:微細 fr研究のよ値胤に仲つでお迎に '1,じてきた I~( r分 h'ータ申書備への¥N向l、IJューえるため、内11日に時W'j'晶ヂータ」七〆ターの|聞の協力と鯛憶をl湖町、|司際的セ〉ター側舎町俗 tるとと ιlよ、丸田副Udび散防 fータの組織的似11¥と配布Urなう 1事由IJをftiろうと tるものである。この"的で、 111'1[-:11 JIに1:1.U K Culh.m研'究所でAd¥'isaryGrour M~~tin_'\'lr なわれ、精悌介・

    原子二分千およびデータ ~n関係MO敵名がIt "Jてi珂際テ タセシター劇作rりのためのIAEAへの勧作自まとめたのこの働;りに従 J

    で今年 511にliWienて¥デ-, 9 センター質(1:1;の会{tが聞かれ、日ケ 11H1のセ〆ターか.-,賞作拘が参加して、いくつかの!~体的

    なf十棋の発足を取り決めたのその中には、 [AEAが械融合のための国H 分子デー?の[nt.rn.tion.lBull.tin I季刊)を出版する

    こと、さしあたり 1衝突関係の文献の刊町lultrindexについて l叫際f(l rmat をと '1 きめ、 1978旬、本までにその il.献indexの都 1 舎を H~

    版することなどが合まれているc またこの会合では、歓航 Fータの.xch.ngeformAtの制定やデータ収民円分割l~ どにつ t ‘ても浪

    論された。この点についてほ、この会捕では各センターから、J,ま門機倒的な造幣~引き H\すことが P きなか,たようだが、同1

    If 5円のデータセン F一会合?は何らかの形で数値デーヤ収集のi同際的分jllのとり告的がliなわれることになろうのその際にも

    !原子過程関係の干ータがl't先きに取,:げられることになる!lti!が慣れ‘。今後ともこのヂータ集の判111荷請11';の御批判・御崎健告

    願うものである。

    樹齢 この栂の仕事に当初から深い理解告示L‘持 LいHSI日lに激励と瓦怜をいただいた刈IIJ晶リ1・,li川芳彦・大林治夫.{j/n 弘の諸先生に感尉する。また広い IJI.野のもとに適時 tt (a!l批判!と叱正をいただいたい III~孝明先生に感謝する n

    昭和!立年 9/j

    制UH'f(f:荷,ili 開 府 } ; :

    SG慨任!i鈴本 i芋

    S G 'I~持 1.'3 J.:. ?t を介

  • (L)hkミネルギt単位

  • L-A

    L-Al

    Het *>ft#T> >-rn>i?ISIlUi-i->l?r-&m--n>TU, Moore," Martin,""' Bashkin and Stoner,Jr."' « i « * < * * , , Moore i Martin « t O l t (1 *, RI) 5(r . l i l? i f ) i ! i f8 f « HWt f t t . J i t 4 0 Baihkin-Stoner ^ (,(7)| i 11 s , „ /) 3 , ^ it Sr L-A-Table-1, L-A-Fig. ] , L-A-Fig. 2

  • L-A2

    i > * He

    r^TRyli 'J K^'l. r£ t t ( = 0.5a.u. 13.6 eV )?*>*„ ^ z c * £>f>fi4 *», fil-f-fcfli

    (Quantum Defeet) 4«flf r lt®Z f fri: 4;ft+ 5 MttT-A 5*'.

    JA:L-A-Table2i: *..i«fltfrT>"T". L-A-Flj. 4 i: ««.,

  • L - A 3

    He «2«-f»&UTl>TtJMartin,E3>BashHnandStonerJr.E4>

    zingstate)r-*>*), Z(Tifcth\:

    He" - He* + e

    (Photoioni-

    zation) ^iff iMWW r-jiZVmt-it, l > h » 4 Beatler-Fano

    •„.„,. «%», It r,,r,, t(:(Jffl?. i 4) A'ISlfitt«£ S S. -f 3r,,,r- r,., ia.tr£.ta

    ; : f k l tHc'+ c c^SBf-WAWtl'-Jtt. £ l i A.#J-_T. +. ;u -V~. Er+ i / ' 4 *,•< C t

    ri;-9i .>TItM»ssey«ndBurhopT 8>,BurkeT 9>i:j:>Ti 4 f t » j h T l > 4 o ^ i i ^ S r L-A-Tsble 4 i:>j5

    it^^^^'-HHHr.inSts^tf Grotri»n Diigr«m & L-A-Fig. 6 fc-J: y L-A-Fig. 6 IZ/jct.

    4 b . Sbi:iffLi'HeC)f!8B*fc!4lte

  • LA-Table 1(a)

    Energy levels of one-electron excitation in 'He

    Desig.

    ^s^'S

    Z3S -2s'S

    2p3P"

    2plP°

    3s 3S3s'S

    3p V

    U>D

    3rf'D

    3p'/>0

    Ap3P"

    Ad3D

    Ad'D

    Af3F"4f'F°

    AplP°

    5s 3S5s'S

    5rf3D

    5rf'n

    j

    0

    10

    210

    1

    10

    210

    321

    2

    1

    10

    210

    321

    2

    3

    1

    10

    •210

    321

    2

    Level {cm"4)*

    0.00 ±0.15

    159856.069166277.546

    169086.8636169086.9400169087.9280

    171135.000

    183236.892184864.936

    185564.6540185564.6760185564.9466

    186101.6436186101.6460186101.6903

    186105.065

    186209.471

    190298.210190940.331

    191217.1237191217.1327191217.2430

    191444.5334191444.5846191444.6029

    191446.559

    191451.98191451.99

    191492.817

    193347.089193663.627

    193800.8021193800.8067193800.8621

    193917.2427193917.2434193917.2528

    193918.391

    Leva! (eV>*

    0.0000

    19.819820.6160

    20.9643020.9643'i20.96444

    21.2182

    22.718722.9206

    23.0073123.0073123,00735

    23.0739

    23.0743

    23.0873

    23.594223.6738

    23.7081

    23.7363

    23.7366

    23.737323.7373

    23.7423

    23.972224.0115

    24.0285

    24.0429

    24.0431

    Level (cm"1)"*

    -198310.76

    - 38454.691- 32033.214

    - 29223.8964- 29223.82- 29222 832

    - 27175 76

    - 15073.868- 13445.824

    - 12746,106- 12746,084- 12745.8134

    - 12209.1164- 12209,114- 12209.0697

    - 12205.695

    - 12101.289

    - 8012.55- 7370.429

    - 7093.6363- 7093,6273- 7093.517

    - 6866.1766- 6866.1754- 6866.1571

    - 6864.201

    - 6858.78 i- 6858.77

    - 6817.943

    - 4963.671- 464- 133

    - 4509.91.9

    - 4509iif79

    - 4393.5173- 4393.5166- 4393.5072

    - 4392.369

    I*•>

    Level (eV)**

    -24.5876

    -4.7578-3.9716

    -3.6233-3.62329-3.62316

    -3.3694

    -1.8689-1.667

    -1.58029-1.58029-1.58026

    -1*137

    -1.6133

    -1.5003

    - .9934- .9138

    - .8795

    - .8513

    - .8510

    - £503- .8503

    - .8453

    - .6164- .5861

    - .5591

    - .5447

    - .5445

    * Level spacing measured from the ground state; He (Is2, '51.* * Levei spacing measured from Ate ionized state; He* (Is) + e.

    -L -A-4 -

    L・A.T・bl・1(・lEnergy levefs of one-efect.伺 nexcitation in・He

    Desig. J Level !cm--l,. Le咽!(eV," Level (cm・1,“ Level (eV'""

    IS215 。 O.∞:1:0.15 0.0000 -198310.76 -24.5876

    2.: 35 1 159856.0関 19.8198 -38454.691 --4.7578 2s IS 。 166277.546 初訓60 -32033.214 -3.9716 2p 3po 2 16ω86.8636 20.96430 -29223.8964 -3.6233

    1 16凱鴻6.94∞ 2O.9643i -29223.82 -3.62329 。 16凱鴻7.9280 孤 .96444 -29222832 -3.62316 2p Ipo 171135.0∞ 21.2182 -2717576 -3.3694 3s 3S 183236.892 22.7187 - 15073.868 -1.8曲目3s 's 。 184864.936 22.9206 - 13445.824 -1.667 3p 'p. 2 1865斜届40 23.00731 -12746.106 -1.58029

    186684.67凶 23.00731 -12746、個4 -1.58029 。 '86684.9466 23.凶 736 -12745.8134 -1.58026 3d'O 3 186101.8436 同 12209.1164

    2 186101.8460 23.0739 -12209.114 同 l.fi137186101.6卸 3 -12209.0697

    3tJ10 2 186106.066 23.0743 -12205.696 -1.5133

    司plp。 186209.471 23.0e73 - 12101.289 -1.5003

    4s 's t 1叩 298.210 23.6942 ー田12.55 一朗344s IS o 1叩 940.331 23.6738 - 7370.429 ー .9138

    4p3p。 2 191217.1237 - 7093.閃 63191217 .1327 23.7081 - 7093.6273 一 .8796。 191217.2430 - 7093.517

    4d30 3 191444.5334 一切66.17662 191444.6846 23.7363 一回66.1754 一 .8513

    ' 191444.6029 - 6866.1571 4dIO 2 191446.559 23.7366 - 6864.201 一 .8510

    4f3FC 191451.98 23.7373 一回目.78 ー息切34fIF。 3 191451.99 23.7:i13 - 6858.77 一.日開3

    4plp。 191492.817 23.7423 - 6817.943 -.8453

    5s3S 19:お47.0鴎 23.9722 - 4963.671 一 .615455 IS 。 193663.627 24.0115 - 4l;r 133 -.5861 fIO 3p。 2 193800.:回 21 - 4切9.9t,包

    1 193800.8067 24.0285 - 4~ng.f~i33 -.5田 t。 193800.8621 - 4509.IW79 制 3D 3 193917.2427 - 4393.5173

    2 193917.2'伺4 24.0429 - 4393.5166 ー.日47193917.2528 - 4393.5072

    制 In 2 193918.391 24.0431 - 4392.369 一‘.5445

    • lc制副 sPICingme・sur凶fTomthe QI司undst・t・;HHee.nsz,aS4. •• Le咽 isp・cingm・・su四d軒。m肋・ioniHdst・te;He. "s) +・.

    ーしA-4-

  • L-A-Tible 1(b)

    Energy levels of one-ekctron excitation in "He

    Desig.

    5flF°5s3-'G

    5p'P°

    6s 3S6s'S

    6p3/>°

    6cf 3D

    6c/1 D

    Gf'F"

    6p'P°

    7s 357s 'S

    7piP°

    7diD

    7f'F"

    7/3.1/

    7p'/>°

    8s 3S8s'S

    *>3»°

    8r"'F°

    J

    3

    1

    10

    210

    3

    1

    2

    3

    1

    10

    210

    321

    2

    3

    1

    10

    210

    2

    31

    Level (cnT'l"

    193921.18193921.19193921.73

    193942.57

    194936.23195115.00

    195192.9055195192.9081195192.9398

    195260.1657195260.1661195260.1713

    195260.86

    195262.49195262.50195262.84; 95262.89

    195275.04

    195868.35195979.04

    196027.3970196027.3986196027.4183

    196069.7298196069.7300196069.733i

    196070.2230196071.272196071.2757196071.459196071.494196071.52

    196079.24

    196461.42196534.88

    196566.8189196566.8200196566.8332

    196595.18196595.54196596.17

    196596.17196601.51

    Level (i'V|*

    24.043424.043424.0435

    24.0460

    24.169224.1914

    24.2011

    24.7094

    24.2095

    24.209724.209724.209724.2097

    24.2113

    24.284824.2985

    24.3045

    24.3098

    24.309824.310024.310024.310024.310024.3100

    24.3110

    24.358424.3675

    24.3714

    24.374924.375024.3751

    24.375124.3757

    Level (cm~'l**

    -4389.58-4389.57-4389.03

    -4368.19

    -3374.53-3195.76

    3117.8545-3117.8519-3117.8202

    -3050.5943-3050.5939-3050.5884

    -3049,9

    -3048,27-3048,26-3047,92-3047,87

    -3035.72

    -2442.41-2331.72

    -2283.363-2283.3614-2283.3417

    -2241.0302-2241.03-2241.0269

    -2240.537-2239.488-2239.4843-2239,301-2239,266-2239.24

    -2231.52

    -1849.34-1775.88

    -1743.9411-1743.94-1743.9268

    -1715.58-1715.22-1714,59

    -1714.59-1709.26

    Level

  • L-A Table 1(c)

    Energy levels of one-electron excitation in 4 He (continued)

    Desig.

    9 s 3 S9s'S

    9p'P°

    9d'O9dlD9f3F°9f 'F°9p 'P°

    10s 'SlOs'SlOp *P°10rf ' 010rf'Diof'F°

    10p XP°

    i is 'SUs'S11pV°Hd'OUrf'D11fVnffiip'p-

    12s3S12s'S12p'P°12d3D12rf' D12f V °12p'P°

    13s 3S13s'S13p3P°13d JD13c/'D13f ! F °13p'P°

    14s'S14s'514/3 3P°14d'D14d'O14f3f°14o'P°

    15s3S15s'S\Sp*P°15rf3O15ty'O15f V °15p'P°

    J

    10

    2I0

    2

    31

    10

    2

    31

    10

    2

    31

    10

    2

    1

    10

    2

    1

    10

    2

    1

    10

    2

    1

    Level (cm"1!'

    196862.0419691298

    196935.4192196935.4200196935.429

    196955.28196355.52196956.04196956.04196959.79

    197145.28197182.17197198.34197212.88197213.0700197213.433197213.4341'97216.24

    197352.89197380.44197392.72197403.47197403.6200197403.893197403.89401r7405.99

    197509 52197530.68197540.19197548.41197548.54197548.76197550.36

    197630.75197647.38197654.82197661.21197661.22197661.50197662.75

    197726.37197739.67197745.65197750.69197750.75197750.92197751.94

    197803.12197813.95197818.83197822.91197822.96197823.15197823.91

    Level (eV)'

    24.408024.4143

    24.417!

    24.4196n4.419624.419724.419724.4201

    24.443124.447724.449724.451524.451524.451624.451624.4519

    24.468924.472324.473824.475224.475224.475224.475224.4755

    24.488324.490924.492124.493124.493124.493224.4934

    24.503324.505424.506324.507124.507124.507124.5071

    24.515224.516824.517624.518224.518224.518224.5184

    24.524724.526024.526624.527224.527224.527224.5273

    Level (cm"')"

    -1448.72-1397.78

    -1375.3408-1375.3400-1375.331

    -1355.48-1355.24-1354.72-^354.72

    1350.97

    -1165.48-1128.59-1112.42-1097.88- 1097.69-1097.327-1097.3259-1094.52

    -957.87-930.32-918.04-907.29-907.14-706.867-906.866

    -904 77

    -801.24-780.08-770.57-762.35-762.22-762.00-760.40

    -680.01-663.38-655.93-649.55-649.54-649.22-648.01

    -584.39-571.05-565.11-56007-560.01-559.84-558.82

    -507.64-496.81-491.93-487.85-487.80-487.61-486.85

    Level (eVT*

    -0.1796-0.1733

    -0.1705

    -0.168-0.168-0.1679-0.1679-0.1675

    -0.1445-0.1399-0.1379-0.1361-0.1361-0.136-0.136-0.1357

    -0.1187-0.1153-0.1138-0.1124-0.1124-0.1124-0.1124-0.1121

    -0.0993-0.0967-0.0955-0.0945-0.0945-0.0944-0.0942

    -0.0843-0.0822-0.0813-0.0805-0.0805-0.0805-0.0803

    -0.0724-0.0708-0.0700-0.0694-0.0694-0.0694-0.0692

    -0.0629-0.0616-O.06 tO-0.0604-0.0604-0.0604-0.O603

    * Level spacing measured from the ground; He (1s!, 'S\.' * Level spacing measured from the ground; He* (Is) + e.

    - L - A - 6 -

    L・A.T.bleHc)

    Energv leve's 01 one吋electronexcitation in 4 He (continued'

    白期g. J Level (cm ~ )" Level (eV," Level (cm →)"" Level (eV,""

    9s 3S 196862.04 24.4080 -1448.i2 -0.1796 9s 's 。 196912.98 24.4143 -1.397.78 -0目17339p 'p。 2 196935.4192 -1375.3408

    196935.42∞ 24.4171 -1375.3400 -0.1705 o 196935.429 -1375.331

    9d 3D 196955.28 24.4196 -1355.48 -0.168 9d'D 2 1960155.52 内4.4196 一1355.24 -{).168 9f 'F。 196956.04 24.4197 -1354.72 -0.1679 9f' F。 3 196956.04 24.4197 -~ 354.72 -0.1679 9p 'po 196959.79 24.4201 一1350.97 -0.1675

    10s ,'s 197145.28 24.4431 -.1165.48 --0.1445 10s 's 。 197182.17 24.4477 -1128.59 -0.1399 IOp "p。 197198.34 24.4497 -111~.42 -0.1379 1【)d"D 1ヨ7212.88 ~4.4515 -1097.88 -0.1361 1【hf'FD 。 2 197213.07∞ ~4.4515 1097.69 -0.1361 10f 3 197213.433 24.4516 -1097.327 -0.136 10f 'F。 3 197213.4341 24.4516 --1097.3259 司 0.136IOp 'p。 197216.24 ~4.4519 -1094.52 一0.1357

    Ils ,'s 197352.89 24.4689 --957.87 -0.1187 Ils 's 。 197380.44 24.4723 -930.32 -0.1153 IIp 3p。 197392.72 74.4738 -918.04 -0.1138 lld"D 19ヲ403.47 24.4752 -907.29 -0.1124 11d'F D 。 2 197403.62∞ 24.4752 -907.14 -0.1124 11 f 3 197403.893 24.4752 -706.867 -0.1124 llf' FO 3 197403.8940 24.4752 -906.866 -0.1124 IIp 'p。 1れ7405.99 24.4755 -904 77 -0.1121

    12s 3S 197509.52 24.4883 一郎1.24 -0.'凹9312s 's 。 197530.68 24.4909 -780.08 -0.0967 12p 3p。 197540.19 24.4921 -770.57 -0.0955 12d1D 197548.41 24.4931 -762.35 -0.0945 12d' D 2 197548.54 24.4931 762.22 -0.0945 12f lF。 197548.76 ~4.4932 -762.00 -0.0944 12p 'p。 197500.36 24.4934 -760.40 -0.0942

    13s 's 1976羽).75 24.5033 --680.01 -0.0843 13s 's 。 197647.38 24.5054 --663.38 -0.0822 13p lp。 197654.8:? 24.5063 -655.93 -0.0813 13d1D 197661.21 24.5071 -649.55 -0.0凶 513d'D 2 197661.22 24.5071 -649.54 -0.0凶 513f lF。 197661.00 24.5071 -649.22 -0.0805 13p 'po 197662.75 24.5071 -648.01 -0.0鈎3

    14s lS 197726.37 24.5152 -584.39 -0.0724 14s 's 。 197739.67 ~4.5168 一571.05 -0.07伺14p 'po 197745.65 24.5176 -565.11 -0.07∞ 14d1D 197700.69 24.5132 -56007 -0.0694 14d'D 2 197700.75 24.5182 -560.01 -0.0694 14f 3F。 197700.92 24.5182 -559.84 -0.0694 14p 'p。 197751.94 24.5184 -558.82 -0.0四2

    15s lS t 197803、12 24.5247 -507.64 -0.0629 15s 's 。 197813.95 24.5260 -496.81 -0.0616 15pJp 0 197818.83 24.5266 -491.93 -0.0610 15d30 197822.91 24.5272 --487.85 -0.0氏A15d'O 2 197822.96 24.5272 -487朋 -0崎0415f"F

    O 197823.15 24.5272 -487.61 -O.06C鳩

    15,0 'po 197823.91 24.5273 -486.85 -OJJ603

    • Level spacing measured from the ground; He (15', 'SI. 日 Levelspacing "田asuredfrom the ground; He+ (151 + e.

    -L・A・6-

  • LATable 1(d)

    Energy levels of one-electron excitation in 4 He (continued!

    Desig.

    16s JS16p3/>°

    17s 3S17p3P°

    17d'D17p'P°

    18p'/'°

    20p'P°

    21p 3/>°

    22p3P°

    J

    1

    21

    1

    21

    21

    1

    1

    1 Limit

    Level (cm"')*

    197865.87197878.69197882 00197882.01197882.82

    197917.53197928.26197930.96197931.00197931.65

    197969.75197972.00197972.07197972.58

    19S004.85198006.75198007.21

    198034.80198036.4198036.79

    198060.58198062.3

    198082.89

    19B31O.76±O.O2

    Level (eV)'

    24.532524.534124.534524.534524.5346

    24.538924.540224.540624.540624.5406

    24.545424.545624.545624.5457

    24.549724.549924.5500

    24.553424.553624.5537

    24.556624.5568

    24.5594

    24.5876

    Level (cm"1)"*

    -444.89-432.07-428.76

    -428.75-427.94

    -393.23-392.50-379.80-379.76-379.11

    -341.01-338.76- 338 69-338.18

    -305.91-304.01-303.55

    275.96-274.36-273.97

    -250.18-248.46

    -227.87

    0

    Level (eV)**

    -0.0551-0.0535-0.0531-0.0531-0.0530

    -0.0487

    -0.0470-0.0470-0.0470

    -0.0422-0.0420-O.0420-0.0419

    -0.0379-0.0377-0.0376

    -0.0342-0.0340-0.0339

    -0.0310-0.0308

    -0.0282

    0

    * Level spacing meatured from the ground state; He (1s :, 'S)." Level spacing measured from the ionized state; He* (Is) + e.

    -L-A-7-

    L-A-Table 1(d)

    Energy levels 01 one吋electronexcitation in 4 He (continuec)

    De~ig. J Level (cm -, )' Level (eV)' Level (cm →γ・ Level (eV)"

    16s .15 197865.87 24.5325 -444.89 -0.0551 16,ρ3pO 197878.69 24.5341 -432.07 -0.0535 160'30 19788200 24.5345 -428.76 -0.0531 160' '0 2 197882.Q1 24.5345 -428.75 -0.0531 161' 'po 197882.82 24.5346 -427.94 -0.0530

    17s 35 197917.53 24.5389 -393.23 -0.0487 17p 3p。 197928.26 24.5402 -392.50 -0.01'74 17d3n 197930.96 24.5406 379.80 -0.0470 17d'0 2 197931.00 24.5406 -379.76 -0.0470 17p 'p。 197931.65 24.5406 -379.11 -0.0470

    1日P3po 197969.75 24.5454 -341.01 -0.0422 160'30 197972.00 24.5456 -318.76 -0.0420 160' '0 2 197972.07 24.5456 -338 (39 -0.0420 18p ", 0 1 197972.58 24.5457 一338.18 -0.0419 1%"P。 19!!1)Q4.85 24.5497 -305.91 -0.0379 190・'0 198006.75 24.5499 -304.01 -0.0377 19p Ip。 198007.21 :14.6600 一303.55 -0.0376

    20ρ 3p。 198034.80 24.5534 275.96 -0.0342 2αj "0 198036.4 24.5536 -274.36 -0.0340 2()p 'po 198036.79 24.5537 -273.97 -0.0339

    21p "p。 19関印.58 24.5566 -250.18 -0.0310 21d.10 198062.3 24.5568 -248.46 -0.0308

    22p .1po 19808:1.89 24.5594 -227.87 -0.0282

    He+(25IiJ Limit 19悶 10.7610.02 24.5876 。 。• Level spacing meatured from the ground state; He (1s', 15). 日 Level spacing measured from the ioniz~d state; Hぜ(15)+ e目

    -L-A-7-

  • L-A-Table 2

    Quantum Defects values (recomended values) of 8 . , for He**

    triplet state 6.,/ for singlet jtate

    0

    1

    7

    3

    4

    5

    6

    7

    8

    0.297

    0.690

    0.29 x

    0.45 x

    0.122

    0.437

    0.187

    0.909

    0.484

    x 10"'

    10"2

    ' 0 - '

    x 10-1

    x 10 "

    x l O ' 4

    x 10 "*

    x 10"5

    0.140

    -0.118 x 10"1

    0.22 x 10"'

    0.44 x 10"'

    0.122 x 10' J

    0.437 x 10""

    0.187 x 10"1

    0.909 x 10"'

    0.484 x 10~5

    -L -A -8 -

    L・A.Table2

    Quantum Defects values (同comendedvaluesl of Ii~. I for He"

    s Ó~.t for 引nglet;tate

    EapO

    'no

    0.140

    -0.118 x 10'"

    0.22)( 10-'

    0.44)( 10-'

    0.122 x 10']

    0.437 X 10-4

    0.187 X 10-4

    0.909 X 10-<

    0.484 x H'ベ

    g

    δ."tf町 tripletstate

    0.297

    0.690 x 10寸

    0.29 x 10-'

    0.45 x ',r' 0.122)( 10-"

    0.437 )( 10~

    0.187 X 10.4

    0皿 9)(10-'

    0.484)( 10目 5

    0

    1

    ?

    3

    4

    -L-A.8-

  • L-ATable 3

    Quantum Defects in He £>n t;Comparison between Experiments and Calculations

    State Experimental values Calculated values

    3S{ U, np)

    'S(\s,r\p)

    JP

    JO(ls,nrf |

    'D{U, nrf)

    lF (Is, nf)

    0.3108 (32S)0.3020 (33S)0.297 (n = °°)

    0.1493 )

    (n = »)

    ('2PI(' 3P)

    ( n - - |

    (33O)

    (n = ~)

    ('3D)

    (n = « |

    ~* (n = •

    ~* (n =c

    " Empirical limiting value T S :

    - L - A - 9 -

    l.A.Table 3

    Ouantum Defects in He 0 11.1'

    Comparison between Experirr,ents and Calculations

    Sta担 Experimental values Calculated values

    JS( Is, np) 0.3108 ('25) 0.311 t'25}

    0.3020 ("'3S) 0.302 ('3S) 0.297 (n =∞) 0.3∞ (n =帽)

    's (1s, np) 0.1493 ('25) 0.156 ('2S) 0.1434 ('3S) 0.52 ('3S) 0.140 (n立国) 0.142 (n =∞l

    'P(ls,np) 0.062 1、2P) 0.0623 (' 2P) 0.067 ('3P) 0.06印 ('3P)

    0.068+0.001 川=4-13)

    0.064t 0.005 (nと14)0.069 (n ~同)' 0.070 (n =皿)

    'P (1s, np) -0.0094 "2P) 0.0094 (' 2P)

    0.0111 (' 3P) 一0.0111 ('3P) -0.012010.003 (n" 5-15)

    -0.凹 98土日間5(nと16)0.0118 (n =∞)' 0.0127 (n ~国l

    -'0 (ls, nd) O.C0219 ("30) 0.0022 (' 3D)

    O.∞28010.0∞4 (n = 6-11) 0.0040土0.0007(n = 1;t-18) 0.0029 (11 =国)' O.∞30 (n =叫

    '0 (ls, I1d) 0.00177 ('3D) 0.0018 ('301

    O.∞2010.0003 (n = 3-12) 0.003110.0∞3 (n = 13-18) 0.0022 (n =∞) . O.∞18 (n =国i

    -'F (ls, nf) 3.710.3焚 10' (11 = 4-61 5.0-8.0 x 10'" 4.5 x 10'" (n =∞} ,n = 7、15)

    'F (ls, nf) 3.2-5.0 x 10‘ (n = 4-8) 9.5 X 10-5 (n = 9) 4.4 x 10'" (n =∞}

    ‘Empiricallimiting value TS~

    ーしA-9ー

  • + +

    • —

    —.

    —•

    I

    W

    -

    'j|

    In

    U

    l U

    en tn y

    i (71

    tn tn

    tn en

    en o

    i

    to

    "OCy

    j T

    i to

    tn t

    n

    tn

    en

    "* C

    o o

    o T

    > T

    J o "O

    "D O

    -O to

    "0 c

    oO

    n.

    iO

    °

    °O

    to "

    6 o

    T>

    Tj t

    o

    **j

    *-j

    *»j

    cn

    e^

    tne

    ne

    ne

    ntn

    en

    <n

    cn

    cn

    cn

    <n

    cn

    uru

    roo

    co

    cp

    OQ

    -^o

    Jcn

    en

    §8888

    8e

    ne

    ne

    nro

    roe

    nO

    en

    00

    4k

    ooocnoooooo

    ggggg 8^88^3S888S 8^ 8 8

    SSSSS 82222222222222 22222222222 22 2 2

    28SSS8S8SS2S83 SS

    8O

    O O

    O

    0(

    *-J

    OJ

    CJ1 U

    l -»

    C co e

    Gi

    ro

    cn e

    n t

    n c

    nco

    C

    OO

    O^

    Jco

    bi t

    o b

    ooo

    *^J -

    »*o

    88

    88

    88S

    2ro

    n

    ro

    Q

    OQQOQOQOOOO

    o

    --O

    OP

    OO

    O-»

    CO

    O-*

    ro

    oncn

    cocnoiro o

    en

    OO

    -*—

    »r

    en

    CT

    CO —

    -J

    O)

    io o

    co a

    t to

    x x

    x x

    x

    xx

    x x

    xx

    -• —

    en

    cno

    oN

    j c

    n-*

    -^*.

    (ofj

    iox x

    co

    ^

    jeo

    roro

    x>

    x-

    >-

    *x

    /;

    xx

    _ _

    . o o

    ,o '

    i i

    ~l

    |OCO

    -̂1

    X X

    o o

    o

    ro *—* /

    CO en x o1

    —*

    ho

    X o

    X _* o

    —*

    ; CD X O

    X O

    CO ; 5.0 X O

    00 cn X 10"

    m m

    uu

    m m

    CO

    CO

    m COm u

    m COm

    m m

    mco

    to

    co

    eo

    o

    ni rn

    PI ffl f

    fl f

    fl r

    n rn

    rn

    rn

    rri m

    mto

    totv

    uto

    toc

    oc

    oto

    toc

    oc

    oc

    o-• r

    ob

    o J:*

    Ox

    1

    oi

    ^J c

    o c

    n c

    oto

    co in

    <o

    X

    1 K"°

    3c

    ox *

    x

    ^ i

    o

    X o t

    0000090000

    00

    00

    O3 0

    0 C

    O 0

    0S

    CO

    CO

    Co'

    CO

    00 C

    OC

    O (

    + to mit CO 8 O cn r o f*. en 03 •vJ cn

    sig. a. 3 t r - Q

  • LATible 4(b)

    Energy levels of two-electron excited states in 4 H e .

    Desig.

    2,7 sp(+)2p7d

    (2p7rf?)2,8sp(-)

    (2,8sp(+|?)2p7rf

    (2,8 sp

  • r

    eV

    0 -

    - 1 -

    0 -

    -1 x iO 4 -

    - 2

    - 3

    -2x10*-

    . - 3x 10*-

    20 x10*

    ns'S np'P" nd'D nVf ns'S nd'D nf'r

    -20 x tO

    19 x10*

    18x10*

    17 x10*

    16. J10*J

    1Oll) 197193 j 03J .1 l 197208.0 -v/10(4J^I=-9(3^.11 19«9S0.36~9Mii)

    19/176.36-v ,10(0) 197210.41-V/1OI1I 197207 0 8 - ( , 1 0 ( 2196907.13—910) 196953.95 9(1) 196049.49 9(2) .196629 Ol-r^aim 196595-56-0-8(1) 196589 73J=\8(21 196B9O 3.rT-8

  • ns'S20 x 10J-r

    CO

    L-A-Fig. 2 Grotrian diagram of He one-electron excited states.

    nd'D nf'Fo np‘P" 同‘Snf '!= ~ nd 10 ns'S np 'P"

    20x 10.

    ~E 18 x 10' u

    E w

    17 x 10・

    16 x 10・

    19 x 10・

    ー「・》・

    -ωl

    Grotrian di勾ramof He one-electron excited瑚 tes.L・A.Fig.2

  • 161

    10"

    IO-1

    10-'

    3D

    Jo

    1

    3S

    is

    3p

    f

    5

    1

    e

    5

    5

    t

    6

    6

    (ALLSUBLEVELSI

    1 p

    T

    — -

    = W-

    T=TERM

    5

    5

    5—i '

    - W « , = 7^

    ENERGYi

    6

    6

    R

    (cm-11

    7

    7

    7

    7

    7

    7. - •«

    )

    1

    8

    R

    8

    8

    8

    8«=:

    1

    i

    1012 17

    1012 16

    1012 ~

    22

    )012 P2 0 -

    l rTi8

    L-A-Fig. 3 n-depence of quantum defect values for helium from NBSatomic energy tablesE2-E5>.

    -L -A -14 -

    100

    10-1ト

    10~・

    10~'

    3F 』

    lF

    10'"ト

    10~

    35 5 6 . 15 5 6

    -ド

    3p 5 6 守 .

    (AιL 5U日ιEVEι51

    7 8 1012 17 --肉・ー・4・・園、78 101216

    7 8 1012 ←ーー→骨骨崎、

    22

    1p 5 678

    5 6 7 . .

    5 6 4 -

    -R T=W-W田宮 {n+ol、4

    T= TERM ENERGY (cm寸}

    T

    L・A-Fig.3 n-depence of Quantum defcct values for helium from NBS

    atomic energy tablesE2 ,E5).

    -L-A-14-

  • / (orbital angular momentumi

    0 1 2 3 4 5 6 7 8

    10P

    10"

    10"

    I6I10- '

    10"

    10"

    10"

    xO

    * x Triplet State

    \ \ O Singlet StateV

    V\\

    sNX

    L-A- Fig. 4 /-depence of quantum defect values 8 ^ e

    -L-A-15-

    1ぴ

    10'"

    10-2

    I O 110-~

    104

    10-'

    10~

    )(

    o

    F唱

    1 (orbital angular momentuml

    2 3 4 5 6

    ふ血、丸、、、、、。、、

    l( Triplet Stete

    o Singlet St8te

    、、、句、、、、

    @ 、、、、@ 、

    7

    、、、• 、

    しA-Fig‘4 l-depence of quantum defect valu哩sli帽 e.

    -L・A・15-

    8

    、、命、

  • o>I

    eV fn

    175 -

    60 X!

    70

    66

    65

    60

    'P*He I4S/S,,) 4,,477.976c

    / 'D 'D-

    1 above He Hv"S- >.

    M3

    56 x

    53 x10-

    47JO'

    2• 10*•16 x' 10"

    604924 082 — 4.6 w602046.960 - - 4.5 IP*

    5949,9 388—4.4 >p*

    —586407,064-1 r 3,8 IP1

    585851.537^-3.7 p"57800, 2 7 2 — 3.4 IP*

    5M143 0 6 7 — 3.3 SP*

    526371.197-,r 2.10IP*S26O94.276-JL- 3,9 »*525707.07fri| 7J$

    He'Up.-P.^I 411477.622cm - 1 abov« H**ni. :S-

    He*(4*;S.6f 609787 95 cm above He ITi", JSt,l

    H«*(3i. ]S,A1 390,40. 761cm'1 Jbc~e He'rit. J s

    HV{3!. '5,41588461.730*,-' abovs He 11 i J . 'S ,

    l 39O14OJB22 on*' abov« Hê^

    * i20 ;f., I 32917,1

    521340 — 2-2p3p

    507720 ~ 2>3i

    501200—2p'

    506175.33 — 7

    521*33

    S16775

    510111 i50892O

    — 2o*d

    — 2p3d 5 1 8 2 4 C

    h-u- 2,3 ip-

    52J920 2p5d

    5144735—2p3d

    i— ?p3p

    Energy Level Icm

    508920 2.3*p«"^—^JS«« Bibliography

    Efwgv (.«ve( fem

    470310 — 2>2p

    19*310 76 cm"'

    I2S587 eV,

    l i 1 ' S o - H.' 1 f 'S % l

    Tm'n. ' I o n duMHtJ is . &B>

    L-A-Fig. 5 Energy leve. diagram of He two-electron excited states.

    'Dι 'D 'P'

    "巴"4宣丸!s匂,.1 ~11"71 ,976cm 一 '""拘菅 H.."ll‘臥凡J‘5_.'' 1唱P /'ゆD 吻D"5 'P

    一一一一一一一一一、¥、 HefI4p,!P'i.1 411.?7.622cm-1 abQorI!H.p・115.:5-曲岨2・岨2-4,6咽・ ¥ 宇% ・ー酎,0

  • I o

    L-A-Fig. 6 Grotrian diagram of He two-electron excited state?

    '0'

    OE凶Z山

    !?'》・4

    一wl

    Grotrian diagram of He two-electron excited statl!S' L・A-Fig.6

  • L-B H

    2e'He. 'He W»g-i:-3i«T MooreEI>

    GrotrUn Diafram *' Baihkinand Stoner, Jr.E!>CJ; ->T ' M ^ H r i > 4 oL-B-T»ble 1, L-B-Fig. 1 tei'J1 L-B-Fig. 2 i:^+

  • LB-Tabto 1

    Energy levels of * He* and 3 He*

    Config.

    Is

    2P2»

    3p3s3p,3c'3d

    *P4s*P,*d4rf,4/¥

    5p5c5p, 5rfSd.Sf5/. 5*tag

    6p6c6p,6d

    6/.W6j.«r6*

    7i, etc.

    8s. ttc.

    9s. ttc.

    10s, ttc.

    11s, ttc.

    12s, ttc.

    13s, ttc.

    14s, ttc.

    Desig.

    is's

    2p2/>°2s2S

    2P2P°

    3p2P°3s

    M 3 D . 3p2P°

    4p2P°

    4d2D. 4p3P°« 2 D, 4TF°

    4TF°

    5pJP°5tsS5rf2D, S p V

    5*r2Gl

    6s2S * " "« 3 D , 6p3P°6

  • eV

    eV55

    np1 P

    rn

    dJD

    nf F"

    ng

    :G

    -10

    -15

    45x10*-

    SO

    40 x

    10

    *

    45

    43349035*-, ,-9(1.-2)432051.054 -K

    -BI1/2I

    479951.707 711/21

    426717.129 «(1/2>

    421352665 — 5(1'2)

    8(1/2.3/2. ffi}J&

    ^W.sb

    m%

    ii421352 e55

    r^5l1/7. 3^1 J2Jg|Jg

    |'>5C3'J.5/7l JJiSSTV

    411477J31 .,,„ „

    ,, 411471.074 -,,„ .A

    41147».H»_

    41,477 .56

    -4,1

    /2!

    JJJJ^

    SJ—

    «d/7. 3/7, JJ {i™™

    — 4

  • - b

    -10

    -15

    eV ctT

    46x10 •

    nsJS nd-'D

    5 0 K

    45

    40

    ng"G nh ;H

    -55 IL-B-Fig. 2 He+ Grotrian Diagram (H sequence. Configuration: nl)

    ns'S np'Pれ n、dごo nf平

    卜fト仁ι瓦一二二記記」示Jij:i;二示示ιι己示::::ポzr十日一一1一叩世i ん九rL611I2円川川…11川山………I2目U一2口M山…3卸目]/21庖川2引 'T¥.S'JI1…5日刊11 ん~目…7η2 町へ問 9話21;"-一八 6一{ロ印叩伽3卸目釦jぽ山1.1 ? -711/2,3叩 - 71312.5121 - 7fs,,7.7."21 --:: 717 1'2.g/2~~,均二_7{9/2.1"21

    一山 Z4314711123421 ・-J…究rタバ口〆""'(':317/2.9121 グ二ベ15-"2.1引

    5印0ト//14加 3回 ゲ円'η115引/-.〆チ

    1 一一一3訓叩昨川川f1仲川川'ド悶叩'1引2引1 I川!l~-:十一一一3訓叩11………11川山……/々目…一2口山…3口日2引' 必j/;/ 〆Wy

    nh'H ng'G

    1-'.'ー争~ l.mrt

    WW/ ili--↓lll

    4 0

    4

    E16 唱。

    45

    -!>

    -10

    一15

    ー「・∞ふl

    He+ Grotrian Diagram (H盟申er間 , Configuration: nl) L・8・Fig.2

  • L - C He"

    TKSJS ii£ *3, » « « ^ T ' He' iL

    &•+ 4 fi»SR-MI¥iS$tt (AutodeUtchment «Ute)i L TStK S n 5o

    WKT'liiS;»)* (Transmision), 5W*»irftBri£S«ia:£ (Elastic cross section, * » f f i » ToUl, » » Differentia!) 4 i ' i : i

    0, USSTiiS&IS&ri (Cloted-coupling), $ ^ j i (St»bil!z«tion), £ft$j%K'f*-r£ (Projection operator), S ^ i £ (Variation),

    Schuli i : j : - . T t t f t ^ * l t W M - i : ( H ! a t t « l i l t j ( C » i : « i f t - L T l > » i < He-A'*>5 , Hr I ' P s , ,

    * 5 O He ' ( l»2» . 'S ) i ; t 1 1 (B " f • > 4. .

    I97fi'l!-«H ( i t IW >;)

    E 1) G.J. Schul«:R#u. mod. Phys, 45, 378 (1973);Re«ononce m Electron Impact on Atomt and Diatomic Molecutet

    (U.S. Department of Commerce, National Bureau of Standards, Washington D.C. 1973) NSRD—NBS 50.

    E 2) J.B. Hasted: Phytict of Atomic CoUitions 2nd ed.(Butterworth, London. 1972) p. 453.

    E 3) D.R. Sweetman: ProcPAyr Soe.(London)76, 998 (1960),

    T 1) E. Holtfien and J. Mitdal: ft-oe Phys. Soc. (London) 68, 815(1955).

    - L - C - 1 -

    L-C Heーのエネルギー憎位

    Heの基底状態1111'の閉殺栴遣をも・ 3ているので.負イ 4ン11形成しな1'0 しか l'励起状態1.1開継であるために電子親和力

    が生じ負イ;j';,が形成される。 これらは He+.の弾性散乱の実"で共鳴現象として観測されたり, at..プラズマで H.' とLて観測されたりする。前者は Heの寿命の短t‘場合であ灼.他者1.1寿命の長い場合である。 理論的には He+.の散乱』先勝と結

    合する自動電子解離単位 (Autodetatchment・tate)として計算される。

    実験でI.t.透過法(Tr・町田i・ion),弾性散乱即i;:;;~測定 (Elastic 町O園陸ction , it断面積 Total,I世分 Differential)などによ

    り,理論では強結合法 (Clo目 d-couplinll),安定法 (Stabil;zation),斜膨演算ri.土 (Projectionoperator),変分法 (V町ialion),

    R 行列法などの方法で研究されている。これらはSchul~ '" 1ニよ〉てまとめられている。 実験的に共鳴tして観測されている

    ものは沢山あり.その中には準{立の同定のはっきりしないものもある。ここでは '1;ι確かであり噸仰の同定も行なわれているも

    のを態録した。

    Schul~ によってま t められた以外に倣乱状態とは山:1.に結合していない H. が晶る H. 1・Ps.,lの4北陸がr...fl それである。 H.O(112.,・SIにもう If闘の.fーが附持して ( h2.2p,‘P",I の電子配慮をも 1 でいると宥えられる。 H♂(1I2.,'SI 1が量!志の励起状態であるために.これ以下の H.' .• H~ (1 '5 I + rの Decaychannel しか二L~, I~ ギー的にI'f・きれな

    な1'0しかしこの necayChann・lは Parlty咲酬であるために刺lIiIt!用がJI・常lこω"0このためにこの H.(・P"JIが孤:.I.ーして作在する喝合の舟命は 1x 10 .秒と膏えられている n

    nl:を L・c・T.ble1 に掲げた。なむ.さらに~H い H貯の噸f,r.,時命に E 八、 (Ii IME) Ilr, Hr のtl:酬lW:I!J(1),'.人にまとめられて川る a

    1 !l7fi rr ~" (i晴{叩 IJI

    E 1) G.J. Schulz: RO!u. mod. PltY" 45,378 (1 973);RcRonanc.. in EI町 lro"Impacl 0" Alom. and D抱lamicMoleculO!.

    (U.S. Departmenl of Commerce, N・tionRIBureau of Stand..rd・, WaohinlltonD.C. 1973) NSRD-NBS 50.

    E 2) J.B田Ha.ted:Phy.ic. o( Atomic Colli.ion. 2nd ed.(Bullerworth, London. 1972) p. 453.

    E 3) D,R. Sweetman:丹唱cPlty.目 Soc.(London )76, 998 (1960)、

    T 1) E. HolOi町、 andJ目 Mitdal:丹'ocPhy.. Soc. (London) 68, 815 (1955)・

    -l-C-l-

  • L-C Table 1

    Energy Levels and their widths in He"

    Designation Level (eVI* Width T (eV)

    1.(2.)2. «Ps/2

    1.2.2p. «P5/J

    1»(2plJ, 2P

    1«(2plVD3'S

    32P

    1.4.J l S

    I.5.3 aS

    2.'2p2P

    2«2p2 'D

    19.285-19.4

    19.74 ~ 19.66

    20.34 ~ 20.45

    20.3 ~ 21.0

    22.34 ~ 22.42

    22.50 ~ 22.65

    22.951 0.02

    23.94 ± 0.02

    56.9 ~ 57.3

    58.04 ~ 58.4

    0.008 ~ 0.014

    7 x 1 0 H 1

    0.52

    0.4

    0.045± 0.007

    0.02St 0.010

    Measured from the Ionized state of He (la1 ' s ' |+ a (OeVf.

    Since most data were obtained by the sattering and theory, the values were given only in eV, but In cm"1.

    -L -C-2 -

    。蝿ign・討開

    1.(2・)3.4p5/21a2a2p. 4p 5/3

    1・(2p)3.3p 1・(2p)3.30

    33S

    33p

    1.4・33S1・E・33S 2a~ 2p 3p

    2a2pZ Zo

    L-t-T.bI・ 1

    Energy Levels ・ndtheir widths in He-L・時I(・V).

    19.285-19.4

    19.74 -19.66

    初 .34-20.45

    20.3 -21.0

    22.34 -22.42

    22.回 -22.65

    22.95土 0.02

    23.94土 0.02

    56.9 -67.3

    58.04 -68.4

    Wid倫 r(・V)

    O.∞8 -0.014 7 x 10→1

    0.52

    0.4

    0.045士 0.1∞70.025士 0.010

    • M・・sur“fromtht ionized stlt・ofH・(1・Z ISI)+・(0・V).Since most d・t~ 刑問。bt・in・d by th・岨tt.rlngInd th・ory.th・v・lu・S川崎日i帽 nonly In.V. but In cm- I •

    -L-C・2-

  • L - D

    Decay channel *'A •) Z(7)«l*fj|»fttt» ( I ta t tB) t t e ^ L T i ' 5 SB*-? -«« t t l l (Auto-detachment state)

    MKt L T W 3 S * n r * T l > * 0 C t t b l i Burke", Schulz1" t Hatted111 i: l< .Vで与えである。

    1976年B円(糟部 力)

    E 1) G_J. Schulz田 Rev.Mod. PhYI. 45, 378 (1973);'‘ResonanctS in Electron /mpacl on Atoml and D岨 tonic

    Moleculeo (U.S. Department of Commerce, National Bure・uof Stand町山, Wa.hinrtonD.C. 1973) NSRDS--NBS 50.

    E 2) J.B. Ha.t,.d: Phy.ics o{ Alomic Colli.ion. 2nd ed目 (Butterworlhl,London 1972) p. 451.

    T 1) P.G. Burke: R.,onallce in Eleclron Scatttrillll by Alom. and Molecu.lar Phy.ic., in Adv. on Al品m.and Molecul. Phy・vol4. Ed. by D.R. Oale. and 1. Eoterm・nn(Academic Pre.., New York 1968).

    ーしD・1-

  • L-DTibli 1

    Energy Levels and their widths in H"

    State*

    n = 1'S

    n = 2 ' S

    n = 2 3 P

    n = 2 ' D

    n = 2 3 S

    n = 2 ' P

    n - 2 ' S

    n - 2 ' P

    n - 2 'P

    n - 3 ' S

    n - 3 'P

    n - 3 ' 0

    n - 3 ' P

    n - 3 ' S

    n - 3 3 P

    Levels (eVS*"*

    -0.754± 0.001

    9.58± 0.001

    9.738± 0.01

    10.128± 0.0 i

    10.150

    10.177

    10.178

    10.190

    10.222

    11.733

    11.764

    11.819

    11.915

    12.037

    12.048

    Width, T(eV)

    stable

    0.043± 0.006

    0.0056± 0.0005

    O.OC73± 0.002

    2.06 x 10"4

    4.50 x 10"s

    0.00219

    0.0002

    0.0151

    0.0388

    0.0483

    0.0493

    0.0383

    0.00853

    0.00713

    Method **

    E,T

    E,T

    E.T

    E.T

    T

    T

    T

    T

    T

    T

    T

    T

    T

    T

    T

    * n means the resonances near the threshold of H*(n).

    ** E and T means Expesimental and Theoretical Data, respectively.

    ** Energies are measured from the ionized state H(U) + e (OeV).

    -L -D -2 -

    t・0・T・bl・1

    Ene.羽VLevels ・ndtheir widths in W

    5tate・ Lcvels (eV)'" Width, r(eV) Method ••

    n= 1 '5 ~.754士 O.∞1 stable E,T n = 2 '5 9.58士 O.∞1 0.04310.∞6 E,T n = 2 3p 9.73810.01 O.∞56:t0脱却5 E,T n =2' 0 10.128士 0.0'; 0.OC73士O.∞2 E,T n = 2 35 10.1田 2.06 x 10~ T

    n = 2 1 P 10.177 4.50 X 10-5 T

    n -2 '5 10.178 0.00219 T

    n. 2 3p 10.1旬 0瓜加2 T

    n.2 ,p 10.222 0.0161 T n.3' 5 11.733 0.0388 T

    n.33P 11.764 。目0483 T

    n. 3' 0 11.819 0.0493 T

    n.3'P 11.915 0.0383 T

    n.31S 12.037 O.凶 853 T

    n -3 3p 12.倒 B 0.00713 T

    • n Il官・nstheresonancesne・rthe thr田 holdof H・(n).•• E and T means ExpesI IT鴨川・Iand Theoretical Dat・,respectiv・Iv.・・・ Energiesana IT睡asuredfrom the ion ized state H ( ") + e (Qe V ).

    -L-D・2-

  • L —E H ' l

    H" t »-?-£ M&?mX- Walton, Peart and DolderE" l±

    H + e — H + It

    CDeinaiS^BilSrffi i ' . #l»fc«&i)Hl£o « » K i : : t Taylor and Thom»t T "fc i t / Hazi »nd TaylorT2> C

  • (ME)$>

    Kb

    m

    怖多量動起状態

  • ME-B Lifetimes of Multiply-Excited Statesof Helium Atoms and Negative Ions

    I. Lifetimes of Doubly-excited States of Atomic Helium

    Helium atoms in doubly-excited states may, in general,

    decay by two possible mechanisms, the usual radiative decay

    mechanism and autoionization. For most states, the auto-

    ionization rate, A,, is of the order of 10 - 10 s~ and,

    therefore, many orders of magnitude greater than the radiative

    decay rate, A r Since the lifetime, T, is given by

    \ ' Aa + Ar,

    the dominant process is autoionization. However, for a few

    states, the probability for autoionization is very low and in

    such cases, radiative emission is the dominant decay mechanism.

    Theoretical lifetime evaluations can be made directly

    for the dominant decay process(es) involved, however, the

    autoicnization decay rate can also be obtained from the width

    of the e + He scattering resonance for the state concerned.

    Most of the theoretical aucoionization rates in this compila-

    tion were obtained from indirect results of this type.

    There are five experimental techniques which have been

    used to obtain information useful in the evaluation of

    lifetimes. The energy analysis of electrons ejected from He

    atoms excited by electron impact is the most frequently

    employed technique. From the apparent widths of the resonances

    in the energy spectrum, the true autoionization widths, fa ,

    -ME-B-1-

    ME-B Lifetimes of Multiply-Excited States

    of Helium Atom

  • can be obtained by deconvolution. The values of A for aa

    given state can be calculated using the relation

    This technique is limited to the determination of A and,

    due to instrumental resolution, to states with rather short

    lifetimes. The energy analysis of electrons which have

    undergone inelastic collisions with He atoms and lost kinetic

    energy also gives a spectrum with resonances. After decon-

    volution, the width, f, of a resonance gives, in principle,

    the sum of the decay rates for both processes or, equivalently,

    the lifetime, thus

    T = h/2irr . '

    In reality, however, the instrumental reaolution in such '

    experiments is too small to measure radiative decay widths >

    and, thus, this metMd is applicable only to the deuermina- ,

    tion of the usual autoionization decay rates. Measurements

    of the photoabsorption of He with photons of energy in the

    vicinity of the resonances give analogous results, however,t

    the instrumental resolution is far superior and permits

    measurements including the radiative-decay contribution.

    However, this method is limited by selectirn rules to excita-

    tion of the 1P states. Measurements of the in-flight '

    emission intenrity of a foil-excited beam as a function of >

    the distance from the foil gives directly the lifetime of )

    the excited state for all decay processes. This technique i

    is, however, limited to states with lifetimes of the order

    of about 10~ s or greater. However, by analyzing the

    linewidth of the light emitted by a state in a foil-

    -ME-B-2- J

    can be obtained by de~onv01ution. The va1ues of A for 3 a

    given state can be ca1cu1ated using the relation

    Aa = 2宵ra/h

    This technique is 1imited to t.he deterrnination of Aa and,

    due to instrurn~nta1 res01ution, to states with rather short

    1ifetimes. The en円rgyana1ysis of e1ectrons which have

    undergone ine1astic c011isions with He atoms and 10st kinetic

    energy also gives a spectrum W.l.th resonances. After decon-

    volution, the width, r, of a resonance gives, in p~incip1e ,

    the sum of the decay rdtes for buth proce~scß or, equivalent1y,

    the 1ifetime, thus

    T = h/2甘T

    工nreality, however, the instru~enta1 res01ution in such

    experiments i5 too sma11 to measure radia~ive decay widths

    and, thus, this mett可d is apρ1icable cn1y to the de~e~mina-

    tion of the usua1 autoionization decay rates. Measurements

    of tne photoabsorption of He with photons of energy in the

    vicini ty of the resonances g:i.ve ana10go:

  • excited beam, it is possible to extend this limit by 3 tc 4

    orders of magnitude. The natural linewidth of a transition

    is given by

    r = (7 + i )/2*cTl T2

    where T 1 and x2 are the lifetimes of the upper and lower

    states. Thus it can be seen that once the lifetime of

    either state is known from an independent determination,

    the linewidth gives the lifetime of the other state. How-

    ever, the high-velocity beams are strongly Doppler-broadened

    and this, in practice, limits the technique to states with—12

    lifetimes of about 10 s or Ie3s. It must also be noted

    that the foil-excited beam techniques are limited to states

    with substantial radiative decay rates, since a sufficient

    photon current is required for the measurements.

    To aid in the rapid identification of the states, the

    various designations employed for the states are given in

    ME-B-Table I along with representative values of the

    energies of the state-3. While this list contains the most

    important theoretical and experimental determinations of

    the energy levels, it is not intended to be exhaustive, but

    only to aid the reader in identifying an experimentally

    observed state or a state quoted in an unfamiliar notation.

    The states are ordered first according to L-value, i.e.,

    S,P,D, etc., then for states with the same L-value according

    to multiplicity, i.e., singlet and triplet, and finally,

    for states with the same L-value and multiplicity according

    to energy beginning with the lowest energy states.

    -ME-B-3-

    excited beam, it is possib1e to ext.end this 1imit by 1 tc 4

    orders of magnitude. The natura1 linewidth of a transition

    C

    宵"

    4Ir } 司4

    1-τ +

    4

    1

    一τ{ =

    y

    r

    b

    n

    e

    v

    --q

    s

    ・1

    where τ1 and τ2 are the 1ifetimes of the upper and 10wer

    states. Thus it can be seen that once the 1ifetime of

    either state is known from an independent d~termination ,

    the 1inewidth gives the 1ifetime of the other state. How-

    ever, the high-ve10city beams are strong1y Dopp1er-broadened

    and this, in practice, 1imits the te~hnique to state8 with -12 1ifetimes of about 10-~.s or 1e3s. It must a180 be noted

    that the foi1-excited beam techniques are 1imited to states

    with substantia1 radiative decay rates, since a sufficient

    photon current is required for the measurements.

    To aid in the rapid identification of the states, the

    various designations emp10yed foど thestates are given in

    ME-B-Table I a10ng with representative va1ues of the

    energies of the stateョWhi1ethis 1ist contains the most

    important theoretica1 and experimenta1 determinations of

    the energy 1eve1s, it is not intended to be exhaustive, but

    on1y to aid the reader in identifying an experimenta11y

    observed state or a state quoted in an unfami1iar notation.

    The states are ordered first according to L-va1ue, i.e.,

    S,P,D, 主主主・, then for states with the same L-va11Je according

    to multiplicity,主主, sing1et and trip1et, and fina11y,

    for states with the same L-va1ue and mu1tip1icity according

    to energy beginning with the 10west energy states.

    -ME-B-3-

  • )

    In ME-B-Table II, the states are arranged in this same

    order. For each state, all available significant determina-

    tions of the lifetime and/or relevant decay rates are given, '

    along with the type of determination, the method of determina-

    tion and the reference from which the information was taken. '

    Due to the great importance of configuration mixing and the i

    universal character of the notation of Herrick and Sinanoglu (

    (1975) [See also Sinanog'lu and Herrick (1975)], this notation

    was used as the basis for designating the states given in

    the table. Tr. this notation, a state is unambiguouslyi

    designated by

    N (K, T ) n 2 S + 1L*

    where N and n are the principal quantum number of the '

    electron with lower energy and that of the electron with '

    higher energy, respectively, 2S + 1 is the multiplicity, >

    L is the angular momentum quantum number and IT is the i

    parity, designated either as odd (o) or even (e). K and ]

    T are new quantum numbers such that T = 0, 1, ..., L andi

    ± K = N - T - l , N - T - 3 , . . . , O o r l . Also if ir = (-1)L+1

    Ithen T>0. Therefore, for the singly-excited two-electron

    states N = 1 and K = T = 0, and for the N = 2 singly-

    excited states K = 0 and T = 1 or K = ±1 and T = 0, etc. '

    In view of the fact that most references designate the *

    r = 2 states in the hydrogen-like notation, this designation i

    has been included for these rnd a few N = 3 states. In this )

    notation, the P states 2nsp± designate states in which the v

    principal configurations are 2snp ± 2pns. Other occasionally

    encountered notations are included for those states for)

    -ME-B-4-

    工nME-B田 Table11, the states are arranged in this same

    order. For each state, a11 avai1ab1e significant determina-

    tions of the 1ifetime and/or re1evant decay rates are given,

    a10ng with the type of determination, the method of determina-

    tion and the reference from which the information was taken.

    Due to the g:eat importance of configuration mixing and the

    universa1 character of the nc'tation of Herrick and Sinanog1u

    (1975) [See a1so Sinanoc;'11u and Herrick (1975) 1, this notation

    was used as the basis for designating the states given in

    the tab1e. 1n this notation, a state 1s unambiguously

    designated by

    2S+l甘N (K, T)n --'-L

    where N and n are the principa1 quantum number of the

    e1ectron with 10wer energy and that of the e1ectron with

    higher energy, respective1y, 2S + 1 is the mu1tip1icity,

    L is the angu1ar momentum quantum numb:r and n is the

    parity, designated either as odd (0) or even (e). K and

    T are new quan七umnumbers such that T 0, 1, ..., L and L+1

    :tK = N 田 T-1, N -T -3,..., 0 or 1. A1so if甘= (-1)

    then T>O. Therefore, Zor七hesing1y-excited two-electron

    states N = 1 and K T 0, and for七heN 2 sing1y-

    excited states K = 0 and T = 1 or K = :t1 and T = 0, etc.

    工nview of the fac七 tha七 mos七 referencesdesignate the

    ド =2 s七atesin七hehydrogen-1ike nota七ion; 七hisdesignatio'1

    has been inc1uded for七heseend a few N = 3 s七ates. 1n七his

    notation, the P s七ates2nsp:t designate states in which七he

    principa1 configura七ionsare 2snp士 2pns. Other occasiona11y

    encoun七eredno七a七ionsare inc1uded ror those states for

    -ME.B-4-

  • which they have been cited. Notable among these is the designa-

    tion for N = 3 lSe states of Ormonde et al.(1967) in which

    3n+ and 3nn,± denote states for which the principal configura-

    tions are 3sns + 3pnp and 3sns - 3pnp ± 3dnd, respectively.

    The type or determination is either theoretical (T) or

    experimental (E).

    All experimental determinations are included, but the

    following categories of theoretical exterminations are not

    included in the table: (1) results based on estimates in

    cases waare a substantial number of accurate and precise

    determinations are available, (2) results based on simplifica-

    tions of procedure and calculation for the purpose of reducing

    the required computation at the expense of accuracy and

    (3) results based on purely hydrogen-like calculations in

    cases where configuration mixing is known no substantially

    change the character of the state from the hydrogen-like

    nature, especially when such results wsre published after the

    appearance of the paper of Cooper et al. (1963) in which this

    problem was clearly presented. Many results of Zemtsov (1974)

    fall in category (3) and are, therefore not included.

    The order of the results cited for a given state is

    (1) theoretical autoionization rates arranged in chronological

    order, (2) experimental autoionization and experimental

    total decay rates arranged in chronological order, and

    (3) theoretical followed by experimental radiative decay rates,

    arranged by state beginning with the state with lowest

    energy. The only deviation from this order occurs in two

    cases in which the theoretical radiative decay rates are given

    -ME-B-5-

    which they have been cited. Notab1e among these is the designa-

    ~ion for N = 3 ISe states of Ormonde et a1.(1967) in which

    3n+ and 3nnd士 denotestates for which the principa1 configura申

    tions are 3sns + 3pnp and 3sns -3pnp t 3dnd, respective1y.

    The type or determination is either theoretica1 (T) or

    experirnenta1 (E).

    A11 experirnenta1 determinations are inc1uded, but the

    f0110wing catogories of theoretica1 ~eterminations are not

    inc1uded ill ths tab1e: (1) resu1ts based on estirnates in

    cases ~here a substantia1 number of accurate and precise

    determinations are avai1ab1e, (2) reau工とsbased on airnp1ifica-

    tions of procedure and calcu1ation for the purpose of reducing

    the required cornputation at the ~~pense of accuracy and

    (3) resu1ts based on pure1y hydrogen-1ike ca1cu1ations in

    cases where configuration rnixing is known ~o substantia11y

    change the character of the state frorn the hydroq~n-1ike

    nature, especia11y when such resu1ts w~re pub1ished after the

    appearance of the paper of Cooper主主主主・ (1963) in which this

    prob1em was c1ear1y presented. Many resu1ts of Zemtsov (1974)

    fa11 in category (3) ana are, therefore not inc1uded.

    The order of the resu1ts cited for a given state is

    (1) t.heoretica1 autoi、nizationrates arranged in chron01oqica1 order, (2) experimenta1 autoionization and experimenta1

    tota1 decay rates arranged in chron01ogical order, and

    (3) theor.etica1 fo11owed by experimenta1 radiative decay rate&

    arranged by state beginning with the state with 10west

    ~nergy. The on1y deviation from this order occurs in two

    cases in which the theoretical radiative decay rates are given

    -ME・8・5-

  • before the experimental total decay rates, since in these cases

    the autoionization rates are negligible in comparison with the

    radiative decay rates. The lifetimes are given for each

    theoretical autoionization decay rate, as well as each experimen-

    tal decay rate, entry except in the cases of states for which

    the only theoretical values are for the radiative decay rates.

    In such cases, the lifetimes given are based on the sums of

    the individual radiative decay rates taken from a given reference.

    In case the autoionization decay rate is dominant and the cal-

    culated radiative decay rates account for less than a few percent

    of the total decay rate, the theoretical radiative decay rates

    are given only for reference. In case the autoionization decay

    rate is not dominant, the lifetimes given for the autoionization

    decay rate entries are based on the sum of that autoionization

    decay rate and the best theoretical radiative decay rate sum

    available. This situation is explained fully in the footnote

    corresponding to each case. When the experimental decay rate

    represents the total decay rate, the data is listed across

    both the autoionization and radiative decay rate columns. In

    cases where the autoionization decay rate is known to exceed

    the sum of the main contributions to the radiative decay rate

    by a factor of 10 , "Negligible" is entered in the radiative

    decay rate column. This is also done when the autoionization

    12 -1decay rate is greater than 10 s , since the maximum possible

    total radiative decay rate for any of these states is about

    1010 s"1.

    The lifetimes are given in units of ns (10 s), ps (10~12 s)

    and fs (10~ s). Cases in which the theoretical lifetime

    -ME-B-6-

    before the experimenta1 tota1 decay rates, since in these cases

    the autoionization rates are neg1igib1e in comparison with the

    radiative decay rates. The 1ifetimes are given for each

    theoretica1 autoionization decay rate, as we11 as each experimen-

    ta1 decay rate, entry except in the cases of states for which

    the on1y theoretica1 va1ues are for the radiative decay [-ates.

    工nsuch cases, the 1ifetimas given are based on the sums of

    the individua1 radiative decay rates taken from a given reference.

    工ncase the autoionization decay rate is dominant and the ca1-

    cu1ated radiative decay rates account for less than a few percent

    of the tota1 decay rate, the theoretica1 radiative decay rates

    are given on1y for reference. 工ncase the autoionization decay

    rate is not dominant, the 1ifetimes given for the autoioniza~ion

    decay rate entries are based on the sum of that autoionization

    decay rate and the best theoretica1 radiative decay rate sum

    avai1able. This situation is exp1ained fu11y in the footnote

    corresponding to each case. When the experimenta1 decay rate

    represents the tota1 decay rate, the data is 1isted across

    both the autoionization and radiative decay rate co1umns. 工n

    cases where the autojonization decay rate is known to exceed

    the sum of the main contributions to the radiative decay rate

    2 by a factor of 10., "Neg1igib1e" is entered in the radiative

    decay rate co1umn. This i~ a1so done when the autoionization

    12 -1 decay rate is greater than 10--s -, since the maximum possib1e

    tota1 radiative decay rate for any of these states is about

    10 -1 10-V s

    -9 _, __ ..~-12 The 1ifetimes are given in units of ns (10-~ s), ps (10-~' sl -15 and fs (10-~~ s). Cases in which the theoretica1 1ifetime

    -ME-B-6-

  • given may not include all important decay contributions are

    explained in footnotss.

    Throughout, the factor by which the resonance width in

    eV has been divided to convert it to the decay rate in s is

    6.58218 x io"16. Also 1 eV has been taken to be 8065.465 cm"1.

    The results are displayed in an arrangement which will

    allow the reader to compare and evaluate the results, both

    theoretical and experimental, that have been obtained to date.

    Although the reliability of the theoretical results is

    difficult to judge when no experimental results are available,

    the following suggestions should be of help to the reader in

    judging the reliability of the lifetimes of states for which

    only one or two results are available. Autoionization decay

    results obtained by the close-coupling methods (except for

    extrapolations), by the projection-operator methods, by the

    configuration-interaction methods and by the quantum-defect

    method are generally more reliable than the result of other

    methods, although there are also occasional large disagreements

    among results employing these methods. The perturbation

    methods, the method of extrapolation from close-coupling

    results and the configuration-overlap method of Zemtsov (1974)

    appear to be particularly unreliable. All the radiative decay

    results appear to be very reliable, rarely differing by as

    much as a factor of 2.

    March 1, 1977 W. Shearer-Izurai

    -ME-B-7-

    given may not include all .;.mportant decay cQntributions are

    explained in footnot~s.

    Throughout, the factor by which the resonance width in

    eV has been divided to convert it to the decay rate in s is

    -16 -1 6.58218 x 10 • A1so 1 eV has been taken to be 8065.465 ~m

    The resu1ts are disp1ayed in an arrangement which wi11

    a110w the reader to compare and eva1uate the resu1ts, both

    theoretical and experimental, that have been obtained to date.

    A1though the reliability of the theoretical resu1ts is

    difficult to judge when no experimental resu1ts are dvailable,

    the following suggestions should be of help to the reader in

    judging the reliability of the lifetimes of states for which

    only one or two results are available. Autoionization decay

    results obtained by the close-coupling methods (except for

    extrapolations), by the projection-operator methods, by the

    configuration-interaction methods and by the quantum-defect

    method are generally more reliable than the result of other

    methods, although there are also occasional 1arge disagreements

    among results employing these methods. The perturbation

    methods, the method of extrapo1ation from c1ose-coup1ing

    resu1ts and the configuration-over1ap method of Zemtsov (1974)

    appear to be particu1ar1y unre1iab1e. A11 the radiative decay

    resu1ts appear to be very re1iab1e, rare1y differing by as

    much as a factor of 2.

    March 1, 1977 w. Shearer-Izumi

    -ME・8・7--

  • ME-B-Table I. The doubly-excited states of H appearing in ME-B-Table II and representative

    energies for these states taken fron the references cited. All energies are

    expressed with respect to the He Is 5 ground-state energy.

    I

    m

    do

    2(1,

    2(-l

    2(1,

    2(-l

    2(1,

    2(-l

    2(1,

    2(-l

    2(1,

    2(1,

    2(1,

    2(1,

    3(2,

    3(0,

    3(2,

    3(0,

    3(-2

    3(2,

    3(0,

    3(2,

    -.M

    ))

    ,0).

    o)3,0)

    o)4Q J

    3)

    ,0)

    °>6

    018

    o>3

    °»3o)40)4,0)

    01 50) 5

    0)6

    STATE

    ! S

    se

    ), S1se

    1, S

    . 1 s e

    se

    V1s*

    V1sexse

    V3 l!>e

    se1se1se

    Hydrogen-like

    2. 2

    2P2

    2s3s

    2p3p

    2S4S

    2p4p

    2s5s

    2p5p

    2s6s

    2p6p

    2s8*

    2S9S

    33+

    3 3 3d34+

    344fl

    3 3 3d

    35+

    3 5 5d36+

    lsXs

    XsXs*s

    hhh1.s

    hlsxs

    h- hh- xs+ 1s

    h- hh

    Rudd(1964)(1965)

    57.82

    62.15

    62.95

    64.22

    64.22

    64.71

    Odeet

    lal.

    (1977)

    57

    62

    62

    64

    64

    64

    84

    08

    94

    12

    12

    70

    Bordenave-Montesquieu(1971)(1973)

    57.85

    62.14

    62.96

    64.25

    Hicks,Comer(1975)

    57.82

    62.06

    62.94

    64.18

    64.67

    ENERGY (eV)

    Gelbartet al.(1976)

    57.78

    62.10

    O'Malley,Geltaan(1965)

    57.824

    62.154

    62.952

    64.033

    64.307

    Burke,Mcvicar(1965)

    57.8649

    62.8082

    63.0088

    64.1822

    64.2162

    64.6792

    64.6976

    Bhatiaet al.(1967)

    57

    62

    62

    64

    64

    64

    64

    65

    65

    .8171

    .062{

    .9529

    .0915

    .181E

    .6494

    .6845

    .080€

    .3929

    •mondeet al.(1967) -

    69. 390

    70.391

    71.389

    71.887

    72.058

    72.306

    72.386

    Burke,Taylor(1966)(1969)

    57.842

    62.134

    62.975

    69.397

    70.41

    71.39

    71.92

    72.06

    72.23

    Holbein,Hidtdal(1970)(1971)

    57

    62

    62

    64

    64

    69

    70

    71

    72

    72

    72

    874

    131

    994

    190

    505

    449

    .538

    .446

    .003

    .376

    .059

    Oberoi(1972)

    69

    70

    71

    71

    72

    72

    72

    72

    .362

    .405

    .349

    .850

    .002

    .039

    .304

    .372

    Bhatia,Teiakin(1975)

    57.8435

    62.0911

    62.9624

    64.1010

    Herrick,Sinanoglu(1973)(1975)

    57.

    62

    63.

    64.

    64

    64

    64

    64

    64

    69

    7u

    71

    71

    72

    72

    72

    72

    92

    78

    05

    18

    23

    68

    70

    96

    99

    38

    47

    39

    90

    23

    07

    .32

    .39

    The doubly-e~cited state9 of H appearinq in KE-B-Table n and representative

    enerqies for these states taken fra圃 thereferences cited. All enerqies are 2 1

    expre5sed with respect to the He Is' .5 qrour泊-.tateenerqy.

    ME-B-Table 1.

    5TATE ENERGY (eV)

    Hydroqen- Rudd Oda Bordenave- Hicks, ! Gelbart 0・陶lley,I Burke, Bhatia 防酎凶e Burke, 801画ein,Oberoi Bhatia, Herrick, C.M.

    like (1964) et a1. Montesc;uieu Co個er let a1. Gel l:J1an 凹cVic~ et a1. 関与

    Taylor Midtdal (1972】 TeJlkin 5inano哲lu(1965) U977) U971l (1975) (1976) (1965) 1(1965) (1967) (1966) (1970) (1975) (1973)

    (1973) (1969) (1971) (1975)

    2(1,0)215e 282 15 57.自主 57.日4 57.85 57.82 57.78 57.824 57.8649 57.817 57.842 57.874 57.8435 57.92

    2(・1,0321se2p2 Is 62.15 62.08 62.14 62.06 1:.2.10 1:.2.154 1:.2.8082 1:.2.062E 62.134 62.131 62.0911 1:.2.78 1_8

    253・15 62.95 62.952雪主(1,0)3 -5 62.94 62.96 62.94 62.952 63.0088 62.975 62.9624 63.05 2(・1,o}31se2p3p 15 64.22 64.12 64.033 64.1822 64.0915 64.190 64.1010 64.18 2(1,0】41se 2・41115 64.22 64.12 64.25 64.18 64.307 64.211>2 64.18H 64.505 64.23 2(-1,0;4.1S8 2p4p 15 64.6792 64.64雪4 64.68

    1 令2,,5・15 64.71 2(1,0)5 -l. 64.67 64.6976 64.684 64.70

    21・1,0】51se2p5p 15 65.08OE 64.96 Ce

    z・6・15 65.392! 2(1,0】6 5 64.99 2(・1,o}6lB e 2p6p 15

    2t1,r}71se 2s7" 15

    1__ 2.8・152(1,0】8 ~5

    2{l,o}9'se 2・9・153(2,0)3 15

    B 33,ト 15 69.390 69.397 69.449 69.362 69.38

    3{o,o}31se 333d:-

    15 70.391 70.41 70.538 70.405 7

  • m

    CM.

    4(3,0)4

    4(1,0>4

    4(3,0)5

    4(-l,O)4

    4(1,0)5

    4(3,0)6

    41-1,0),.

    4(l,0)6"

    2(l,O)3

    2(-l,0)1

    2(1,0)4

    2(-l,O)4

    2(1,0)5

    2(-1.0),

    2(1,0)/

    2(-l,0)

    2(1,0)?

    2(l,0)8

    2(1.0).93(2,0)4

    3(0,0)

    3(2,0)5

    3(0,0)5

    STATE

    1se1se1se1se

    1se1se1se

    V3ses

    se

    s

    se

    V3se

    3se

    V

    V3seVV

    Hydrogen-like

    2«3s

    2p3p

    2s4s

    2p4p

    2«5a

    2p5p

    2s6s

    2p6p

    2«7s

    2l8s

    2s9s

    3S3S3s3s3s3s3s3s3S3s3s

    Burke,McVicar(1964b)

    64.7125

    64.7728

    64.9396

    64.9741

    0'Mailey.Geltman(1965)

    62.609

    63.751

    63.941

    64.554

    64.669

    Burke,McVicar(1965)

    62.o205

    63.8222

    64.0763

    64.5336

    64.6305

    Burke, Taylor(1966)

    62.615

    ENERGY

    Bhacia et al.(1967)

    62

    63

    64

    64

    64

    64

    6109

    7766

    0736

    5181

    6317

    8921

    (eV)

    Hol^ien,Midtdal(1971)

    73.643

    74.062

    74.639

    75.360

    Oberoi(1972)

    73.191

    73.912

    74.508

    74.544

    74.7,3

    74.914

    75.037

    75.072

    71.189

    71.651

    71.984

    72.205

    Bhatia , Temkin(1975)

    62.

    63.

    64.

    64.

    6173

    7831

    0803

    5247

    Herrick,(1973)

    73

    73

    74

    74

    74

    74

    75

    75

    62

    63

    64

    64

    64

    64

    64

    65

    71

    71

    71

    72

    Sinanoglu(1975)

    52

    92

    52

    54

    77

    92

    04

    08

    63

    82

    08

    53

    64

    .85

    .92

    .23

    .20

    .67

    .99

    .23

    STA'l'E

    e

    OGt

    r}-

    'ab一

    eC4-

    ki6-

    rV9一

    uclw

    BM{-

    n

    e

    句re

    d

    k

    y--"H,

    •. 開F-w

    ー宰

    m白φ1

    ιuauauauav

    l

    EJOOEO-A

    q,.弓d

    n

    au唱

    唱ム司,

    -S

    司,

    守,句,nヲ

    nヲ

    a----

    MTa噌

    a.,a-

    auauauau

    qMedeaCAECA-CGCAECA-geese-

    's

    ,S噌

    S's-s-s's-s-s-s-s

    -

    p

    ・p

    ・p

    ・ps

    s

    g

    s-sau'au'E3E3E

    。ro

    『,aonヲ

    ・p・p・PS

    F

    -

    ・・

    4444444444

    4

    444一弓

    4

    4

    'e

    e

    e

    e

    e

    e

    e

    e

    s

    e

    e

    s

    -

    e

    s

    e

    s

    e

    s

    ・4s

    e

    -

    -

    e

    e

    -

    -

    S

    S

    S

    1

    s

    s

    l

    s

    S

    3

    S

    3

    S

    3

    S

    3

    s

    s

    s

    s

    s

    S

    4

    5

    A'A'A

    ・A

    ・A-

    A

    -

    s

    -

    s

    '

    s

    -

    s

    ,S噌

    S

    S's-s-s'saa

    '

    J

    a

    '

    E

    3

    a司

    a-Te

    コ、,

    EJzo

    ‘,

    zo's

    ‘,

    a-

    曹、,

    EJ

    、,zo

    ‘,句,oonヲ

    a

    宅凋句E3EJ

    、,、,、,内u

    、,、,nv

    、,、,nv

    、,内u

    、,内u

    ‘,nu

    、,、,、,、,、,、,

    h'

    。。。,

    oo'oo'o

    ,。,

    o'O00000川町

    '

    '

    A

    '

    '

    A

    ,、A

    '

    '

    A

    '

    '

    '

    '

    '

    '

    '

    3

    1

    3

    ・1

    l

    l

    ・-

    -

    1

    ・11Y1112-nza

    t

    t

    t

    t

    t

    t

    t

    t

    t

    i

    t

    i

    l

    -

    -

    -

    1

    1

    1

    1

    1

    1

    1

    t

    a-a噌

    a-a-a-a-Ta-a・弓

    4

    4

    4

    4

    4

    4

    4

    4

    4

    4

    4-s-s-s-s

    ENERGY (eV)

    一一一一'Malley,1 Burke, IBurke, TaylorlBhaιia旦主主… ドーia,叫n…eltman I McVicar I (1966) (1961) I Midtdal (1911)! (1912) i (1915) (1973) (1915) 1965) I (1965)

    13.643 73.191 73.52

    74.062 73.912 73.92

    74.639 74.508 74.52

    75.360 74.544 74.54

    74.7',3 74.77

    74.914 74.92

    75.037 75.04

    75.072 75.08

    2.&09 &2....205 &2.&15 62.&109 62.&173 62.&3

    3.751 63.8222 63.7766 63.7831 63.82

    3.941 64.0763 64.0736 64.0803 64.08

    4.554 64.5336 64.5181 64.5247 64.53

    4.669 64.6305 64.6317 64.64

    64.8921 64.85

    64.92

    65.23

    71.189 71.20

    11.651 71.67

    11.984 71.99

    12.205 72.23

  • O

    3(-2

    3(2,

    4(3,

    4(1,

    4(3,

    4(-l

    4(1,

    2(0,

    2(1,

    2(0,

    2(0,

    2(1,

    2

  • I

    mCD

    STATE !

    CM.

    2(0,1)6 V2(1,0)7 V2(-l,0)6

    1P°2(O,l)7 V2(l,0)8 V2(-l,0)? V2(0,1)8 V2(1,0)9 h°2(-l,0)8 V2(0,l)9 V

    2(l,0)10 V

    2(-l,0)9 V2(0,l)10 V

    3(1,1)3 V3(2,0)4

    1P°

    3(1,D4 V

    3(-l,l)3 V3(1,1)4

    1P°

    3(O,O)4 V3(-l,l)4 V3(2,0) 1P°

    1 p3(1,1)5 P3 ( - l , l ) 4 P°3(1,1)5 l p °

    Hydrogen-like

    26sp+ lP27sp- *P2p6d h

    27sp+ H1

    28sp- h

    2p7d h28sp+ \298p- h

    2p8d *P

    29sp+ h210sp- *P2p9d \210sp+ h3s3; ^

    |341> S>

    34sp+ "V

    |342> h

    |351> S

    35sp+ S>

    ENERGY (eV)

    Madden, Codling(1965)

    64.999

    65.108

    65.180

    65.228

    65.262

    69.946

    71.664

    72.206

    Dhez, Ederer(1973)

    69.919

    Bely(1966)

    65.00

    65.05

    65.06

    65.11

    65.14

    65.15

    65.18

    65.20

    65.20

    65.23

    65.24

    65.24

    65.26

    Hol^ien, Midtdal(1972)

    71.4256

    71.9543

    72.1218

    Oberoi(1972)

    69.874

    71.225

    71.31971.631

    71.723

    72.003

    72.166

    72.189

    Chung(1972)

    69.8697

    71.2250

    71.3116

    71.6303

    71.7288

    72.0026

    72,1723

    72.1920

    Herrick, Sina-noglu (1975.W

    65.21

    69.90

    71.23

    71.43

    71.4671.67

    71.7571.98

    72.01

    72.11

    72.1972.21

    73) C.M. Hydrogen- Madden, Codling Dhez, Ederer Be1y Ho1oien, Kidtda1 Oberoi Chung Herrick, Sina-

    like (1965) (1973) (1966) (1972) (1972) (1972) nog1u (1975,19

    ,1) 6 ~po I 26sp+ :P 64.999 65.00 65.21 ,0); 1~0 I 27sp-. ~ 65.05 tO}1pO26dIP 'U'6. r I "p

    1po '2780+ ¥. 65.108 65.11 ,1)7 :p- '278P+ ,o)81pO28sp-1p 65.14

    1po I 207d ~ 65.15 L,O)7. -P-, 2p7d 1po I 2880+ ~ 65.180 65.18 ,1) 8 ~p- I 288P+

    ,o)91pO29sp-1p 65.20 l,o}81p02pBdIp 65.20

    1po I 2980+ ~ 65.228 ,1)9 -~- '298P+ 65.23 1po I 21080- ~ 65.24 0)10 :p-I 2108P: 1po I 209d ~ L,O)9 :p~ I 2p9d 1po I 21080+ ~ 65.262 ,1)10. -p~ : 2108~ 65.26

    1po '383, ~ 69.946 69.919 ,1)3 _pv '383, 69.874 69.8697 69.90 0), 1po 71.225 71.2250 71.23 '-'4

    , 1)~ 1~e_11341:> ¥. 71.4256 71.43 L , Ú~ lpo

    71.319 71.3116 71.46 '-'3 1po I 3480+ ~ ,1)4 ?~ '348P+ 71.664 71.631 71.6303 71.67

    0), 1po 71. 723 71.7288 71. 75 '~'4

    L, U 4. 1pe I 1342:>弘 71.9543 71.98 0). 'lpo

    72.003 72.0026 72.01 '-'5

    ,1); l:e 11351:>弘 72.1218 72.11 L.U, 1po

    72.166!72,1723 72.19

    I ;;刈2刈,l)51pO358P+弘 72.206 72.21

    ENERGY (eV) STATE rー

    2(1

    2(ー

    2(0

    2(1

    2(-

    2(0

    2(0

    2(1

    2(-

    2(0

    2(1

    2(-

    2(0

    3(1

    3(2

    3(1

    3(-

    3(1

    3(0

    3(-

    3(2

    3(1

    3(・

    3(1

    lgm也・=ー

  • mCD

    to

    STATE

    CM.

    3(0,0)5 V

    3(-2,0)4 V

    3(2,0)6 1P°

    3(-l,l)5 *Pe

    3(-l,l)5 V

    4(2,1)4 V

    4(0,1)4 V

    4(3,0). V

    4(2,1)5 V

    4(1,0)5 V

    4(2,1)5 V

    4(0,l)5 XP*

    4(3,0)6 V

    4(0,l)5 V

    4(2,i;6 V

    4(-l,0)5 V

    4(2,1)6 V

    5(3,1)5 V

    5(1,1)5 V

    2(1,0)2 V

    2(0,1). V

    2(1,0), V

    2(0,1)3 JP°

    Hydrogen-like

    |352> XP

    4s4p h

    |451> XP

    45sp+ \

    |452> Xp

    |461> XP

    46sp+ *P

    5s5p 1P

    2»2p 3P

    2 P2 3P

    23sp+ \

    23»p- -*P

    ENERGY (eV)

    Madden,Codling(1965)

    73.761

    74.645

    75.002

    Hicks,Comer(1975)

    58.30

    59.64s

    63.07

    Burke,McVicar(1965)

    58.3599

    63.1412

    63.2757

    Altick,toore(1965)

    58.41

    63.18

    63.29

    Lipsky,Russek(1966)

    58. J8

    63.12

    63.25

    Bely(1966)

    63.14

    63.24

    Bhatia,Temkin(1969)

    58.284

    63.097

    63.274

    KnoxfRu-!ge(1970)

    58.33

    63.10

    63.25

    Drake,Dalgarno(1970)(1971)

    58.308

    59.6749

    Norcross(1971)

    58.356

    63.13763.272

    Hol lp 72 .4089 12. 3(ー1,1}51po 72. 4{2.1}41p048旬、 73・761 73.705 73. 4{o,I}41p。 74.216 74. 4{3.0}31po 74.413 74.

    4(2,1); ~pe 11451> lp 74.5283 74. 4{1.0}51p。 74.626 74.

    lpo 14580+ 1 74.642 74. 4(2,1)5 ~p- 1459P+ -p 174.645

    4(0,1); ~pe /1452> lp 74.7706 74.877 74.

    4(O , I)~ lpo 74.905 74. 4{2J61pe1461〉 1F 74.9842 74.

    4(・I,O)5.1pO

    74.957 74. Lo 1.. 1

    74.995 品(2,1)6 ~pu 1469P+.-P 175.002 75. 5(3,1)5 lpo 1585P lp 75. 5(1,1); lp" 75.

    3pD 12..20 3 2(1,0)2 ~pv 1282P.Jp 1 158.30 158.3599 58.41 158.J8 58.284 58.3] 58.308 58.356 58.3209 58. 2(0,1); ~pe 12p2 3p_ I 159.64~

    5~.6749

    2(1,0); ~pO 123・p+3I- 1 163・07 163・141263.18 163.12 63.14 63.097 63.10 63.137 63.1066 63. 2(0,1); 3po 123・p-3p 1 163.2757 63.29 163.25 63.24 63.274 63.25 63.272 ,63.2595 163.

    ー豆町田・4Ml

    、-'

  • I

    mCD

    STATE

    CM.

    2(0,1)3 V2(-l,0)3

    3P°

    2(l,0)4 V2(0,l)4

    3P°

    2(-l,0)4 V2(1,0)5 V2(0,l)5 V2(-l,0)5 V2(1,0)6 V2(0,1)6 V2(-l,0) V

    2(1,0)7 V2(O,l)7

    3P°

    2(-l,0)7 V

    2(1,0)8 V2(0,1)8 V2(-l,0)8 V

    2(1,0)9 V2(0,I), V2(-l,O)9

    3P°

    2(l,0)10 V

    3(2,0)3 V3(1,l)j V

    Hydrogen-like

    2p3p 3P

    2p3d 3P

    24sp+ 3P

    24sp- 3P

    2p4d 3P

    25»p+ 3P

    25sp- 3P

    2p5d 3P

    26sp+ 3P

    26»p- 3P

    2p6d 3P

    27«p+ 3P

    27sp- 3P

    2p7d 3P

    28«p+ 3P

    28sp- 3P

    2p8d 3P

    29sp+ 3P

    29«p- 3P

    2p9d 3P

    210«p+ 3P

    I 331> 3P

    Rudd

    (1965)

    64.22

    64.71

    Hicks,Comer(1975)

    64.23

    64.69

    Burkeet al.(1964b)

    64.5467

    64.7064

    64.7232

    64.8523

    64.9381

    64.9461

    Burke,McViuar(1965)

    64.1211

    64.2551

    64.3336

    64.6453

    64.7119

    64.Tz.43

    Altlck,

    loo re(1965)

    64.12

    64.28

    64.34

    Lipsky,

    Russek(1966)

    64.06

    64.23

    64.32

    64.64

    64.70

    64.83

    ENERGY (eV)

    Bely

    (1966)

    64.09

    64.25

    64.33

    64.63

    64.71

    64.75

    64.90

    64.94

    64.96

    65.05

    65.07

    65.09

    65.14

    65.15

    65.16

    65.20

    65.21

    65.22

    65.24

    65.25

    CnOX,

    Rudge(1969)

    61.57*

    64.09

    64.25

    64.33

    64.64

    64.73

    64.76

    Drake

    (1972)

    63.558

    Norcross(1971)

    64.117

    64.252

    64.330

    Holrfien,Midtdal(1972)

    70.0072

    Oberoi(1972)

    69.438

    Chung(1972)

    69.4354

    Herrick,Slnanoglu(1975,1973)

    64.12

    64.27

    64.34

    64.65

    64.72

    64.76

    64.92

    65.01

    65.05

    69.46

    69.86

    noilu 5,1973)

    STAτι ENERGY (eV)

    Hydrogen-Rudd Hicks, Burke Burke, A1tick, L叶均 Knox, Drake Horcrossll|MH{Gi 1 161en,Obero1 Chung Herrn5io.c亘Ek9 1 , C.M. like (1965) Comer et al. McVi~ar Moore Russek 1(1966) Rudge (1971) IMidtdal 1 (1972) (1972) SlM

    (1975) (1964b} (1965) (1965) (1966) (1969) (1 3p

    70.0072 &9.86

    lgm・回・4ωl

  • STATE

    C M

    3(0,0)3 V

    3(-l,l)3 V

    3(1,1)4 V

    3(2,0)4 3P°

    3(1,1)4 V

    3(0,0)4 V

    3(-l,D4 V

    3(2,0)5 V

    3(1,1)5 V

    3(-l,l)4 V

    3(1,1)5 Vs

    3(-2,0)4 V

    3(0,0)5 V

    3(-l,l)5 V

    3(2,0)6 3P°

    3(-l,l)5 V

    4(3,0)4 V