Coloration des graphes de reines

75
LGI2P Research Center Coloration des graphes de reines [email protected] LGI2P Ecole des Mines d’Alès

description

Coloration des graphes de reines . [email protected] LGI2P Ecole des Mines d’Alès. Outline. About the Queen Graph Coloring Problem Definition Conjecture ? A Complete Algorithm Reformulation of the coloring problem Efficient filtering A Geometric Based Heuristic - PowerPoint PPT Presentation

Transcript of Coloration des graphes de reines

Page 1: Coloration des graphes de reines

LGI2PResearch Center

Coloration des graphes de reines

[email protected]

LGI2P Ecole des Mines d’Alès

Page 2: Coloration des graphes de reines

2

Outline

About the Queen Graph Coloring Problem Definition Conjecture ?

A Complete Algorithm Reformulation of the coloring problem Efficient filtering

A Geometric Based Heuristic Geometric Operators Results synthesis

Coloring Extension

Page 3: Coloration des graphes de reines

3

Rule for moving the queen on the chessboard

A

Each queen controls:• 1 column• 1 row• 2 diagonals

Page 4: Coloration des graphes de reines

4

Graph definition

1 square of the chessboard vertex

2 squares controlled by the same queen edge

Page 5: Coloration des graphes de reines

5

Graph definition: from chessboard to queen graph

a queen graph instance

G(V,E) with :V n2 vertices and E n3 edges

Page 6: Coloration des graphes de reines

6

The Queen Graph Coloring Problem: definition

Given a chessboard,

what is the minimum number of colors required to cover it without clash between two queens of the same color ?

Page 7: Coloration des graphes de reines

7

The Queen Graph Coloring Problem: what we know

The chromatic number of Queen-72 is 7 : (7) 7

(and (n) n if n is prime with 2 and 3)

1 2 3 4 5 6 74 5 6 7 1 2 37 1 2 3 4 5 63 4 5 6 7 1 26 7 1 2 3 4 52 3 4 5 6 7 15 6 7 1 2 3 4

Page 8: Coloration des graphes de reines

8

Conjecture ?

The chromatic number of the Queen Graph is equal to n if and only if n is prime with 2 and 3

M. Gardner, 1969 : The Unexpected Hanging and Other Mathematical Diversions, Simon and Schuster, New York.

Page 9: Coloration des graphes de reines

9

Conjecture ?

The chromatic number of the Queen Graph is equal to n if and only if n is prime with 2 and 3

E. Y. Gik, 1983 : Shakhmaty i matematika, Bibliotechka Kvant, vol. 24, Nauka, Moscow.

The chromatic number of the Queen Graph is equal to n if and only if n is prime with 2 and 3

Page 10: Coloration des graphes de reines

10

Intox…

Page 11: Coloration des graphes de reines

11

Intox…

Page 12: Coloration des graphes de reines

12

Until 2003 no result are available for the queen graph chromatic number

when n is greater than 9 and n is multiple of 2 or 3

Page 13: Coloration des graphes de reines

13

Outline

About the Queen Graph Coloring Problem

A Complete Algorithm Reformulation of the coloring problem Efficient filtering

A Geometric Based Heuristic Geometric Operators Results synthesis

Coloring Extension

Page 14: Coloration des graphes de reines

14

Property (1)

The n rows, the n columns and the 2 main diagonals

are cliques with n vertices of the Queen-n2 graphÞ (n) n

Page 15: Coloration des graphes de reines

15

Question (1)

For a given n, is (n) equal to n ?

saying it differently

Is there a partition of the Queen-n2 graph in n independent sets ?

Page 16: Coloration des graphes de reines

16

Property (2)

A stable set cannot contain more than n vertices

To answer yes to question (1) and cover nn squares : each independent set must contain at least n vertices

AA

AA

AA

A

Page 17: Coloration des graphes de reines

17

Question (2)

Are there n independent sets with exactly n vertices which do not cover themselves ?

Page 18: Coloration des graphes de reines

18

General Algorithm

Step 1) Enumerate the independent sets with n vertices

(n queens that do not attack themselves)

Step 2) Find n among them which do not intersect

(solve the CSP)

Page 19: Coloration des graphes de reines

19

Avoiding many equivalent coloring permutations

n squares belonging to a same clique are colored once for all:

1 2 3 4 5 6 7

Page 20: Coloration des graphes de reines

20

Computing IS by backtracking

Enumeration : backtracking

n |V| |E| |I.S.| sec.10 100 1470 724 011 121 1980 2680 012 144 2596 14200 013 169 3328 73712 214 196 4186 365596 1515 225 5180 2279184 73

Page 21: Coloration des graphes de reines

21

A CSP with n variables (corresponding to a n squares)

Spreading of the independent sets for Queen-102

56 36 48 69 63 63 69 48 36 56 176 946 839 785 046 00036 52 67 51 66 66 51 67 52 3648 67 66 43 48 48 43 66 67 4869 51 43 56 53 53 56 43 51 6963 66 48 53 42 42 53 48 66 6363 66 48 53 42 42 53 48 66 6369 51 43 56 53 53 56 43 51 6948 67 66 43 48 48 43 66 67 4836 52 67 51 66 66 51 67 52 3656 36 48 69 63 63 69 48 36 56

Page 22: Coloration des graphes de reines

22

21 24 31 31 25 27 21 14 27 2 595 187 803 60013 21 32 34 31 27 28 21 1423 33 33 21 19 28 18 27 1929 24 25 18 24 24 21 25 3130 25 14 29 15 21 29 23 3533 25 13 28 22 15 16 34 3533 27 19 17 25 17 29 23 31

19 39 19 24 20 19 30 32 1917 28 25 21 33 28 31 22 1622 19 22 30 27 33 28 15 25

Branching on the smallest domain variable

Non overlapping constraints propagation

12 15 17 14 11 9 6 18 458 045 280 15 13 19 17 19 9 11 5

12 19 15 11 13 13 11 1016 12 14 8 8 15 12 2017 12 4 16 11 11 17 2117 16 11 13 7 8 11 20 12 16 10 8 17 9 14 19 5 18 15 11 11 16 19 86 18 10 13 17 20 11 916 9 13 16 17 11 8 12

The search space size is decreasing geometrically

Page 23: Coloration des graphes de reines

23

First result

n = 10 : no solution 7000 seconds Þ (10) = 11

Page 24: Coloration des graphes de reines

24

Filtering (principle)

Consider the cliques of the graph constituted by the uncolored vertices

If such a clique contains k vertices then you need at least k colors (i.e. k independent sets) to complete the process

Page 25: Coloration des graphes de reines

25

Efficient Filtering (computationally)

Diagonals constitute cliques (and are easy to handle):

Þ for a given diagonal there is at most one vertex that can come from a specific stable set,

Þ at level k of the search tree, diagonals must contain less than n-k empty squares

Delete all the independent sets that do not verify this condition

Page 26: Coloration des graphes de reines

26

Efficient Filtering (experimentally)

At the root of the search tree

AA

AA

AA

A

this independent set is excluded from the search space

Page 27: Coloration des graphes de reines

27

Efficient Filtering (experimentally)

Search space reduction

n |V| |E| |I.S.| |I.S.| f iltered10 100 1470 724 54411 121 1980 2680 174412 144 2596 14200 944013 169 3328 73712 5200814 196 4186 365596 23808815 225 5180 2279184 1484400

Page 28: Coloration des graphes de reines

28

Efficient Filtering (experimentally)

At each level : 4 more constraints

Page 29: Coloration des graphes de reines

29

First Results : complete method

(10) no solution 1 second(maximum depth of backtrack in the search tree : 5 rather than 10)

(12) 12 454 solutions 6963 seconds(exhaustive search)

(14) 14 1 solution en 142 hours(search aborted after one week)

Page 30: Coloration des graphes de reines

30

Interest of filtering

Comparative results on n=12

Page 31: Coloration des graphes de reines

31

Outline

About the Queen Graph Coloring Problem Definition Intox/Conjecture ?

A Complete Algorithm Reformulation of the coloring problem Efficient filtering

A Geometric Based Heuristic Geometric Operators Results synthesis

Coloring Extension

Page 32: Coloration des graphes de reines

32

Certificate for n = 12

1 5 7 9 10 3 2 11 12 6 8 411 8 1 6 2 9 12 3 7 4 5 109 2 11 8 4 6 7 1 5 10 3 123 4 10 12 7 8 5 6 9 11 1 27 12 3 4 5 11 10 8 1 2 9 66 10 5 1 12 2 3 9 4 8 11 75 9 6 2 11 1 4 10 3 7 12 88 11 4 3 6 12 9 7 2 1 10 54 3 9 11 8 7 6 5 10 12 2 1

10 1 12 7 3 5 8 2 6 9 4 1112 7 2 5 1 10 11 4 8 3 6 92 6 8 10 9 4 1 12 11 5 7 3

Page 33: Coloration des graphes de reines

33

Certificate for n = 12

1 5 7 9 10 3 2 11 12 6 8 411 8 1 6 2 9 12 3 7 4 5 109 2 11 8 4 6 7 1 5 10 3 123 4 10 12 7 8 5 6 9 11 1 27 12 3 4 5 11 10 8 1 2 9 66 10 5 1 12 2 3 9 4 8 11 75 9 6 2 11 1 4 10 3 7 12 88 11 4 3 6 12 9 7 2 1 10 54 3 9 11 8 7 6 5 10 12 2 1

10 1 12 7 3 5 8 2 6 9 4 1112 7 2 5 1 10 11 4 8 3 6 92 6 8 10 9 4 1 12 11 5 7 3

Page 34: Coloration des graphes de reines

34

Certificate for n = 12

1 5 7 9 10 3 2 11 12 6 8 411 8 1 6 2 9 12 3 7 4 5 109 2 11 8 4 6 7 1 5 10 3 123 4 10 12 7 8 5 6 9 11 1 27 12 3 4 5 11 10 8 1 2 9 66 10 5 1 12 2 3 9 4 8 11 75 9 6 2 11 1 4 10 3 7 12 88 11 4 3 6 12 9 7 2 1 10 54 3 9 11 8 7 6 5 10 12 2 1

10 1 12 7 3 5 8 2 6 9 4 1112 7 2 5 1 10 11 4 8 3 6 92 6 8 10 9 4 1 12 11 5 7 3

Page 35: Coloration des graphes de reines

35

Certificate for n = 12

1 5 7 9 10 3 2 11 12 6 8 411 8 1 6 2 9 12 3 7 4 5 109 2 11 8 4 6 7 1 5 10 3 123 4 10 12 7 8 5 6 9 11 1 27 12 3 4 5 11 10 8 1 2 9 66 10 5 1 12 2 3 9 4 8 11 75 9 6 2 11 1 4 10 3 7 12 88 11 4 3 6 12 9 7 2 1 10 54 3 9 11 8 7 6 5 10 12 2 1

10 1 12 7 3 5 8 2 6 9 4 1112 7 2 5 1 10 11 4 8 3 6 92 6 8 10 9 4 1 12 11 5 7 3

Page 36: Coloration des graphes de reines

36

Exact but incomplete method

Assumption on the distribution of the colors on the chessboard

Þ Enumerate several independent sets at the same time

Page 37: Coloration des graphes de reines

37

Geometric operator (1) n = 2 p Þ symmetry H

1 3 5 7 9 11 13 15 17 19 21 22 20 18 16 14 12 10 8 6 4 25 7 9 3 2 22 18 11 13 16 20 19 15 14 12 17 21 1 4 10 8 63 1 11 5 7 9 20 14 15 21 18 17 22 16 13 19 10 8 6 12 2 418 5 3 9 1 15 12 7 19 14 22 21 13 20 8 11 16 2 10 4 6 177 16 1 17 3 21 9 5 11 13 19 20 14 12 6 10 22 4 18 2 15 813 12 20 18 22 10 16 1 8 3 5 6 4 7 2 15 9 21 17 19 11 1415 21 19 1 14 8 6 12 4 17 10 9 18 3 11 5 7 13 2 20 22 1611 14 17 8 6 4 21 20 10 2 15 16 1 9 19 22 3 5 7 18 13 1210 8 4 14 21 19 2 18 16 6 12 11 5 15 17 1 20 22 13 3 7 920 6 12 2 10 17 15 22 7 4 14 13 3 8 21 16 18 9 1 11 5 192 10 15 4 8 6 11 13 21 20 17 18 19 22 14 12 5 7 3 16 9 14 13 6 12 19 18 22 2 9 8 16 15 7 10 1 21 17 20 11 5 14 38 2 10 11 4 16 5 19 18 22 13 14 21 17 20 6 15 3 12 9 1 716 9 8 21 5 14 17 3 20 1 11 12 2 19 4 18 13 6 22 7 10 156 4 7 20 17 13 1 21 12 15 9 10 16 11 22 2 14 18 19 8 3 522 15 2 13 18 20 7 9 5 11 4 3 12 6 10 8 19 17 14 1 16 2119 18 22 15 12 1 14 8 3 9 6 5 10 4 7 13 2 11 16 21 17 2017 20 21 16 11 3 10 6 14 7 2 1 8 13 5 9 4 12 15 22 19 189 22 14 6 20 12 4 16 1 18 8 7 17 2 15 3 11 19 5 13 21 1012 19 13 10 16 7 3 17 22 5 1 2 6 21 18 4 8 15 9 14 20 1121 17 16 19 13 5 8 10 2 12 3 4 11 1 9 7 6 14 20 15 18 2214 11 18 22 15 2 19 4 6 10 7 8 9 5 3 20 1 16 21 17 12 13

Search tree depth: n/2

(22) 22

Page 38: Coloration des graphes de reines

38

Geometric operator (1) n = 2 p Þ symmetry H

1 3 5 7 9 11 13 15 17 19 21 22 20 18 16 14 12 10 8 6 4 25 7 9 3 2 22 18 11 13 16 20 19 15 14 12 17 21 1 4 10 8 63 1 11 5 7 9 20 14 15 21 18 17 22 16 13 19 10 8 6 12 2 418 5 3 9 1 15 12 7 19 14 22 21 13 20 8 11 16 2 10 4 6 177 16 1 17 3 21 9 5 11 13 19 20 14 12 6 10 22 4 18 2 15 813 12 20 18 22 10 16 1 8 3 5 6 4 7 2 15 9 21 17 19 11 1415 21 19 1 14 8 6 12 4 17 10 9 18 3 11 5 7 13 2 20 22 1611 14 17 8 6 4 21 20 10 2 15 16 1 9 19 22 3 5 7 18 13 1210 8 4 14 21 19 2 18 16 6 12 11 5 15 17 1 20 22 13 3 7 920 6 12 2 10 17 15 22 7 4 14 13 3 8 21 16 18 9 1 11 5 192 10 15 4 8 6 11 13 21 20 17 18 19 22 14 12 5 7 3 16 9 14 13 6 12 19 18 22 2 9 8 16 15 7 10 1 21 17 20 11 5 14 38 2 10 11 4 16 5 19 18 22 13 14 21 17 20 6 15 3 12 9 1 716 9 8 21 5 14 17 3 20 1 11 12 2 19 4 18 13 6 22 7 10 156 4 7 20 17 13 1 21 12 15 9 10 16 11 22 2 14 18 19 8 3 522 15 2 13 18 20 7 9 5 11 4 3 12 6 10 8 19 17 14 1 16 2119 18 22 15 12 1 14 8 3 9 6 5 10 4 7 13 2 11 16 21 17 2017 20 21 16 11 3 10 6 14 7 2 1 8 13 5 9 4 12 15 22 19 189 22 14 6 20 12 4 16 1 18 8 7 17 2 15 3 11 19 5 13 21 1012 19 13 10 16 7 3 17 22 5 1 2 6 21 18 4 8 15 9 14 20 1121 17 16 19 13 5 8 10 2 12 3 4 11 1 9 7 6 14 20 15 18 2214 11 18 22 15 2 19 4 6 10 7 8 9 5 3 20 1 16 21 17 12 13

Search tree depth: n/2

(22) 22

Page 39: Coloration des graphes de reines

39

Geometric operator (1) n = 2 p Þ symmetry H

1 3 5 7 9 11 13 15 17 19 21 22 20 18 16 14 12 10 8 6 4 25 7 9 3 2 22 18 11 13 16 20 19 15 14 12 17 21 1 4 10 8 63 1 11 5 7 9 20 14 15 21 18 17 22 16 13 19 10 8 6 12 2 418 5 3 9 1 15 12 7 19 14 22 21 13 20 8 11 16 2 10 4 6 177 16 1 17 3 21 9 5 11 13 19 20 14 12 6 10 22 4 18 2 15 813 12 20 18 22 10 16 1 8 3 5 6 4 7 2 15 9 21 17 19 11 1415 21 19 1 14 8 6 12 4 17 10 9 18 3 11 5 7 13 2 20 22 1611 14 17 8 6 4 21 20 10 2 15 16 1 9 19 22 3 5 7 18 13 1210 8 4 14 21 19 2 18 16 6 12 11 5 15 17 1 20 22 13 3 7 920 6 12 2 10 17 15 22 7 4 14 13 3 8 21 16 18 9 1 11 5 192 10 15 4 8 6 11 13 21 20 17 18 19 22 14 12 5 7 3 16 9 14 13 6 12 19 18 22 2 9 8 16 15 7 10 1 21 17 20 11 5 14 38 2 10 11 4 16 5 19 18 22 13 14 21 17 20 6 15 3 12 9 1 716 9 8 21 5 14 17 3 20 1 11 12 2 19 4 18 13 6 22 7 10 156 4 7 20 17 13 1 21 12 15 9 10 16 11 22 2 14 18 19 8 3 522 15 2 13 18 20 7 9 5 11 4 3 12 6 10 8 19 17 14 1 16 2119 18 22 15 12 1 14 8 3 9 6 5 10 4 7 13 2 11 16 21 17 2017 20 21 16 11 3 10 6 14 7 2 1 8 13 5 9 4 12 15 22 19 189 22 14 6 20 12 4 16 1 18 8 7 17 2 15 3 11 19 5 13 21 1012 19 13 10 16 7 3 17 22 5 1 2 6 21 18 4 8 15 9 14 20 1121 17 16 19 13 5 8 10 2 12 3 4 11 1 9 7 6 14 20 15 18 2214 11 18 22 15 2 19 4 6 10 7 8 9 5 3 20 1 16 21 17 12 13

Search tree depth: n/2

(22) 22

Page 40: Coloration des graphes de reines

40

Geometric operator (2) n = 3 p Þ central symmetry

Search tree depth: (n/2) - 1

(15) 15

1 10 2 3 8 4 11 12 7 14 13 15 9 6 513 3 1 6 2 5 15 10 8 9 12 11 14 7 415 7 5 11 1 9 14 2 6 4 3 13 12 10 89 12 14 7 6 8 1 4 5 2 11 10 15 3 13

11 6 3 4 9 15 12 13 10 8 14 1 5 2 712 14 8 13 3 11 2 5 4 1 6 7 10 15 94 2 12 5 10 6 13 7 3 11 15 9 8 14 15 11 4 1 7 14 10 15 9 13 8 2 3 12 62 13 7 10 15 12 4 8 14 5 9 6 11 1 3

10 15 9 8 5 2 3 6 1 12 4 14 7 13 118 1 6 2 13 7 9 14 11 15 10 3 4 5 12

14 4 15 9 12 1 6 3 2 7 5 8 13 11 107 9 11 14 4 3 5 1 13 10 2 12 6 8 153 8 13 12 11 10 7 9 15 6 1 5 2 4 146 5 10 15 14 13 8 11 12 3 7 4 1 9 2

Page 41: Coloration des graphes de reines

41

Geometric operator (2) n = 3 p Þ central symmetry

Search tree depth: (n/2) - 1

(15) 15

1 10 2 3 8 4 11 12 7 14 13 15 9 6 513 3 1 6 2 5 15 10 8 9 12 11 14 7 415 7 5 11 1 9 14 2 6 4 3 13 12 10 89 12 14 7 6 8 1 4 5 2 11 10 15 3 13

11 6 3 4 9 15 12 13 10 8 14 1 5 2 712 14 8 13 3 11 2 5 4 1 6 7 10 15 94 2 12 5 10 6 13 7 3 11 15 9 8 14 15 11 4 1 7 14 10 15 9 13 8 2 3 12 62 13 7 10 15 12 4 8 14 5 9 6 11 1 3

10 15 9 8 5 2 3 6 1 12 4 14 7 13 118 1 6 2 13 7 9 14 11 15 10 3 4 5 12

14 4 15 9 12 1 6 3 2 7 5 8 13 11 107 9 11 14 4 3 5 1 13 10 2 12 6 8 153 8 13 12 11 10 7 9 15 6 1 5 2 4 146 5 10 15 14 13 8 11 12 3 7 4 1 9 2

Page 42: Coloration des graphes de reines

42

Geometric operator (2) n = 3 p Þ central symmetry

Search tree depth: (n/2) - 1

(15) 15

1 10 2 3 8 4 11 12 7 14 13 15 9 6 513 3 1 6 2 5 15 10 8 9 12 11 14 7 415 7 5 11 1 9 14 2 6 4 3 13 12 10 89 12 14 7 6 8 1 4 5 2 11 10 15 3 13

11 6 3 4 9 15 12 13 10 8 14 1 5 2 712 14 8 13 3 11 2 5 4 1 6 7 10 15 94 2 12 5 10 6 13 7 3 11 15 9 8 14 15 11 4 1 7 14 10 15 9 13 8 2 3 12 62 13 7 10 15 12 4 8 14 5 9 6 11 1 3

10 15 9 8 5 2 3 6 1 12 4 14 7 13 118 1 6 2 13 7 9 14 11 15 10 3 4 5 12

14 4 15 9 12 1 6 3 2 7 5 8 13 11 107 9 11 14 4 3 5 1 13 10 2 12 6 8 153 8 13 12 11 10 7 9 15 6 1 5 2 4 146 5 10 15 14 13 8 11 12 3 7 4 1 9 2

Page 43: Coloration des graphes de reines

43

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 44: Coloration des graphes de reines

44

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 45: Coloration des graphes de reines

45

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 46: Coloration des graphes de reines

46

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 47: Coloration des graphes de reines

47

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 48: Coloration des graphes de reines

48

Geometric operator (3) n = ( 4 p ) + 1 Þ /2 rotations:

R, R2 et R3

Search tree depth: (n/4) - 1

(21) 21

4 8 12 16 13 6 15 20 2 10 19 17 9 5 11 14 1 21 7 18 319 10 4 8 17 11 2 12 5 6 1 15 18 14 21 20 16 3 13 9 78 14 17 9 4 13 16 15 1 12 5 2 21 19 6 10 18 7 20 3 11

21 4 8 18 10 9 6 2 19 11 14 1 5 16 20 13 3 17 12 7 152 13 19 4 8 14 5 10 18 1 6 11 15 17 12 21 7 9 3 20 16

15 17 11 14 21 3 7 1 4 8 9 18 6 20 19 2 13 12 16 10 512 21 7 17 9 20 13 11 3 18 10 4 19 2 16 6 8 5 15 1 146 15 20 13 18 17 3 5 12 7 2 21 16 8 10 4 9 1 14 11 19

10 19 21 6 16 7 20 13 9 5 15 14 12 11 2 3 17 18 4 8 118 16 3 2 12 19 1 21 15 14 20 13 8 6 17 7 4 10 11 5 920 2 6 15 7 10 11 3 16 17 21 19 14 1 9 12 5 13 8 4 1811 7 9 12 2 5 19 8 6 15 18 16 13 21 3 17 10 4 1 14 203 6 2 20 19 1 4 9 10 16 13 7 11 15 18 5 14 8 21 17 12

17 9 16 3 11 2 12 6 14 21 4 5 10 7 1 19 20 15 18 13 816 3 13 7 6 8 14 4 17 2 12 20 1 9 15 18 11 19 5 21 107 12 14 10 15 4 17 18 8 20 11 6 2 3 5 1 21 16 9 19 13

14 18 1 11 5 21 10 19 13 9 8 3 20 12 7 16 6 2 17 15 413 5 10 19 1 15 18 14 7 3 16 9 17 4 8 11 12 20 6 2 219 1 18 5 20 12 8 17 21 4 7 10 3 13 14 15 2 11 19 16 65 11 15 1 14 18 21 16 20 13 3 8 7 10 4 9 19 6 2 12 171 20 5 21 3 16 9 7 11 19 17 12 4 18 13 8 15 14 10 6 2

Page 49: Coloration des graphes de reines

49

Geometric operator (4) n = ( 4 p ) Þ symmetries H & V

Search tree depth: (n/4)

(32) 32

a b c d e f g h i j k l m n o p q r s t u v w x y z & # @ $ * +c d a b g r e x t u h w k f q s n p & v j y l m i # o z * + @ $b e g c a t d q r k n f i y j u l w h x & s v o p @ m + $ z # *g a b e d o c t n h l p w v f x i & k j q u y s m $ r @ # * + zd m w a b e v p c r y u f i n z g s x & l h o $ q k # * + j t @e c q l m y z d a b s k o w x f & i j r v n * + @ g h t u p $ #m r e y c d p & l x a v b j z n s g w * k + i u f q @ $ h # o tz y d q o s u c j i b & a t # k v e m + f * x w $ l n r p @ h gq o n u t b & v # g j @ y c a i x + $ h d w z e k f * m l s r pu h x o q a @ g & v # s $ m b j w * t c n e k f z d + p r i y lp t l $ w z r # y s * i @ k + & f a v d x b n h e o g j c u m qw x z # * @ l $ + m r q h & s v k n f y p o t a c u d b e g i jf # u k x w + m @ * p $ s r g y h z o n c q b d t a j i v l e &x n + * $ k f j h o t z q @ l # e u d p g m r y w & v c b a s ik f o @ h n $ + * # i j u z t q p m g l w x e b a c s y d r & vn + * z k l w f p $ @ y e o i m t x r # h d c q & j u v g b a s$ k f h + m # * o n x g j p d l u @ q w z i s r b e t a y & v c+ * p x z $ n k f w d e t h u r o l y m # @ j & v s c g i q b a@ $ k f n + * e z p u h r x m w j t i o y l q g # b a s & v c d* w t + @ # k l x f o n c q y g z h p $ s r & i u v e d a m j b# @ h w f x m n k l q r z b c a + $ * g o p u v s t i & j y d eo u m n # h q w g c f d x + k b * v a i @ & $ z j p y e s t l rt z @ p r v x y b a w c n l & e # f u s $ j + * h i k o q d g mr p $ t u & b a w y e x g s v d @ k n z i # h j + * f l m c q oh g i r p c t s e d & b v u w + a j l k * f @ # n m $ q o x z yl q j g s i o b m @ v a & e h $ c y # f + k d t * r x n z w p uj s r m l g h i v & c + p # @ * b d e q a $ f k x y z u t o n wi l # v & j a o s q g t * d $ h y c @ b m z p n r + w f k e u xy v & j i p s u $ z m o # a * @ d b + e r t g c l n q x w f k h& j y s v u i r q + $ * d g e t m # z @ b c a p o x l k n h w fs i v & y q j @ u t z # + * r c $ o b a e g m l d w p h f k x nv & s i j * y z d e + m l $ p o r q c u t a # @ g h b w x n f k

Page 50: Coloration des graphes de reines

50

Geometric operator (4) n = ( 4 p ) Þ symmetries H & V

Search tree depth: (n/4)

(32) 32

a b c d e f g h i j k l m n o p q r s t u v w x y z & # @ $ * +c d a b g r e x t u h w k f q s n p & v j y l m i # o z * + @ $b e g c a t d q r k n f i y j u l w h x & s v o p @ m + $ z # *g a b e d o c t n h l p w v f x i & k j q u y s m $ r @ # * + zd m w a b e v p c r y u f i n z g s x & l h o $ q k # * + j t @e c q l m y z d a b s k o w x f & i j r v n * + @ g h t u p $ #m r e y c d p & l x a v b j z n s g w * k + i u f q @ $ h # o tz y d q o s u c j i b & a t # k v e m + f * x w $ l n r p @ h gq o n u t b & v # g j @ y c a i x + $ h d w z e k f * m l s r pu h x o q a @ g & v # s $ m b j w * t c n e k f z d + p r i y lp t l $ w z r # y s * i @ k + & f a v d x b n h e o g j c u m qw x z # * @ l $ + m r q h & s v k n f y p o t a c u d b e g i jf # u k x w + m @ * p $ s r g y h z o n c q b d t a j i v l e &x n + * $ k f j h o t z q @ l # e u d p g m r y w & v c b a s ik f o @ h n $ + * # i j u z t q p m g l w x e b a c s y d r & vn + * z k l w f p $ @ y e o i m t x r # h d c q & j u v g b a s$ k f h + m # * o n x g j p d l u @ q w z i s r b e t a y & v c+ * p x z $ n k f w d e t h u r o l y m # @ j & v s c g i q b a@ $ k f n + * e z p u h r x m w j t i o y l q g # b a s & v c d* w t + @ # k l x f o n c q y g z h p $ s r & i u v e d a m j b# @ h w f x m n k l q r z b c a + $ * g o p u v s t i & j y d eo u m n # h q w g c f d x + k b * v a i @ & $ z j p y e s t l rt z @ p r v x y b a w c n l & e # f u s $ j + * h i k o q d g mr p $ t u & b a w y e x g s v d @ k n z i # h j + * f l m c q oh g i r p c t s e d & b v u w + a j l k * f @ # n m $ q o x z yl q j g s i o b m @ v a & e h $ c y # f + k d t * r x n z w p uj s r m l g h i v & c + p # @ * b d e q a $ f k x y z u t o n wi l # v & j a o s q g t * d $ h y c @ b m z p n r + w f k e u xy v & j i p s u $ z m o # a * @ d b + e r t g c l n q x w f k h& j y s v u i r q + $ * d g e t m # z @ b c a p o x l k n h w fs i v & y q j @ u t z # + * r c $ o b a e g m l d w p h f k x nv & s i j * y z d e + m l $ p o r q c u t a # @ g h b w x n f k

Page 51: Coloration des graphes de reines

51

Geometric operator (4) n = ( 4 p ) Þ symmetries H & V

Search tree depth: (n/4)

(32) 32

a b c d e f g h i j k l m n o p q r s t u v w x y z & # @ $ * +c d a b g r e x t u h w k f q s n p & v j y l m i # o z * + @ $b e g c a t d q r k n f i y j u l w h x & s v o p @ m + $ z # *g a b e d o c t n h l p w v f x i & k j q u y s m $ r @ # * + zd m w a b e v p c r y u f i n z g s x & l h o $ q k # * + j t @e c q l m y z d a b s k o w x f & i j r v n * + @ g h t u p $ #m r e y c d p & l x a v b j z n s g w * k + i u f q @ $ h # o tz y d q o s u c j i b & a t # k v e m + f * x w $ l n r p @ h gq o n u t b & v # g j @ y c a i x + $ h d w z e k f * m l s r pu h x o q a @ g & v # s $ m b j w * t c n e k f z d + p r i y lp t l $ w z r # y s * i @ k + & f a v d x b n h e o g j c u m qw x z # * @ l $ + m r q h & s v k n f y p o t a c u d b e g i jf # u k x w + m @ * p $ s r g y h z o n c q b d t a j i v l e &x n + * $ k f j h o t z q @ l # e u d p g m r y w & v c b a s ik f o @ h n $ + * # i j u z t q p m g l w x e b a c s y d r & vn + * z k l w f p $ @ y e o i m t x r # h d c q & j u v g b a s$ k f h + m # * o n x g j p d l u @ q w z i s r b e t a y & v c+ * p x z $ n k f w d e t h u r o l y m # @ j & v s c g i q b a@ $ k f n + * e z p u h r x m w j t i o y l q g # b a s & v c d* w t + @ # k l x f o n c q y g z h p $ s r & i u v e d a m j b# @ h w f x m n k l q r z b c a + $ * g o p u v s t i & j y d eo u m n # h q w g c f d x + k b * v a i @ & $ z j p y e s t l rt z @ p r v x y b a w c n l & e # f u s $ j + * h i k o q d g mr p $ t u & b a w y e x g s v d @ k n z i # h j + * f l m c q oh g i r p c t s e d & b v u w + a j l k * f @ # n m $ q o x z yl q j g s i o b m @ v a & e h $ c y # f + k d t * r x n z w p uj s r m l g h i v & c + p # @ * b d e q a $ f k x y z u t o n wi l # v & j a o s q g t * d $ h y c @ b m z p n r + w f k e u xy v & j i p s u $ z m o # a * @ d b + e r t g c l n q x w f k h& j y s v u i r q + $ * d g e t m # z @ b c a p o x l k n h w fs i v & y q j @ u t z # + * r c $ o b a e g m l d w p h f k x nv & s i j * y z d e + m l $ p o r q c u t a # @ g h b w x n f k

Page 52: Coloration des graphes de reines

52

Results synthesis

New results for the graphs counting more than ………………… 81 vertices (10) 11 1 sec. (20) 20 1 sec. (12) 12 1 sec. (21) 21 30844 sec. (14) 14 5 sec. (22) 22 233404 sec. (15) 15 4897 sec. (24) 24 10 sec. (16) 16 1 sec. (28) 28 1316 sec. (18) 18 2171 sec. (32) 32 73000 sec. … 1024 vertices

Page 53: Coloration des graphes de reines

53

Results synthesis

Some improvements : fixing the first stable set (and its symmetric set) according to other certificates, branching heuristic , …

(26) 26 1,400,000 seconds

Page 54: Coloration des graphes de reines

54

The 26 letters of the alphabet are enough for coloring the 26 X 26 chessboard

Page 55: Coloration des graphes de reines

55

26 = ( 3 x 2 ) + …

Page 56: Coloration des graphes de reines

56

26 = ( 5 x 4 ) + ( 3 x 2 )

Page 57: Coloration des graphes de reines

57

(26) = 26 2216 sec. (better than 1,400,000)

Page 58: Coloration des graphes de reines

58

30 = ( 6 x 4 ) + ( 3 x 2 )

“Too long” still more heuristic

Evaluate the nodes by counting the number of edges in the no colored sub graph

Partial branching : at each level of the search tree take only the best node among 10

Page 59: Coloration des graphes de reines

59

X(30)=30cpu 2965 sec.

Page 60: Coloration des graphes de reines

60

Results synthesis

Nous avons 13 contre exemples qui prouvent que n n’a pas besoin d’être premier avec 6 pour que (n) n

Page 61: Coloration des graphes de reines

61

Outline

About the Queen Graph Coloring Problem Definition Intox/Conjecture ?

A Complete Algorithm Reformulation of the coloring problem Efficient filtering

A Geometric Based Heuristic Geometric Operators Results synthesis

Coloring Extension

Page 62: Coloration des graphes de reines

62

Remark

An independent set with 12 vertices for n=12

Page 63: Coloration des graphes de reines

63

… remains an independent set for n = 24 ...

Remark

Page 64: Coloration des graphes de reines

64

Idea

… replacing 1 square that uses 1 color by 52 squares that use only 5 colors ...

Page 65: Coloration des graphes de reines

65

Idea

… (5 12) = (60) = 60 ...

Page 66: Coloration des graphes de reines

66

Complementary Diagonals

Page 67: Coloration des graphes de reines

67

Polynomial formula for n no multiple of 2 or 3

r(i,j) ( 2.i + j ) modulo p

Þ complementary diagonals

Page 68: Coloration des graphes de reines

68

Characteristic of Complementary Diagonals

Page 69: Coloration des graphes de reines

69

Characteristic of Complementary Diagonals

Page 70: Coloration des graphes de reines

70

Coloring Extension Formula

If (n) n and if p is prime with 2 and 3 then (np) np

given a coloring C(i,j) for the chessboard n n

r(i,j) ( 2i + j ) modulo p

R(i,j) = r(i,j) + p C(i/p,j/p)

(elementary algebra in the ring /p)

Page 71: Coloration des graphes de reines

71

Coloring Extension Formula R(i,j) = r(i,j) + p.C(i/p,j/p)

If R(i,j) = R(i’,j)

Þ r(i,j) + p.C(i/p,j/p) = r(i,j) + p.C(i’/p,j/p)

Þ r(i,j)=r(i’,j) and C(i/p,j/p)= C(i’/p,j/p) because r < p

Þ i=i’ modulo p because 2 is prime with p ( recall : r(i,j) 2i+j )and

i/p=i’/p because C is a coloration and we are on the same column

then i = i’

Page 72: Coloration des graphes de reines

72

Coloring Extension Formula R(i,j) = r(i,j) + p.C(i/p,j/p)

Exercise

Prove the same kind of results for lines and diagonals

Page 73: Coloration des graphes de reines

73

(60) (5 12) 5 12 60, (70) (5 14) 5 14 70, (75) (5 15) 5 15 75, (84) (7 12) 7 12 84,

… (2010) (67 30) 67 30 2010

Page 74: Coloration des graphes de reines

74

Conclusion

We know that (n) n for n 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 30 and 32

We know that there is an infinity of integers n that are multiples of 2 or 3 such that (n) n

Þ Is (n) n n 11 ?

But we don’t know, today, the value of (27)

Page 75: Coloration des graphes de reines

75

Publications

Comptes Rendus Mathématiques de l’Académie des Sciences, Paris, Elsevier, Ser. I 342 (2006) p 157-160. “Coloration des graphes de reines”.

Journal of Heuristics (2004), 10 : p 407-413 : “New Results on Queen Graph Coloring Problem”.

ECAI'04, 16th European Conference on Artificial Intelligence, Valencia, Spain, August 22-27, 2004 : “Complete and Incomplete Algorithms for the Queen Graph Coloring Problem”.

Programmation en logique avec contraintes, JFPLC 2004, Hermes Science, ISBN 2-7462-0937-3, p 239-252 : “Algorithmes complet et incomplet pour la coloration des graphes de reines”.