分子熱流体工学(Molecular Thermo-Fluid Engineering) 2013maruyama/MHF/MHF1-2013.pdfBrillouin...

44
単層カーボンナノチューブ Single-Walled Carbon Nanotubes 1.幾何学と電子構造 Geometry and Electronic Structure 丸山 茂夫 Shigeo Maruyama 東京大学大学院工学系研究科 機械工学専攻 http://www.photon.t.u-tokyo.ac.jp 分子熱流体工学(Molecular Thermo-Fluid Engineering) 2013

Transcript of 分子熱流体工学(Molecular Thermo-Fluid Engineering) 2013maruyama/MHF/MHF1-2013.pdfBrillouin...

  • 単層カーボンナノチューブSingle-Walled Carbon Nanotubes

    1.幾何学と電子構造Geometry and Electronic Structure

    単層カーボンナノチューブSingle-Walled Carbon Nanotubes

    1.幾何学と電子構造Geometry and Electronic Structure

    丸山 茂夫Shigeo Maruyama東京大学大学院工学系研究科

    機械工学専攻

    http://www.photon.t.u-tokyo.ac.jp

    分子熱流体工学(Molecular Thermo-Fluid Engineering) 2013

  • Contents

    1.幾何学と電子構造Geometry & Electronic Structure2.電子顕微鏡観察と分光Electron Microscopy and Spectroscopy3.合成と応用Growth and Applications4.ナノチューブの伝熱Heat Transfer5.生成メカニズムとカイラリティ制御Growth Mechanism and Chirality Control

  • from NNI Home Page: http://www.nano.gov

    Nanometer Scale

  • 1-D: Carbon Nanotube

    Allotropes of Carbon

    3-D: Diamond2-D (3-D) Graphite

    0-D: Fullerene

    2-D: Graphene

    Graphite Diamond (from CHAUMET Paris HP)

  • (a) C60 (c) La@C82(b) C70

    (e) C240

    PVWin

    (d) Sc2@C84

    Fullerene Structures

  • C60のアイデア: 大澤(1975)

    フラーレンの発見: Smalley, Kroto & Curl (1985)

    フラーレンの量的生成: Krätschmer & Huffman(1990)

    フラーレンの超伝導の発見: Hebard(1991)

    ナノチューブの生成: 飯島(1991)

    金属内包フラーレンの量的生成: Smalley (1991)

    単層ナノチューブの量的生成: Smalley (1996)

    電子ドープ超伝導: Batlog (2000)

    ノーベル化学賞(1996)

    フラーレンの発見

    ??

  • BuckminsterFullerene

  • BuckminsterFullerene

  • Euler’s Theorem: 2 evff: faces, v: vertices, e: edges

    Usual Explanation of Even Numbered Positive Spectra

    65

    65

    65

    653652

    ffvffe

    fff

    6

    5

    22012

    fvf

    5f6f

    Euler’s Theorem

  • C10

    C8

    25001000 1500 2000500Time (ps)

    C60C49

    C28C26

    C12 C15

    C8

    C330

    20

    40

    60

    C70C53

    C8 Clu

    ster

    Siz

    e

    500 carbon atoms 342 Å cubic boxTc = 3000 K

    PVWin

    GrowthProcess

    of Fullerene

    Y.Yamaguchi & S.Maruyama, Chem. Phys. Lett., 286, 336 (1998).

  • 74

    7

    77

    4 8

    77

    7

    77

    77 7

    initial

    215.81 ns 215.82 ns 216.35 ns 216.40 ns

    216.45 ns 217.18 ns 218.39 ns 220.56 ns 221.70 ns (Ih C60)

    A

    215 ns

    B

    –6.72

    –6.68

    –6.64

    –6.6

    0

    4

    # of

    dam

    glin

    g bo

    nds

    ND

    B

    Ep

    NDB

    pote

    ntia

    l ene

    rgy

    Ep

    (eV)

    time (ns)190 200 210 220 230

    Ih C60

    PVWin

    Annealing Process to perfect C60S.Maruyama & Y.Yamaguchi, Chem. Phys. Lett., 286, 343 (1998).

  • Chain

    Ring FlatC10 C20 C30

    Tangledpoly-cyclic

    Closed cage Stone-Walestransformations

    C50

    C70C60

    Fullerene(stable)

    Opencage

    Graphitic sheetToo low temperature

    Chaotic 3-dimensionalstructure

    Randomcage

    Higherfullerene

    Fullerene Formation Model

    S. Maruyama & Y. Yamaguchi, Chem. Phys. Lett. 286 (1998) 343.

  • Single-Walled Carbon Nanotube, SWNT

    Multi-Walled Carbon NanotubesMWNT

    Carbon NanotubesPeapod

    Double-Walled Carbon NanotubesDWNT

  • Individual tube diameter: 1.3 nmSpacing: 0.34 nmMisalignments and Terminations

    TEM from Smalley et al. at Rice University

    About 100 SWNTs

    TEM Pictures of SWNT Ropes

    5 nm

    By ACCVD

  • Peapods

    Suenaga et al., PRL 2003

    Peapod with Sc2@C84

  • http://vortex.tn.tudelft.nl/~dekker/nanotubes.html

    STM Image of Individual Atoms

  • (0,0)Ch = (10,0)

    Wrapping (10,0) SWNT (zigzag)

    a1a2 x

    y

  • (0,0)Ch = (10,0)

    Wrapping (10,0) SWNT (zigzag)

    a1a2 x

    y

  • (0,0)

    Ch = (10,10)

    Wrapping (10,10) SWNT (armchair)

    a1a2 x

    y

  • (0,0)

    Ch = (10,10)

    Wrapping (10,10) SWNT (armchair)

    a1a2 x

    y

  • (0,0)

    Ch = (10,5)

    Wrapping (10,5) SWNT (chiral)

    a1a2 x

    y

  • (0,0)

    Ch = (10,5)

    Wrapping (10,5) SWNT (chiral)

    a1a2 x

    y

  • Chirality and Radius of SWNT

    (10,10)Armchair

    (10,0) Zigzag

    (10,5) Chiral

    a1

    a2

    (10,10) (8,8)(5,5)

  • Hexagonal Lattice (Definition of Vectors)

    Chiral vector

    21 aaC mnh a1a2

    O

    (4,-5)

    Ch

    T

    x

    y

    (6,3)

    )23,

    23(

    )23,

    23(

    2

    1

    cccc

    cccc

    aa

    aa

    a

    a

    aacc 321 aa

    a

    a

    )21,

    23(

    )21,

    23(

    2

    1

    a

    a

  • Hexagonal Lattice (n,m) nanotubes

    a1a2

    x

    y

    (0,0) (1,0) (2,0) (3,0)

    (1,1) (2,1)

    Zigzag

    Armchair

    (2,2)

    (4,0) (5,0) (6,0)

    (3,1) (4,1) (5,1)

    (3,2) (4,2) (5,2)

    (7,0) (8,0) (9,0)

    (6,1) (7,1) (8,1)

    (6,2) (7,2) (8,2)

    (10,0) (11,0)

    (9,1) (10,1)

    (9,2) (10,2)

    (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)

    (4,4) (5,4) (6,4) (7,4) (8,4) (9,4)

    (5,5) (6,5) (7,5) (8,5)

    (6,6) (7,6) (8,6)

    (7,7)

    n - m = 3q (q: integer): metallicn - m 3q (q: integer): semiconductor

  • (n,m) Symmetry

    Diameter of Tube 223 mnmnaCd ccht

    Chiral vector 21 aaC mnh

    Chiral angle )2/(3tan 1 nmm Lattice Vector Rdmnnm /)2()2( 21 aaT

    Rh dCT /3

    dofmultipleaismnifd

    dofmultipleanotismnifddR 33

    3

    d: highest common divisor of (n,m)

    RdnmnmN )(2

    22 Number of hexagons per unit cell:

    cct and

    3Armchair

  • Electric DOS of Graphite

    幾何学構造と同様に,SWNTの電子構造はグラフェン(グラファイト1層)の電子構造を基礎として理解できる.そこで,最初にグラフェンの電子構造について復習する.

    炭素のπ電子の挙動が問題となる.電子の波動関数を波数(kx, ky)の平面波で展開し,6角形のブリリアンゾーンにおける分散関係を求める.グラフェンは,ゼロバンドギャップ半導体であり,K点とM点でのみ,π電子とπ*電子の分散関係が接する.

    ReferenceP. R. Wallace, Phys. Rev, 71 622 (1947).

  • Reciprocal Lattice Vector

    逆格子ベクトル

    2,2/2,/2

    2211

    2211

    baba

    abab

    aa

    aa

    34)

    23,

    21(2)1,

    31(

    34)

    23,

    21(2)1,

    31(

    2

    1

    b

    b

    aaPer

    aaPer

    ccy

    ccx

    3

    33

    a

    a

    )21,

    23(

    )21,

    23(

    2

    1

    a

    a aacc 321 aa

    Brillouin Zone

    aaa 32)0,1(

    32

    32

    2

    2

    1

    1 kbbk

    bbk

    y

    a2

    a1

    x

    kx

    ky

    M

    K

    b2

    b1

    475.1322

    31

    ccaa

    703.133

    4342

    32

    ccaaa

    554.22 a

    2121 bb

    Reciprocal Lattice Vector

  • Brillouin Zone

    逆格子ベクトル

    Brillouin Zone

    y

    a2

    a1

    x

    kx

    ky

    M

    K

    b2

    b1

    475.1322

    31

    ccaa

    703.133

    4342

    32

    ccaaa

    554.22 a

    2121 bb

    Reciprocal Lattice Vector

    波長kx, kyで表現した位相空間を逆格子空間という.電子の平面波の高波数の上限は(π/格子定数)で表せる.このような上限波数範囲を逆格子空間で表したものをブリリアンゾーンとよぶ.6角格子の場合には,ブリリアンゾーンも6角形となる.方向が90度ずれていることに注意!

  • Plane Wave Representation and Tight-Binding Wave Function

    EHSchrödinger EquationkriePlane Wave

    rkk r

    )()( GiG

    GeC

    G: reciprocal vector

    Plane Wave Representation

    Fourier Transform of wave function

    ),()( rkrk ii

    iC Tight-binding wave function

    R

    kR Rrrk )(1),( iu

    i eN Bloch orbital

  • Tight-Binding Method

    EHInstead of Solving Schrödinger Equation

    Find best which minimize

    HE

    With Tight-binding wave function

    Functional Method

    jiijji

    jiijji

    SCC

    HCCHE

    ,

    *,

    *

    jiij HH jiijS Hamiltonian Matrix Overlap Integral

    Here,

  • Tight-Binding Method 2

    j

    jj

    ijjij CSECH )(k

    0)(*

    iCE k

    0

    ,

    *

    ,

    *

    ij

    jj

    jiijji

    ijji

    ji

    ijj

    j SCSCC

    HCCHC

    0)( 2

    ,

    *

    ,

    *

    ,

    **

    jiijji

    ijj

    jijji

    ji

    jiijji

    ijj

    j

    iSCC

    SCHCC

    SCC

    HC

    CE k

  • 2-D Electronic Energy Dispersions of Graphite

    )(1)(

    )( 022 kk

    ksw

    wE pDg

    2cos4

    2cos

    23cos41)()( 22

    akakakfw yyx kk

    1*)()(1

    *)()(

    20

    02

    ksfksf

    S

    kfkf

    Hp

    p

    H: (2x2) Hamiltonian

    S: (2x2) Overlap integral matrix2p: Site Energy of 2p atomic orbital

    2cos2)( 32/3/

    akeekf yakak xx

    0)det( ESHSecular equation (永年方程式)

    where CCaa 3

    where

  • 2-D Energy dispersion relation for graphite

    From: R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).[Color picture was from Professor R. Saito]

    )(1)(

    )( 022 kk

    ksw

    wE pDg

    2cos4

    2cos

    23

    cos41)( 2akakak

    w yyx k

    Overlap integral: s=0.129C-C interaction energy: 0=2.9eV

    2p = 0

  • Energy dispersion relation for and * bands

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

    kx

    ky

    0.000

    15.000

    M

    K

    K’

    M

    MK

    MK’

    M

    M

    K’

    K

    )(1)(

    )( 022 kk

    ksw

    wE pDg

    2cos4

    2cos

    23cos41)( 2

    akakakw yyx ks=0.129Gamma=2.9eV

    CCaa 3

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

    kx

    ky

    -10.000

    0.000

  • Electric DOS of Nanotube

    グラフェンを巻いたSWNTの場合には,円周方向に周期境界条件を満たす電子の波動関数しか許されなくなる.このため,グラフェンの場合の6角形のブリリアンゾーン(平面)は,有限数の線となってしまう.この線が,K点かM点を通過すると金属,そうでないと半導体となる.

    Reference最初の理論予測:R. Saito et al., Phys. Rev. B46, 1804 (1992).

    詳細かつわかりやすい論文:R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol. 61, no. 4, 2981 (2000).

    M

    K

    K’

    MK’

    M

    K

    K’

    MK’

  • Electric DOS of Carbon Nanotube

    M

    K

    K’

    MK’

    0–4

    –2

    0

    2

    4

    wave vector

    ener

    gy(e

    V)

    0 1 2–4

    –2

    0

    2

    4

    ener

    gy(e

    V)

    0–4

    –2

    0

    2

    4

    wave vector

    ener

    gy(e

    V)

    0 1 2–4

    –2

    0

    2

    4

    ener

    gy(e

    V)

  • 1D Dispersion

    Lattice Vector Rdmnnm /)2()2( 21 aaT

    RNdmnnm /)2()2( 211 bbK

    Nnm /)( 212 bbK

    Discrete unit vector along the circumferential direction

    Reciprocal lattice vector along the nanotube axis

    1

    2

    22)( KK

    K kEkE Dg

    Tk

    T

    N

    ,...,2,1

    Rh dCT /322 mnmnaCh

    h

    R

    C

    mmnna

    mmnnmmnna

    Ndmmnna

    2

    12

    )(2/22

    /22

    22

    2222

    221

    K

    RdnmnmN )(2

    22

    Td

    C

    mmnnd

    a

    mmnnmmnnda

    Nmmnna

    Rh

    R

    R

    23

    123

    12

    )(2/3

    22

    /3

    22

    22

    2222

    222

    K

  • Summary

    12

    2 KKK

    k

    Tk

    T

    N

    ,...,2,1

    1

    2

    22)( KK

    K kEkE Dg

    where

  • Slice

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    kx

    ky

    0.000

    3.000

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    kx

    ky

    0.000

    3.000

    (10,0)K1=(0.221239,0.127732)K2=(-0.737463,1.277323)

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    kx

    ky

    0.000

    3.000

    (10,10)K1=(0.147493,0.000000)K2=(0.000000,2.554647)

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    kx

    ky

    0.000

    3.000

    (10,5)K1=(0.189633,0.036495)K2=(-0.105352,0.547424)

  • van Hove Singularity

    ブリリアントゾーンを積分するといわゆる状態密度(Density of States, DOS)が求まることになる.金属か半導体かという点以外にも,周期境界条件によって,ブリリアンゾーンが線となるために,一次元物質に特有のvan Hove特異点と呼ばれる発散するDOSとなる.

    ReferenceDresselhaus, M. S. & Dresselhaus, G., Science of Fullerenes and Carbon Nanotubes, Academic Press (1996).Saito, R., ほか2名, Physical Properties of Carbon Nanotubes, Imperial College Press (1998).

    点線はグラフェンのDOS

  • Comparison of DOS for Armchairs

    –2 0 20

    2

    4

    (5,5)

    (10,10)

    (15,15)

    (20,20)

    Energy (eV)

    Den

    sity

    of S

    tate

    s (s

    tate

    s/1C

    –ato

    m/e

    V)

  • Comparison of DOS for Zig-zag

    –2 0 20

    2

    4(10,0)

    (20,0)

    (30,0)

    (40,0)

    Energy (eV)

    Den

    sity

    of S

    tate

    s (s

    tate

    s/1C

    –ato

    m/e

    V)

  • 2-D Energy dispersion relation for graphite

    y

    a2

    a1

    x

    kx

    ky

    M

    K

    b2

    b1

    Reciprocal Lattice VectorFrom: R. Saito et al., Physical Review B (2000).

    MK

    K’

    MK’

    Brillouin Zone

    * (conduction)

    (valence)

    –10

    –5

    0

    5

    10

    15

    E (e

    V)

    K M K

    *

    s = 0.129

    s = 0 (symmetric)