Convergence Lec. 1

download Convergence Lec. 1

of 16

Transcript of Convergence Lec. 1

  • 8/3/2019 Convergence Lec. 1

    1/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Convergence of Series

    A series is an expression of the form u1 + u2 + u3 + ..+ un in

    which the successive terms follow some regular law.

    For e.g.

    1 + 3 + 5 + 7+.+ 2n-1+

    1+ x + x2 + x3 + ..+ xn + ., |x| < 1

    1 + 2x + 3x2 + 4x3 +

    If a series terminates at some particular term, it is called a finite

    series.

    If the number of terms is unlimited, it is called an infinite series.

    ++++ ..........8

    1

    4

    1

    2

    11

  • 8/3/2019 Convergence Lec. 1

    2/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Let Sn

    be sum of first n terms of the infinite series un

    i.e. Sn

    = u1

    + u2+ u3 +.. + un. Then the infinite series is said to be convergent to a

    number S if Sn tends to a finite limit S as n increases indefinitely.

    SSlim nn=

    The series Sn is said to be divergent if

    =

    orSlim nn

    The series Sn is said to be oscillatory if it does not tend to a unique

    limit, finite or infinite.t

  • 8/3/2019 Convergence Lec. 1

    3/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Example

    Sn

    = 1+ 2 + 3 + + n

    = n(n+1)/2

    +

    =

    2

    )1n(nlimSlimn

    nn

    Hence, this series is divergent.

    Sn = 2 2 + 2 2 + 2 .

    S1 = 2, S2 = 0, S3 = 2, S4 = 0

    .yoscillatorisitHence.existnotdoesSlimnn

  • 8/3/2019 Convergence Lec. 1

    4/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Geometric Series

    =

    =+++++1n

    1n1n2 ar........ar.....arara

    1n2

    n ar.....araraS++++=

    n1n2

    n arar.....ararSr ++++=

    )r1(aS)r1( nn =

    r1

    ar

    r1

    a

    )r1(

    )r1(aSlim

    nn

    nn

    =

    =

    1|r|ICase < 0rthan n

    SeriesConvergentr1

    a

    Slim nn =

  • 8/3/2019 Convergence Lec. 1

    5/16

    Ms. Deepali Gupta. JIIT, NOIDA

    1|r|IICase > nrthan

    seriesDivergentSlim nn

    =

    Case III r = 1

    a + a + a + ..+ a = na Divergent Series

    r < -1, let r = -k where k > 1nnn

    k)1(r =

    ))k(1(

    )k)1(1(a

    )r1(

    )r1(aSlim

    nnn

    nn

    =

    =

    evenisnif-oddisnif

    == Oscillatory Series

    r > 1

  • 8/3/2019 Convergence Lec. 1

    6/16

    Ms. Deepali Gupta. JIIT, NOIDA

    ++ .........8421 Oscillatory Series

    ++++ .........4

    27

    2

    932 Divergent Series

    5 5 5 .........4 16 64 + +

    Convergent Series to -1

    Case IV r = -1

    a - a + a - ..

    Sn= a, if n is odd

    Sn= 0, if n is even Oscillatory Series

  • 8/3/2019 Convergence Lec. 1

    7/16

    Ms. Deepali Gupta. JIIT, NOIDA

    N t h Term Test

    0ulimthenconverges,uIfnn1n n

    =

    =

    not true.isaboveofconverseThediverge.mayIt.convergentbenotmayseriesthen the0ulimife.i n

    n

    =

    e.convergencforconditionsufficientanotbutconditionnecessaryaisulimHence nn

    n21n u..........uuS:Pf +++=n1nn uSS +=

    S.beinfinityuptosumitsand,convergentbeseriestheLet

    SSlim nn

    =

    SSlim 1nn

    =

  • 8/3/2019 Convergence Lec. 1

    8/16

  • 8/3/2019 Convergence Lec. 1

    9/16

    Ms. Deepali Gupta. JIIT, NOIDA

    ++++++ ..........

    n

    1.......

    4

    1

    3

    1

    2

    11

    n

    1.......

    4

    1

    3

    1

    2

    11Sn +++++=

    n1u n = 0

    n1ulim n

    n==

    n

    1...........

    n

    1

    n

    1

    n

    1.......

    4

    1

    3

    1

    2

    11 ++++++++

    nn

    n==

    =

    n

    n

    n

    Slim

    nS

    Hence the series diverges.

  • 8/3/2019 Convergence Lec. 1

    10/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Rat io Test

    Let un be a series of positive terms such that thenruulim

    n

    1n =+

    (a) The series converges if r < 1.

    (b) The series diverges if r > 1.

    (c) The test fails for r = 1.

  • 8/3/2019 Convergence Lec. 1

    11/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Example

    Test the series ...........x

    4

    5x

    3

    4x

    2

    32 32 ++++

    1n

    n xn

    )1n(u

    +=

    n

    1n x)1n(

    )2n(u

    +

    +=+

    x)1n(

    )2n(n

    u

    ulim

    2

    n

    1n

    +

    +=+ x=

    Hence if x < 1, the series is convergent; and if x > 1, the series is divergent.

    If x = 1 ...........4

    5

    3

    4

    2

    32 ++++

    01n

    1nlimu n =+

    = Thus the series is divergent.

  • 8/3/2019 Convergence Lec. 1

    12/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Root Test

    Let un be a series of positive terms such that then

    (a) The series converges if r < 1.

    (b) The series diverges if r > 1.

    (c) The test fails for r = 1.

    nn

    nlim u r

    =

  • 8/3/2019 Convergence Lec. 1

    13/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Example

    Discuss the convergence of the series

    +

    +

    +

    .............3

    4

    3

    4

    2

    3

    2

    3

    1

    2

    1

    23

    4

    42

    3

    31

    2

    2

    n

    1n

    1n

    nn

    1n

    n

    )1n(u

    +

    +

    ++= ( )1

    1n

    1nn/1

    nn

    1n

    n

    )1n(u

    +

    +

    ++=

    ( )

    11n

    n

    n/1n

    n n11

    n11limulim

    +

    +

    +=

    1n

    n n11

    n11

    n11lim

    +

    +

    +=

    ( ) 11e1

    1e1

  • 8/3/2019 Convergence Lec. 1

    14/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Cauc hy s In t egra l Test

    A positive term series f(1) + f(2) + f(3) ++ f(n) +. where f(n)

    decreases as n increases, converges or diverges according to the integral

    infinite.orfiniteisdx)x(f1

    =

    1n

    n2ne

    2xxe)x(f =

    Examine the convergence of

    =

    1

    x

    m1

    x

    2

    elimdxxe

    2

    2

    +

    2

    e

    2

    elim

    1m

    m

    2

    finite.ise2

    1=

    Hence the series is convergent by Integral Test .

  • 8/3/2019 Convergence Lec. 1

    15/16

    Ms. Deepali Gupta. JIIT, NOIDA

    Show that the p-series

    .........n1..........

    31

    21

    11

    n1

    pppp1n

    p+++++=

    =

    ( p a real constant ) converges if p > 1, and diverges if p 1

    x.offunctiondecreasingpositiveaisx1f(x)then1,pIf

    p=>

    dxxdx

    x

    1

    1

    p

    1 p

    =m

    1

    1p

    m

    1p

    xlim

    +

    =+

    =

    1

    m

    1lim

    p1

    11pm

    finite.is1p

    1

    =

    The series converges by Cauchys Integral Test for p > 1.

  • 8/3/2019 Convergence Lec. 1

    16/16

    Ms. Deepali Gupta. JIIT, NOIDA

    When p < 1

    =

    dx)x(f1

    ( )

    1mlim

    p1

    1 p1m

    The series diverges by Cauchys Integral Test for p < 1.

    When p = 1

    .........

    n

    1..........

    3

    1

    2

    1

    1

    1+++++

    [ ] ==

    111 xlogdxx1

    dx)x(f

    The series diverges by Cauchys Integral Test for p = 1.