Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques =...

38
Chimie des minéraux

Transcript of Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques =...

Page 1: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Chimie des minéraux

Page 2: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Composition chimique d’un minéral = forte variabilité

Analyses chimiques = rendre compte de cette variabilité

Introduction

Page 3: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

36 km sous les continents et 12 km sous les océansRoches sédimentaires et sédiments majoritairesà la surface

Socle métamorphique et magmatique

Composition moyenne entre basalte et granite

QuickTime™ et un décompresseurAnimation sont requis pour visualiser

cette image.

Composition chimique de la croûte terrestre

Page 4: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Huit éléments chimiques à la base de la compositionde la croûte:

- O 46.6%- Si 27.7%- Al 8.13%

- Fe 5%- Ca 3.63%- Na 2.83%- K 2.59%- Mg 2.09%

Minéraux à la base de ces éléments (silicates, oxydes)

Page 5: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Eléments intéressants économiquement maisen trace:

- Cu (55ppm)- Pb (83ppm)- Hg (0.08ppm) etc….

La connaissance de la composition générale de la Terre est difficile à estimer, on se réfère auxMétéorites (Fer = noyau; pierreuses = croûte…)

Page 6: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Les méthodes d’analyse chimique ponctuelles:

sondes et microscopies électroniques

Page 7: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Interactions électrons-matière

Représentation schématique de l’interaction entre un faisceau d'électrons et la surface d'un échantillon

Page 8: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Exemples de réactions lors de (1) la création des rayons X (microsonde)

1) extraction des électrons de cœur: formation d’un trou profond instable processus de relaxation par émission de rayons X

Bombardementélectronique

Emission photo électron

Page 9: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

2) processus à deux électrons (émission Auger)

Page 10: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Poire de diffusion

volume d'interaction entre le faisceau d’e- et l’échantillon = poire de diffusion.

Dans ce volume, les électrons et les rayonnements électromagnétiques produits sont utilisés pour effectuer des analyses physico-chimiques ou pour former des images.

Pour être détectés, les particules et les rayonnements doivent pouvoir atteindre la surface de l'échantillon. La profondeur maximale de détection, donc la résolution spatiale, dépend de l'énergie des rayonnements.

Page 11: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Emission d'électrons secondaires

Arrachement d'électrons par ionisation. Les électrons de faible énergie (< 50 eV) sont éjectés de l'échantillon sous l'effet du bombardement.

Seuls les électrons secondaires produits près de la surface sont détectés, et formeront des images de haute résolution (3-5 nm). Le contraste de l'image est surtout donné par le relief de l'échantillon mais on peut également observer un contraste chimique dans le cas de grandes différences de numéros atomiques.

Emission d'électrons rétrodiffusés

Les électrons incidents pénètrent dans l'échantillon. Un parcours plus ou moins important dans la matière leur fait perdre une fraction de leur énergie. Ils peuvent revenir vers la surface. Ils sont alors détectés après leur sortie de l'échantillon. Du fait de leur plus grande énergie, les électrons rétrodiffusés peuvent provenir d'une profondeur plus importante et la résolution de l'image sera moins bonne qu'en électrons secondaires (6-10 nm). Suivant le type de détecteur utilisé, les électrons rétrodiffusés fournissent une image topographique (contraste fonction du relief) ou une image de composition (contraste fonction du numéro atomique).

Page 12: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Emission de rayons X Le faisceau d'électrons est suffisamment énergétique pour ioniser les couches profondes des atomes et produire ainsi l'émission de rayons X.

Emission d'électrons Auger Ce sont des électrons dont la faible énergie est caractéristique de l'élément émetteur (utilisés pour l'analyse élémentaire) et du type de liaison chimique.

Cathodoluminescence Lorsque des matériaux isolants ou semi-conducteurs sont bombardés par le faisceau d'électrons, des photons de grande longueur d'onde (ultraviolet, visible) sont émis.Le spectre obtenu dépend du matériau étudié et de sa pureté.

Page 13: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

La microsonde électronique

Page 14: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Principe de fonctionnement Un filament de tungstène (W) est porté à haute température et à haut voltage pour générer une source l’électrons libres accélérés qui va irradier une faible surface d’échantillons (1m2).

Le rayonnement émergent est analysé par un spectromètre afin d'identifier les différentes radiations caractéristiques qui le composent et de connaître ainsi les éléments présents dans le faible volume concerné (1m3).

Il est possible de quantifier ces informations en comparant les intensités des rayons X caractéristiques de chaque élément présent dans l'échantillon, à l'intensité des mêmes radiations émises par un témoin de référence.

Le processus d'analyse et son exploitation sont pilotés par un ordinateur.

Page 15: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Installation d’une microsonde électronique

Page 16: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

(1) Canon à électrons (2) Anode réglable (3) Colonne avec troislentilles adaptables(4) Spectromètre(5) Lentille formée de mini-bobines(6) Platine à haute précision mécanique (7) Microscope optique à haute résolution (8) Bobines de balayage SEM (9) Introduction de l’échantillon (10) Système de pompage performant

Page 17: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

La colonne

La colonne électronique constitue la partie centrale de la microsonde, elle est formée d'un canon à électrons, de plusieurs lentilles électromagnétiques, de limiteurs, de bobines de déflexion et d'unMicroscope optique. Le tout étant placé dans un vide poussé ( 10-3 Pa ) obtenu par des pompes à palettes et une pompe à diffusion. Un vide plus poussé ( 10-5 Pa ) doit être obtenu au niveau du canon à électrons afin de ne pas perturber la stabilité du faisceau d'électrons.

Le canon à électrons

Un filament de tungstène peut être élevé à une haute tension comprise entre 1kV et 40kV en fonction du problème à résoudre. Un courant sonde de 1nA =10–9A à 5µA=5*10-6A sera utilisé en fonction des éléments présents dans l'échantillon.

Page 18: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Les lentilles électromagnétiques

Elles permettent de focaliser le faisceau d'électrons sur un point d'impact d'une surface de1µm2. Pour cela on utilise plusieurs lentilles : les différentes lentilles ont pour but de filtrer et d'affiner le faisceau d'électrons .Certaines réduisent l'évasement du faisceau .Les autres affinent le diamètre du faisceau d'électrons jusqu'à 1µm2

afin de bombarder l'échantillon sur un volume de l'ordre de 1µm3.

Les limiteurs et les bobines de déflexion Les limiteurs réduisent les erreurs dues aux lentilles.Les bobines de déflexion permettent techniquement de balayer la surface de l'échantillon et de retrouver le principe du microscope à balayage permettant de réaliser des photos à fort grossissement.

Page 19: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Les spectromètres

Cet appareil permet d'identifier et de quantifier les éléments présents dans l'échantillon que l'on analyse. Il est constitué d'un cristal monochromateur qui permet d'identifier les photons X lorsque la loi de Bragg est satisfaite et d'un détecteur à compteur de flux gazeux.

Loi de BRAGG

Le principe du spectromètre à dispersion en longueur d'onde repose sur la réflexion sélective d'un faisceau de rayons X par un cristal avec utilisation de la loi de Bragg :

2d sin = k

Page 20: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

L’intensité est proportionnelle à la concentration de l’élément considéré dans l’échantillon.

Résolution et pouvoir de réflexion sont les critères permettant de choisir les cristaux analyseurs. Pour réfléchir les rayonnements de grande longueur d’onde, on utilisera des cristaux à grande distance interréticulaire alors que pour des rayonnements à petite longueur d’onde on utilisera des cristaux à courte distance interréticulaire.

Par conséquent, il est important de choisir un cristal adapté pourchaque analyse d’échantillon afin d’obtenir des résultats optimaux.

Page 21: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Le cristal monochromateur

Il ne couvre qu’une partie de la classification périodique, il est donc nécessaire d'avoir plusieurs spectromètres pour pouvoir analyser l'ensemble des éléments.

Il existe plusieurs sortes de cristaux aux propriétés différentes

Page 22: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Cristal 2d (nm) Domaines No atomique Analysés des éléments analysés(nm) Raie k Raie l Raie m

LIF 0,4028 0,104 à 0,378 19 à 35 49 à 84 92 à 94

PET 0,874 0,226 à 0,821 14 à 24 37 à 61 70 à 94

TAP 2.575 0.53 à 2.11 8 à 16 23 à 42 62 à 82

Les différents cristaux analyseurs

Page 23: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Le Détecteur

Il fait correspondre à chaque photon diffracté par le monochromateur une impulsion électronique proportionnelle à son énergie. On utilise ensuite un compteur à flux gazeux (Argon). Ce gaz s'ionise à différents niveaux ce qui permet la reconnaissance des différents éléments présents dans l'échantillon.

Le détecteur est relié à un ensemble (analogique et numérique ) qui traduit les impulsions délivrées par le compteur enspectre apparaissant à l'écran et que l'on doit analyser.

Page 24: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Echantillon

On prélève un fragment de la roche que l'on veut analyser. On réalise une section polie (dans de la résine). On recouvre ensuite la partie supérieure de l'échantillon de carbone ou d’or pour éviter sa détérioration et favoriser la conduction des électrons.

La mise en place de l’échantillon dans la sonde est complexe à cause du vide créé dans la colonne.

L'échantillon est placé dans le sas isolé des autres appareillages(colonne et spectromètres) par un clapet étanche. Ce sas est mis sous un vide identique à celui de la colonne : onpeut alors pousser l'échantillon à la verticale de celle-ci à l'aide d'une pince intégrée à la microsonde. Après avoir retiré la pince, le clapet est refermé et on peut commencerl'analyse.

Page 25: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Analyse chimique

Page 26: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Analyse en dispersion de longueur d’onde= Bragg: quantitatif

Page 27: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Analyse des RX en dispersion d’énergie: qualitatif

Page 28: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Examen morphologiqueDétection des électron

secondaire

Imagerie MEBMicroscopie électronique à balayage

Page 29: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Trachyte the brightest areas are magnetite, a high Z Fe oxide. The next brightest areas are pyroxene crystals that contain Fe, but also lower Z elements, such as Si, the medium grey areas are volcanic glass, and the darkestgrey areas are feldspar.

Electrons rétrodiffusés:composition

Page 30: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Heulandite dans grès

Altération de verre basaltique

Electrons secondaires :morphologie

Page 31: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Cendres de l’Erebus

Page 32: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Électrons secondaires: morphologie

Page 33: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Electrons rétrodiffusés: composition

Page 34: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Variation de composition des minéraux

Page 35: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Les solutions solides par substitution

Différence de taille <15%, modification de charge qui doivent laisserla structure neutre, température à laquelle se produit la substitution.

Substitutions cationiques ou anioniques: Rb+ / K+ dans la biotite sans changement de valence des cationsKCl/ KBr (anions)

Si changement de valence - respect de la neutralité:

2A2+ = 1B3+ + 1C+

Cas de la structure du corindon dans lequel Fe2+ et Ti4+ vont se Substituer à 2 Al3+

Page 36: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Certains sites cationiques peuvent être vacants = lacunesOn peut avoir une substitution couplée avec ces sites:

Cas de la trémolite (amphibole) : Ca2Mg5Si8O22 (OH)2

Al3+ + Na+ (dans la lacune) = Si4+

Les solutions solides interstitielles

Certains interstices vides qui ne sont pas des lacunes peuvent être occupés par certains éléments.Dans les grosses cavités des zéolites par exemple, on peut avoir degros éléments alcalins (K, Rb, Cs) ou des groupements moléculairesH2O / CO2.

Ces minéraux sont notamment utilisés comme filtres pour épurer les eaux.

Page 37: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Les solutions solides par omission

Deux atomes sont remplacés par un seul atome donnant un bilan neutreDes sites restent donc vides ou omis.

Dans le feldspath microcline (variété bleue) KAlSi3O8

K+ + K+ = Pb2+ +

Les ions peuvent se substituer les uns aux autres si la différence de taille est inférieure à 15%.A haute température, l’expansion thermique peut amener des sites de tailles différentes à T ambiante à devenir de taille identique.Les ions de tailles différentes deviennent interchangeables et on obtientUn désordre chimique.Ainsi des solutions solides limitées à Tamb deviennent totales à HT.

Page 38: Chimie des minéraux. Composition chimique dun minéral = forte variabilité Analyses chimiques = rendre compte de cette variabilité Introduction.

Cas de la substitution à HT entre le K+ et le Na+ dans les feldspathsNaAlSi3O8 et KAlSi3O8

Lorsque l’on refroidit cette solution solide, on obtient des exsolutionsLes perthites ou microperthites. Pourquoi?