CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des...

142
ELECTRIFICATION DE LA VILLE DE MIRAGOANE FDS // Electromécanique // Promotion : 2002-2007 TABLE DES MATIERES Remerciements…….…………………………………………………………………4 INTRODUCTION…..………………………………………………………………..5 Texte du projet…….…………………………………………………………………7 CHAPITRE I.- PRESENTATION DE LA VILLE …………………………….9 1.1.- Introduction………………………………………………………….9 1.2.- Délimitation géographique………………………………………..9 1.2.1.- Division de quatre nouvelles sections communales….10 1.2.2.- Trois nouveaux empiétements territoriaux…………… 11 1.2.3.- Bornes de la commune de Miragoâne…………………14 1.3.- Historique………………………………………………………..14 1.4.- Aspect physique………………………………………………….16 1.5.- Activités socio- économiques……………………………………..17 1.6.- Activités culturelles……………………………………………….17 1.6.1.- Activités touristiques……………………………………18 1.6.2.- Culture et loisirs ……………………………………….. 18 1.7.- Electricité………………………………………………………….19 CHAPITRE II.- EVALUATION DE LA CHARGE ACTUELLE.....…………20 2.1.- Evaluation de la charge actuelle………………………………….20 2.1.1.- Répartition différentes charges………………………….. 21 Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE 1

Transcript of CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des...

Page 1: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

TABLE DES MATIERESRemerciements…….…………………………………………………………………4

INTRODUCTION…..………………………………………………………………..5

Texte du projet…….…………………………………………………………………7

CHAPITRE I.- PRESENTATION DE LA VILLE …………………………….9

1.1.- Introduction………………………………………………………….9

1.2.- Délimitation géographique………………………………………..9

1.2.1.- Division de quatre nouvelles sections communales….10

1.2.2.- Trois nouveaux empiétements territoriaux……………11

1.2.3.- Bornes de la commune de Miragoâne…………………14

1.3.- Historique………………………………………………………..14

1.4.- Aspect physique………………………………………………….16

1.5.- Activités socio-économiques……………………………………..17

1.6.- Activités culturelles……………………………………………….17

1.6.1.- Activités touristiques……………………………………18

1.6.2.- Culture et loisirs ………………………………………..18

1.7.- Electricité………………………………………………………….19

CHAPITRE II.- EVALUATION DE LA CHARGE ACTUELLE.....…………20

2.1.- Evaluation de la charge actuelle………………………………….20

2.1.1.- Répartition différentes charges…………………………..21

1) Charges résidentielles………………………………….21

2) Charges commerciales…………………………………22

3) Charges industrielles…………………………………...23

2.1.2.- Calcul de la charge pour la ville de Miragoâne…………25

2.1.3.- Calcul de la charge pour la commune de Paillant……….36

2.2.- Eclairage de rues et des places publiques……………………….38

2.2.1.- Avantages et inconvénients………………………………38

2.2.2.- Concepts importants pour l’éclairage……………………39

2.2.3.- Choix de la méthode de calcul………….……………..…42

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE1

Page 2: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

2.2.4.- Détermination de l’éclairement moyen……………….42

2.2.5.- Calcul de l’illumination d’une rue……………….........43

2.2.6.- Détermination du nombre de luminaires……………….48

2.3.- Calcul des pertes……. ………………………………………….49

2.3.1.- Pertes techniques……………………………………….50

2.3.2.- Pertes non techniques…………………………………..50

2.3.3.- Comment évaluer les pertes…………………………….51

CHAPITRE III.- PREVISION DE LA DEMANDE………………………….52

3.1.- Raison d’être de la prévision…………………………………..52

3.2.- Méthodes de prévision………………………………………….52

3.2.1.- Description des différentes méthodes……………………52

3.2.1.1.- Méthode globale ou macroéconomique………52

3.2.1.2.- Méthode microéconomique…………………..53

3.2.1.3.- Méthode analytique…………………………..53

3.2.2.- Choix d’une méthode…………………………………..53

3.2.3.- Taux d’évolution de la charge de pointe………………54

CHAPITRE IV.- ETUDE DU RESEAU MT/BT…………………………….57

4.1.- Principaux éléments d’un système de distribution………….57

4.2.- Sous station électrique………………………………………..57

4.2.1.- Définition……………………………………………….57

4.2.2.- Différents éléments d’une sous station………………....58

4.2.3.- Définition et rôle des éléments d’une sous station……58

4.3.- Etude du réseau MT………………………………………….61

4.3.1.- Choix des conducteurs d’une ligne…………………….61

4.3.1.1.- Choix des conducteurs MT……………………62

Tension d’utilisation……………………………62

Conducteurs MT……………………………….63

4.3.1.2.- Réactance des conducteurs 4/0 et 2/0……….65

4.3.1.3.- Protection des transformateurs……………..65

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE2

Page 3: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

4.3.1.4.- Pertes de puissance dans les lignes…………66

4.3.2.- Mise à la terre…………………………………...............67

4.4.- Etude du réseau BT…………………………………………67

4.4.1.- Choix des conducteurs BT……………………67

4.4.2.- Choix des transformateurs……………………69

4.4.3.- Pertes de puissance dans le réseau BT………72

4.4.4.- Calcul du courant dans les câbles…………..72

4.4.5.- Pertes de puissance dans les Xfos…………..72

4.4.6.- Chute de tension dans le réseau BT………..73

4.4.7.- Calcul du courant dans le réseau BT………73

4.5.- Courants de court-circuit………………………………..73

CHAPITRE V.- CALCUL MECANIQUE………………………………..78

5.1.- Introduction………………………………………………78

5.2.- Portée……………………………………………………78

5.3.- Paramètres de pose…………………………………….78

5.4.- Choix des poteaux………………………………………79

5.4.1.- Poteaux d’alignement………………………81

5.4.2.- Poteaux d’angle…………………………….85

5.5.- Haubanage………………………………………………86

5.5.1.- Généralités………………………………….86

5.5.2.- Ancrage……………………………………..87

5.5.3.- Choix du hauban………………………….88

5.5.4.- Choix de la tige d’ancrage………………..88

5.5.5.- Choix de l’ancre…………………………..89

5.5.6.- Distance minimale d’ancrage…………….89

5.5.7.- Rapport L/H……………………………….91

5.5.8.- Haubanage spécial…………………………91

CHAPITRE VI.- COUT DU PROJET………………………………94

CONCLUSION…………………………………………………………99

BIBLIOGRAPHIE…………………………………………………….100

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE3

Page 4: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

RemerciementsNous voulons tout d’abord remercier Dieu, le tout puissant, qui a su nous

garder depuis notre existence afin de nous conduire jusqu'à l’étape où nous

sommes. Nous disons un grand merci à nos parents qui se sont débattus corps

et âmes pour nous épauler durant ces longues années d’études. Nous tenons à

adresser nos vifs remerciements à la direction de la Faculté Des Sciences pour

son support qui nous a été d’une importance assez considérable. Un grand merci

aux membres du Laboratoire National, en particulier à l’ingénieur Fritz Joseph le

directeur général et aux membres de la ELMECEN, plus précisément à l’endroit

des ingénieurs Edgard CHARLES le directeur de cette entreprise et Steve CHARLES qui ont su répondre à notre demande d’aide à un moment où nous

en avons vraiment besoin. Un remerciement spécial au professeur Jean Raoul Momplaisir pour les conseils et aides lesquels nous ont été vraiment utiles pour

la concrétisation du projet. Nos vifs remerciements vont à l’endroit du professeur

Yves André Compas, tuteur du projet qui a été toujours disponible, il s’est

révélé un guide irréprochable jusqu’au terminus du projet. Un grand merci à tous

les professeurs de la Faculté Des Sciences, à tous nos amis, aux ingénieurs

Jules O. Walter, Camille Cangé, Lionel VIL et Edgard Etienne, à la Mairie et

au directeur de la délégation de Miragoâne. Enfin, nous disons merci à tous ceux

qui nous ont aidé dans un sens ou dans l’autre pour arriver à ce stade

aujourd’hui.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE4

Page 5: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

INTRODUCTIONA cette ère où nous sommes, il est inconcevable, même impensable de

prévoir le développement d’une région donnée sans qu’on ait accès à l’énergie

électrique. De ce fait, un projet d’électrification se révèle d’une importance

capitale surtout pour des régions où l’électricité apparaît comme un luxe pour

une population voulant bénéficier de ce service combien nécessaire et utile.

La production, le transport, et la distribution de l'électricité sont des

facteurs essentiels du développement. Conscients de cette nécessité, nos

gouvernements successifs avec l'appui de la Communauté Internationale avaient

mis en place des programmes malheureusement dominés par une logique de

l'urgence mais, susceptibles d'apporter une réponse partielle non seulement aux

besoins de la majeure partie de la population privée de ces services mais aussi

au besoin des entreprises capable de créer des emplois et de stimuler

l’économie. Les crises politiques et économiques successives ont déréglé une

machine mise en place avec l’aide d’opérateurs étrangers spécialisés et dont les

défauts étaient masqués par la relative performance des années 1980-1986.

Les masques estompés, la gravité de la situation fut simplement mise à

nue. De fréquentes coupures avec une offre oscillant entre quatre et douze

heures d’électricité par jour, pendant les saisons sèches, paralysent la

production industrielle, perturbent les décisions d'investissement nécessaires à la

reprise économique et surtout n'incitent pas les usagers à être en règle avec

l'entreprise et à se comporter au mieux de l’intérêt collectif: utilisation de petit

générateurs diesel, ou d’équipements à faible rendement énergétique, etc.). Le

passif accumulé par EDH parait impossible à combler et aucune perspective

d'amélioration de la situation n'est envisageable si les mesures correctrices ne

sont pas prises rapidement. Nos services d'électricité traversent donc une crise

grave.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE5

Page 6: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

L’Electricité d’Haïti (ED’H), dans sa mission d’électrification du territoire en

mettant à la portée de tous les habitants un service électrique continu et fiable à

un prix acceptable et compte tenu de toutes les difficultés du gouvernement

haïtien à répondre aux desiderata du peuple tout entier, s’est décidée à

entreprendre la rénovation ou l’électrification de tous les chefs-lieux de

département.

Le présent projet se porte sur la faisabilité technique de l’électrification de

la ville de Miragoâne et de la section communale de Paillant. Le travail à

effectuer dans ce projet sera de faire une présentation succincte de la ville de

Miragoâne, d’évaluer la charge actuelle, de faire une prévision de la demande,

d’étudier le réseau MT/BT alimentant la clientèle, de faire les calculs mécaniques

et d’évaluer le coût du projet.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE6

Page 7: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

TEXTE DU PROJETTITRE DU PROJET : Electrification de la ville de Miragoâne

SUJET PROPOSE PAR : Yves André COMPAS, Ing.

I.- CONTEXTE

L’instabilité politique des deux dernières décennies a provoqué une crise

économique profonde et sans précédent de nos institutions publiques qui ne sont

plus en mesure d’assurer leur mission. Presque toutes les villes du pays sont

caractérisées par le manque d’infrastructures et de services de base adéquat.

Ainsi, l’ED’H, l’un de nos organismes semi autonomes, n’a pas pu échapper à

cette crise et se trouve bien obliger d’élaborer et d’appliquer une nouvelle

politique en ce qui a trait à la production et à la gestion du transport et de la

distribution de l’électricité afin de satisfaire la demande sans cesse croissante

des villes.

Compte tenu de toutes ces difficultés, le gouvernement haïtien incapable

de répondre à tous les desiderata du peuple tout entier a décidé d’entreprendre

la rénovation ou l’électrification de tous les chefs-lieux de département. Dans ce

contexte, Miragoâne, le dernier né de la série, a été choisi et proposé à un

groupe d’étudiant.

II- TRAVAIL A FAIRE

Le travail à faire consiste :

1.- Faire une présentation succincte de la zone du projet :

Délimitation géographique - Physique – Nombre d’habitants – Nombre de

ménages – Activités socio-économiques – Activités culturelles et autres.

2.- Faire une évaluation de la charge actuelle de la zone sous

étude.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE7

Page 8: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

3.- Faire une prévision d’augmentation de la charge sur les dix (10)

prochaines années.

4.- Etudier le réseau MT / BT alimentant la clientèle. Effectuer le

choix des conducteurs et des câbles pour les conditions de chute minimum.

Déterminer la taille optimum des transformateurs de distribution à installer.

5.- Faire les calculs mécaniques du réseau MT /BT.

6.- Evaluer le coût du projet.

N.B. Une attention particulière doit être accordée dans la préparation des

différents plans et les résultats doivent être justifiés par des calculs précis.

Les références doivent être fournies.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE8

Page 9: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

CHAPITRE I.-PRESENTATION DE LA VILLE DE MIRAGOANE

1.1.- IntroductionMiragoâne, ancienne commune

du département de la Grande d’Anse,

est située à 96 Kms de Port-au-Prince,

soit à 2h30 par voie motorisée.

Actuellement, cette ville est le chef

Lieu du département des Nippes,

le dixième département récemment

créé (en 2003). Avant d’entrer

d’emblée dans l’étude du projet,

faisons une brève présentation de la

ville.

1.2.- Délimitation géographique

La loi portant création du département des Nippes a été votée par les

deux (2) chambres du parlement haïtien le 4 septembre 2000. Cette loi a été

promulguée par l’Exécutif le 10 octobre 2003 et publiée dans le Moniteur N 0 82 le

30 octobre2003.

Dans cette loi, seule la liste des arrondissements, des communes, des

sections communales et des quartiers du département des Nippes a été donnée

avec trois petits empiétements territoriaux sur les trois départements frontaliers

(Grand’Anse, Sud, Ouest) non clarifiée (article 6-5, 5-5, 2 de la loi). Mais les

délimitations territoriales des quatre (4) anciennes sections communales divisées

en huit (8) nouvelles sections communales actuelles n’ont pas été définies. Ce

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE9

Page 10: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

décret se propose de préciser toutes les nouvelles délimitations territoriales des

Nippes.

1.2.1.- Division de quatre (4) nouvelles sections communales

En effet, chacune des quatre (4) sections communales suivantes

(Permele, Paillant de Miragoâne, Baconnois de l’Anse-à-Veau et Grand-Boucan

des Baradères) a été divisée en deux (2) nouvelles sections communales sans

donner aucunes précisions des nouvelles délimitations de ces huit (8) sections

communales.

a) La section Permele est divisée en deux (2) sections

communales : la 1ère partie (la 3ème Permele) est insérée dans la

commune de Fonds-des-Nègres et la 2ème partie (la 4ème St-

Michel) est conservée dans la commune de Miragoâne.

b) La section Paillant est divisée en deux (2) sections communales :

la 1ère partie (la 1ère Salagnac) et la 2ème (la 2ème Bezin II) font

partie, avec le quartier Paillant devenu chef-lieu, de la nouvelle

commune de Paillant.

c) La section de Baconnois est divisée en deux (2) sections

communales ; la 1ère partie (la 1ère section Baconnois-Grand

Fond) est conservée dans la commune de l’Anse-à- Veau tandis

que la 2ème partie (la 1ère Baconnois-Barreau) est insérée dans la

nouvelle commune d’Arnaud.

d) La section Grand-Boucan est divisée en deux (2) section

communales : la 1ère partie (la 1ère Grand-Boucan) et la 2ème

partie (la 2ème Eaux Basses) font partie, avec le quartier Grand-

Boucan devenu chef-lieu, de la nouvelle commune de Grand-

Boucan.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE10

Page 11: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

1.2.2.- Trois (3) nouveaux empiétements territoriaux.

a) La limite intercommunale Baradères-Pestel est devenue

également interdépartementale Nippes – Grand’ Anse. De Plus,

Zétrois et Eaux Basses font totalement partie du département

des Nippes et constitue une nouvelle section communale de la

nouvelle commune de Grand-Boucan (et du nouvel

arrondissement des Baradères).

b) L’article 5-5 de la loi créant ce département inclut les localités

Clément, Plaisance et autres (de Cavaillon, Sud) dans la 1ère

communale Plaisance dans la nouvelle commune de Plaisance

du Sud

c) L’article 2 de cette loi inclut toute la superficie de l’étang de

Miragoâne et dans le département des Nippes.

C’est ce décret qui va également préciser ces trois (3) empiétements

territoriaux.

Le département des Nippes a été créé en 2003 sur la partie orientale du

département de la Grand'Anse. Miragoâne est son chef lieu et il est divisé en 3

Arrondissements et 11 Communes:

Arrondissement de Miragoâne (4 communes):

1. Commune de Miragoâne

a) Ville de Miragoâne

b) 1ère section Chalon

c) 2ème section Belle-Rivière

d) 3ème section Dessources

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE11

Page 12: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

e) 3ème section St Michel + Abraham (et quartier St Michel du

Sud)

2. Commune de Petite-Rivière de Nippes

a) Ville de Petite-Rivière de Nippes

b) 1ère section Fonds-des-Lianes

c) 2ème section Cholette

d) 3ème section Silègue (et Quartier Charlier )

e) 4ème section Bezin

3. Commune de Fonds-des-Nègres

a) Ville de Fonds-des-Nègres

b) 1ère section Bouzi (et Quartier Bouzi)

c) 2ème section Fonds-des-Nègres ou Morne Brice

d) 3ème section Permele

e) 4ème section Cocoyers-Ducheine

4. Commune de Paillant

a) Ville de Paillant

b) 1ère section Salagnac

c) 2ème section Bezin II

Arrondissement de l’Anse-à-Veau (5 communes):

1. Commune de l’Anse-à-Veau

a) Ville de l’anse-à-Veau

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE12

Page 13: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

b) 1ère section Baconnois-Grand-Fond (et Quartier de

Baconnois)

c) 2ème section Grande-Rivière-Joly

d) 3ème section Saut du Baril (et Quartier Saut du Baril)

2. commune de l'Asile

a) Ville de l’Asile

b) 1ère section l’Asile ou Nan Paul

c) 2ème section Changieux (et Quartier Changieux)

d) 3ème section Tournade

e) 4ème section Morisseau (et Quartier Morisseau)

3. Commune de Petit-Trou de Nippes

a) Ville de Petit-Trou de Nippes

b) 1ère section Raymond

c) 2ème section Tiby (Quartier de Grande-Ravine)

d) 3ème section Lièvre (et Quartier Lièvre)

4. Commune de Plaisance du Sud

a) Ville de Plaisance du Sud

b) 1ère section Plaisance (ou Ti François)

c) 2ème section Anse-aux-Pins

d) 3ème section Vassal Labiche

5. Commune d’Arnaud

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE13

Page 14: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

a) Ville d’Arnaud

b) 1ère section Baconnois-Barreau

c) 2ème section Baquet

d) 3ème section Arnaud (Morcou)

Arrondissement des Baradères (2 communes):

1. Commune des Baradères

a) Ville des Baradères

b) 1ère section Gerin ou Mouton

c) 2ème section Tête d’Eau

d) 3ème section Fond-Tortue (et Quartier Fond-Tortue)

e) 4ème section La Plaine

f) 5ème section Rivière Salée

2. Commune de Grand Boucan

a) Ville de Grand Boucan

b) 1ère section Grand Boucan

c) 2ème section eaux Basses (et Quartier Eaux Basses)

1.2.3- Bornes de la commune de MiragoâneLa commune de Miragoâne est bornée au Nord par le Golfe de la Gonâve,

au Sud par la ville d’Aquin, à l’Est par la ville de Petit-Goâve et à l’Ouest par la

ville de Petite-Rivière de Nippes.

1.3.- Historique

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE14

Page 15: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

A une vingtaine de kilomètres de Petit-Goâve, en direction des Cayes,

s'étend la petite ville de Miragoâne. Fondée par les Anglais autour d'un bassin

bien protégé, détruite au XIXième siècle au cours d'une des nombreuses guerres

civiles à l'haïtienne, elle fut ensuite un coquet village, malheureusement de plus

en plus dégradé par l'afflux incontrôlé et quotidien de centaines de personnes

attirées par les possibilités d'affaires liées au commerce interlope. Port important

de contrebande, la ville tourne aujourd'hui le dos à son passé sans se donner les

moyens d'un avenir. Dominant le port du haut de ses "cent" marches, l'église

Saint Jean-Baptiste semble, par son architecture, tout droit sortie d'un paysage

breton. A l'intérieur, on verra un bel autel de marbre, qui avait été prévu pour

l'église de Jérémie.

L'étang de Miragoâne, le second du pays par sa superficie, est surtout

fréquenté par les pêcheurs. Il se trouve avant le carrefour Desruisseaux, au 95

km en partant de Port-au-Prince juste avant d'arriver à Miragoâne. On l'aperçoit

sur le côté gauche, et, en empruntant un chemin après 1,8 km, on arrive à

proximité. Cet étang perché sur une hauteur de 13 m, a un pourtour d’à peu près

de 15 Km et se déverse dans la mer par une fissure. Les Espagnols l’appelèrent

« Agua de Bauchora ». Il faut ensuite laisser la voiture et s'embarquer sur un

canot ou un "bois rond" pour traverser les joncs, vous distinguerez les canards

sauvages et les tortues. Son aspect tranquille et sa végétation abondante vous

séduiront. Il est possible de parcourir l'étang seul, à condition d'avoir un bagage

linguistique pour s'entendre avec les pêcheurs. On peut faire des excursions

autour du lac en faisant appel aux guides du CEHPAPE.

Une fois arrivé en ville, vous pourrez voir l'église Saint-Jean Baptiste, un

bel exemple de cathédrale néogothique. A proximité de l'église, vous trouverez le

Fort Réfléchi, à côté de Carrefour LaCroix. On aperçoit ses ruines dominant le

cimetière. On y accède en remontant la route de l'Eglise. Après l'église, vous

prendrez un chemin sur la gauche au panneau "joe garage". Après avoir passé

le portail de l'école, vous vous garez et apercevrez le fort sur votre droite en haut

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE15

Page 16: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

d'un morne. Il suffit alors d'escalader la pente pour y accéder. En plus des

vestiges de ce monument, il y a un canon posé sur un socle. C'est tout ce qui

reste de la guerre fratricide entre libéraux et nationaux qui a endeuillé les familles

miragoânaises.

Du sommet, vous aurez un point de vue saisissant sur le port et le golfe

de la Gonâve. Le Fort Réfléchi coiffant les collines, au sud de Miragoâne, cet

édifice tire son nom de la forfanterie de ses constructeurs qui le donnaient pour

imprenable et pensaient qu'il faudrait réfléchir à deux fois avant de l'attaquer. De

jeunes bourgeois mulâtres et libéraux, regroupés en nombre autour de Boyer

Bazelais, opposants au président Salomon, s'y réfugièrent en 1883 pour tenter

une ultime résistance aux forces gouvernementales. Assiégés pendant des mois,

décimés par la maladie, ils capitulèrent le 22 octobre et furent massacrés. Rien

sur place ne perpétue le souvenir de cette tragédie.

Bordant Miragoâne au sud, le morne Plymouth fut célèbre pour ses mines

de bauxite dont l'exploitation, pour cause d'épuisement, a été arrêtée en 1982.

Depuis, l'Etat Haïtien a entrepris dans les fondrières une expérience de

reboisement par l'implantation de pinèdes sur les pentes les plus menacées par

l'érosion. Le village de Paillant, dont les belles villas encore intactes accueillaient

les cadres de la compagnie minière Reynold's Mining CO, jouit d'un climat sain

et d'une température fraîche toute l'année. L'ancien gisement de bauxite de

Rochelois a été désaffecté et abrite maintenant un entrepôt de vente de voitures

d'occasion importées de Floride. Les gens viennent de tout le pays à la

recherche d'une bonne affaire.

Miragoâne est l’une des villes d’Haïti ayant donné un chef d’état à la

république, ce qui constitue pour les miragoânais une fierté immense. Il s’agit de

Tancrède Auguste, grand-père d’un célèbre écrivain haïtien Jacques Roumain. Il

avait occupé la présidence de la république pendant la période allant du 8 août

1912 au 2 mai 1913. Il fut l’un des rares Chefs d’Etats haïtiens à mourir au

pouvoir.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE16

Page 17: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

1.4.- Aspect physique En dehors de l'axe routier Port-au-Prince & endash; Miragoâne, les voies

de pénétration n'offrent aucun service acceptable, ce sont des routes en terre

battue. Il faut dire que seule le cœur de la ville conserve son ancienne

architecture en ce qui a trait aux constructions immobilières. Dans les localités

avoisinantes, on fait face à de véritables bidonvilles de béton. Le relief de la

région est assez varié. Une partie de la ville est située dans les hauteurs

(Desruisseaux, La Croix) alors que l’autre partie se situe dans un bassin peu

élevé au dessus du niveau de la mer. Les cotes de la ville sont assez

accidentées.

1.5- Activités socio-économiques Jusqu’en 1998, selon les données de

l’IHSI, les principales activités économiques

restaient classées ainsi : en premier lieu on

avait l’agriculture et l’élevage ; en second

lieu le commerce et comme dernière activité

il restait la pêche.

Le commerce maritime constitue la

principale activité économique et la culture

maraîchère la principale production agricole. De plus, il ne faut pas oublier que,

grâce au port de Miragoâne, le commerce de produits usagés de toute sorte,

couramment appelés « pèpè », couvre presque toute la commune. Miragoâne

est un port ouvert qui génère à l'état haïtien environ dix huit millions (18,

000,000) de gourdes par mois. Pourtant la commune est privée de toutes les

infrastructures de base. Les différents tronçons de route qui donnent accès à la

commune sont en piteux état. Les moyens de communications sont quasi

inexistants, il n'y a pas d'eau potable.

1.6- Activités culturelles

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE17

Page 18: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Haïti est un pays aux richesses d’une culture fortement affirmée et

vivante dont l’expression artistique populaire constitue un spectacle de grand

intérêt pour les touristes. Elle a des vestiges d’un passé glorieux et prestigieux

que personnifient les nombreux sites touristiques et historiques. Au charme

d’anciennes villes historiques, s’ajoutent des potentialités naturelles attrayantes

pour le tourisme qui sont liées au climat, à l’environnement et à la variété du

paysage.

Il est vrai que le département des Nippes ne figure pas parmi les régions les plus

attrayantes de la république, cependant les quelques activités culturelles qu’offre

cette ville retiennent l’attention de plus d’un.

1.6.1- Activités touristiquesLa principale activité touristique qu’offre la région est la « Plage de

Détour » située dans la localité de Détour. La fréquence de visites reste

qu’occasionnelle et c’est surtout du tourisme local. A noter que la fête patronale

de la zone, St Jean le Baptiste, est l’une des activités qui attire beaucoup de

touristes (surtout la Diaspora) dans la région.

1.6.2-Culture et loisirsDans cette rubrique, deux (2) autres subdivisions peuvent s’y intégrer, à

savoir :

a) Lieux de divertissement et de loisirs

Tout d’abord, parlons des bibliothèques. Elles sont au nombre de deux (2)

dans la ville et regroupent un total de 757 livres suivant les données de l’IHSI. Le

théâtre n’est pas le point fort de cette région. D’ailleurs, la zone loge une seule et

unique salle de théâtre et sa fréquence de présentation ne dépasse pas un ou

deux (2) fois par an. Le cinéma est peu présent dans cette localité. Le sport joue

un rôle important au sein de la communauté miragoânaise. Les plus pratiqués

sont : le football et le basket-ball. Après viennent le karaté, le judo et le volley-

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE18

Page 19: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

ball. Les Night Club et restaurant dansant présentent la plus grande part des

activités culturelles et occasionnent du même coup l’activité nocturne dans les

rues de Miragoâne. A tout ceci, viennent s’ajouter les gaguères permettant aux

paysans de se détendre après une rude journée de travail. Une seule et unique

place publique se tient dans la ville, la « Place Dame de Miragoâne », qui

aujourd’hui s’est transformée en un véritable marché où l’on fait l’étalage de

marchandises de toutes sortes.

b) Monuments et sites

La zone loge principalement deux (2) grands monuments et sites : le Fort

Réfléchi qui est type historique situé dans la localité La Croix et la Grotte de type

naturelle située dans la localité de Bel Air. A noter que la commune de

Miragoâne ne loge pas de lieux ou de temples notoires (vaudou). Cependant il y

a des hougans et des mambos.

En somme, il faut dire que les activités culturelles de la zone présentent

une diversité acceptable. Toutefois, il faudrait repenser la pratique de ces

activités car elles sont archaïques et vétustes.

1.7.- Electricité Bien que l’électricité est presque une affaire de luxe en Haïti, Miragoâne

est l’une des villes de cette dite République qui est dotée d’un service

d’alimentation en énergie électrique depuis plus de deux (2) décennies.

Toutefois, il faut souligner que la production de l’énergie ne se fait pas à

Miragoâne mais au niveau de Petit-Goâve.

En effet, à Petit-Goâve la production de l’énergie se fait à partir d’une

centrale thermique équipée de trois (3) groupes de capacité 1.5 MVA chacun.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE19

Page 20: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

CHAPITRE IIEVALUATION DE LA CHARGE ACTUELLE DE LA ZONE

2.1.- Evaluation de la charge actuelle :Selon une étude réalisée par la société MONENCO pour l’ED’H (Août

1988), l’évaluation de la charge actuelle d’une zone peut être faite de deux

façons :

Si la zone a été déjà électrifiée, on utilise les données électriques et

économiques relatives à cette zone pour évaluer la charge.

Si elle n’a jamais été électrifiée on applique à cette zone les données électriques

d’une ville similaire déjà électrifiée.

S’il est impossible d’appliquer les deux façons précédentes, on procède

au comptage des différents bâtiments de la zone en les classant suivant les

matériaux utilisés pour leurs constructions (bâtiments résidentiels, commerciaux

et industriels – s’il y en a). On associe à ce comptage des données

démographiques recueillies à partir de documentation appropriée concernant la

zone d’étude.

Les informations (données) obtenues à l’ED’H indiquent qu’en 2007, il n’y

a que 727 clients actifs et que le taux de facturation est de 40% c'est-à-dire, en

réalité, les 727 clients actifs représentent environ 40% des personnes

effectivement branchées sur le réseau. D’autre part, parmi les 727 clients actifs,

il y a 690 clients résidentiels, 16 clients commerciaux, deux clients industriels

dont un (1) en moyenne tension (MT) et un (1) en basse tension (BT), 4 rues

éclairées, 11 organismes publics et 4 organismes autonomes.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE20

Page 21: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

En tenant compte du taux de facturation, environ 60% de la puissance

consommée n’est pas facturée. Ce qui représente un total de = 1090

clients non facturés. Ainsi, de façon théorique, le nombre de clients qu’il devrait y

avoir à Miragoane est de : 727+1090 soit 1817 clients.

Toutefois, la consommation n’est pas la même pour tous les clients. C’est

ainsi qu’ils sont classés en plusieurs types dont :

Clients résidentiels

Clients commerciaux

Clients industriels

Eclairage des rues et des places publiques

Organismes Publics et Autonomes

2.1.1.-Répartition des différentes charges1) Charges résidentielles

Les clients résidentiels sont ceux alimentés en 120V, et ils sont

classés en trois (3) catégories selon le type de matériels existant chez ces

clients. Ce sont les clients de :

Type A

Type B

Type C

a) Clients de type CLes charges de type C regroupent les clients modestes. Ce sont des

clients ayant leurs maisons construites en un seul étage n’excédant pas trois (3)

chambres et/ou de construction archaïque. Sont aussi incluses dans cette

catégorie de clients les petites écoles qui, à priori, n’ont besoin de quelques

rares matériels électriques pour leur fonctionnement.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE21

Page 22: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

N.B.- En général, l’EDH ne dessert en électricité les maisons recouvertes de

paille afin de diminuer les risques d’incendie. Ainsi, ces potentiels clients ne sont

pas considérés dans le cadre de cette étude.

En outre, au niveau de la ville de Miragoâne, beaucoup de maisons

situées au cœur même de la ville sont destinées à l’emballage et à la

conservation de marchandises n’ayant presque aucun rapport avec l’électricité.

De ce fait, ces maisons sont considérées comme des clients résidentiels de type

C.

b) Clients de type BCette catégorie regroupe les clients moins aisés, possédant des maisons

plus ou moins modernes respectant les normes de construction et les écoles

d’envergure moyenne.

c) Clients de type ALes clients de type A sont ceux ayant les maisons modernes répondant à

presque toutes les normes de construction moderne. Sont aussi incluses dans ce

groupe, les grandes boutiques, les succursales de téléphone, les restaurants, …

Au fait, ce sont des clients qui possèdent chez eux tout ce qu’il faut pour

fonctionner.

Les données recueillies à l’IHSI indiquent qu’en 1999, on comptait 3334

ménages dans la ville de Miragoâne. Il est impossible que le nombre atteigne

5000 en 2007, car ce serait une augmentation d’environ 50% en huit (8) ans

seulement. Un échantillon de 10% sur une population de 5000 est acceptable

suivant les règles de la statistique. Ainsi, l’échantillon choisi est de 500 ménages.

De ces derniers, l’étude révèle qu’il y a soixante (60) de type A (12%), cent dix-

neuf (119) de type B (23.8%), trois cent vingt et un (321) de type C (64.2%).

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE22

Page 23: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

L’application de ces taux au nombre total de clients résidentiels (1770)

permet d’obtenir : deux cent douze (212) de type A, quatre cent vingt et un (421)

de type B et mille cent trente sept (1137) de type C.

2) Charges commercialesSont considérées comme clients commerciaux les églises, les hôpitaux,

les night Club, les cyber café, les succursales de banque, les morgues, les

grandes écoles.

Ces charges sont réparties suivant le type d’activités incluant les

différents matériels utilisés pour ces activités. C’est ainsi que les hôtels, les

églises, les écoles, etc.…. sont traités séparément.

Au cours du comptage, cinq (5) grandes écoles, quatre (4) cyber café,

trois (3) grandes églises, deux (2) morgues, trois (3) succursales de banque dont

l’une est alimenté en triphasé, un (1) hôpital alimenté en triphasé, une (1) salle

de cinéma, un (1) night club, une (1) usine à glace, une (1) source de

congélation alimentée en triphasé ont été dénombrés.

3) Charges industriellesLes clients possédant des charges industrielles sont les clients qui sont

alimentés en ( ). Les clients considérés comme clients industriels

au niveau de la ville de Miragoâne sont :

La UNIBANK

La source de congélation

L’Hôpital Sainte Thérèse

Puissance nominale.-En général, la puissance nominale à installer est connue pour chaque

type de clients, on doit savoir la puissance nominale des différents types qui

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE23

Page 24: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

composent la population en tenant compte du nombre de clients de chaque type

et d’un facteur qu’on appelle ‘Facteur de coïncidence’.

Facteur de coïncidence ou de simultanéité.-

Le facteur de coïncidence représente le pourcentage de clients d’un type

donné branché simultanément sur le réseau.

Tableau montrant les facteurs de coïncidence

Nombre de

clients1 à 4 5 à 9

10 à

14

15 à

19

20 à

24

25 à

29

30 à

34

35 à

49

50 à

X

Facteur de

coïncidence1 0.78 0.63 0.53 0.49 0.46 0.44 0.42 0.4

Facteur de demande.-En général un client n’utilise pas simultanément tous les équipements

électriques qu’il possède, seulement un certain nombre d’appareils est branché

pour satisfaire ses besoins. Ainsi ce facteur indique le pourcentage de la

puissance totale installée des appareils chez le client que ce dernier utilise.

Tableau montrant les facteurs de demande

Clients Facteur de demande

Petites résidences, éclairage + appareils sans fours

électriques

50 -75%

Résidences moyennes, éclairage + appareils sans fours

électriques

40 -60%

Grandes résidences, éclairage + appareils + fours

électriques

30 -60%

Petits magasins – Petite boutique – Salon de beauté 40 -60%

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE24

Page 25: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Grands magasins – Market 70 -90%

Petites industries 35 -65%

Grandes industries 50 -80%

Hôtels 35 -60%

Bureaux 60 -80%

Dans les calculs qui suivent, le facteur de demande utilisé représente en

quelque sorte la moyenne arithmétique des facteurs de demande pour chaque

type de clients. Par exemple, pour un client de type A le facteur de demande

considéré est 0.45, pour un hôtel 0.48, etc.

2.1.2.- CALCUL DE LA CHARGE POUR LA VILLE DE MIRAGOANELe comptage du nombre de ménages dans la ville a donné les résultas suivants :

Type de clients Quantité

A 212

B 421

C 1137

Commercial 25

Industriel 3

Eclairage des Rues 4

OPA 15

Total 1817

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE25

Page 26: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Calcul de charge pour les différents types de clientsClients de type AAppareils couramment utilisés chez un client de type A

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

TV Couleur 2 250 500

Vidéo 1 50 50

Radio 2 60 120

Fer à repasser 1 1200 1200

Blender (malaxeur) 1 300 300

Ventilateur 2 50 100

Réfrigérateur 1 250 250

Lampe Electrique 10 60 600

Onduleur 1 800 800

Toaster 1 1000 1000

TOTAL ---- ---- 4920

Puissance totale pour un client de Type A : 4920 Watts

Facteur de demande pour les clients de type A : 0.45

Demande maximum : Dmax = 4920 0.45

Nombre de clients de type A : 212

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE26

Page 27: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Facteur de coïncidence : FC = 0.4

Puissance totale demandée pour ces clients :

PA =

2. Clients de type BAppareils couramment utilisés chez un client de type B

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

TV Couleur 1 250 250

Vidéo 1 50 50

Radio 2 45 90

Fer à repasser 1 1200 1200

Blender 1 300 300

Ventilateur 2 50 100

Réfrigérateur 1 250 250

Lampe Electrique 8 60 480

TOTAL ---- ---- 2720

Puissance totale pour un client de Type B : 2720 Watts

Facteur de demande pour les clients de type B : 0.5

Demande maximum : Dmax = 2720 0.5

Nombre de clients de type B : 421

Facteur de coïncidence : FC = 0.4

Puissance totale demandée pour ces clients :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE27

Page 28: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

PB =

3. Clients de type CAppareils couramment utilisés chez un client de type C

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

TV Couleur 1 150 150

Radio 1 45 45

Fer à repasser 1 1200 1200

Ventilateur 1 50 50

Lampe Electrique 3 60 180

TOTAL ---- ---- 1625

Puissance totale pour un client de Type C : 1625 Watts

Facteur de demande pour les clients de type C : 0.63

Demande maximum : Dmax = 1625 0.63

Nombre de clients de type C : 1137

Facteur de coïncidence : FC = 0.4

Puissance totale demandée pour ces clients :

PC =

Puissance Totale demandée par les clients résidentiels :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE28

Page 29: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

4. Clients Commerciauxa) EcoleUne école peut être considérée comme un client commercial comme

normalement on le fait pour les petits magasins, les petites boutiques ou encore

les salons de beauté. Le facteur de demande considéré pour ce type de client

est 0.5.

Appareils couramment utilisés dans une école

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

Ventilateur 2 50 100

Lampe Electrique 25 75 1875

Glaceur 1 80 80

Ordinateur 1 840 840

TOTAL ---- ---- 2895

Puissance totale pour une Ecole : 2895 Watts

Facteur de demande pour les clients commerciaux : 0.5

Demande maximum : Dmax = 2895 0.5

Nombre de Grandes Ecoles : 5

Facteur de coïncidence : FC = 0.78

Puissance totale demandée pour ces clients :

P =

b) EgliseEn général, les églises ne fonctionnent pas tous les jours et pendant

toutes les heures de la journée. Cela amène à dire que les églises sont certes

des clients commerciaux, mais des clients commerciaux spéciaux dont leur

facteur de demande ne devrait pas dépasser 0.35.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE29

Page 30: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Appareils couramment utilisés dans une Eglise

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

Ventilateur 2 50 100

Lampe Electrique

(1T)

8 40 320

Amplifier 1 1000 1000

TOTAL ---- ---- 1420

Puissance totale pour une Eglise : 1420 Watts

Facteur de demande pour les clients commerciaux : 0.35

Demande maximum : Dmax = 1420 0.35

Nombre d’Eglises : 3

Facteur de coïncidence : FC = 1

Puissance totale demandée pour ces clients :

P =

c) Cyber caféCe groupe de clients commerciaux est l’un des rares qui fonctionnent tous

les jours et surtout dans un intervalle de temps assez large. Donc le facteur de

demande pour ces clients est comme celui des markets et d’après le tableau

montrant le facteur de demande pour les différents types de clients, on peut le

prendre égale à 0.5.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE30

Page 31: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Appareils couramment utilisés dans un cyber café

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

Ordinateur 5 840 4200

Ventilateur 2 50 100

Lampe Electrique

(1T)

2 40 80

Imprimante 1 40 40

Onduleur 1 1000 1000

TOTAL ---- ---- 5420

Puissance totale pour une Cyber Café : 5420 Watts

Facteur de demande pour les clients commerciaux : 0.5

Demande maximum : Dmax = 5420 0.5

Nombre de café : 4

Facteur de coïncidence : FC = 1

Puissance totale demandée pour ces clients :

P =

d) HôtelCe type de clients est très répandu et très important. Ces clients

fonctionnent normalement sept (7) jours sur sept (7) et vingt quatre (24) heures

par jour et le tableau du facteur de demande conduit à prendre 0.48 comme leur

facteur de demande.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE31

Page 32: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Appareils couramment utilisés dans un hôtel

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

TV Couleur 10 150 1500

Radio 10 45 450

Ventilateur 12 50 600

Lampe Electrique 20 60 1200

Coffee Maker 1 800 800

Toaster 1 1000 1000

Pompe Electrique 1 746 746

Onduleur 1 1000 1000

Réfrigérateur 1 250 250

TOTAL ---- ---- 7546

Puissance totale pour un Hôtel : 7546 Watts

Facteur de demande pour les clients commerciaux : 0.48

Demande maximum : Dmax = 7546 0.48

Nombre d’Hôtel : 6

Facteur de coïncidence : FC = 0.78

Puissance totale demandée pour ces clients :

P =

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE32

Page 33: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

e) MorgueTout comme les hôtels, les morgues fonctionnent sept (7) jours sur sept

(7) et vingt quatre (24) heures par jour. Donc on peut considérer le même facteur

de demande pour ces clients.

Appareils couramment utilisés dans une Morgue

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

Radio 1 60 60

Ventilateur 2 50 100

Lampe Electrique

(1T)

8 40 320

Compresseur 1 3000 3000

TOTAL ---- ---- 3480

Puissance totale pour une Morgue : 3480 Watts

Facteur de demande pour les clients commerciaux : 0.48

Demande maximum : Dmax =3480 0.48

Nombre de Morgues : 2

Facteur de coïncidence : FC = 1

Puissance totale demandée pour ces clients :

P =

Puissance apparente relevée à partir des transformateurs d’alimentation

Institution Puissance nominale (KVA)

Puissance réelle (KW)

Détente Ciné 10 9

Usine à glace 50 45

Terrasse Club 50 45

Sogebank 37.5 33.75

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE33

Page 34: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

BNC 37.5 33.75

TOTAL 185 166.5

En général, un transformateur n’est utilisé qu’à environ 70% de sa

capacité. Donc, la puissance consommée réellement par ce groupe de clients est

de 116.55 kW.

Puissance totale à installer pour tous les clients commerciaux

5) Organismes Publics et AutonomesLes Organismes Publics et Autonomes sont considérés comme un type

particulier de clients. Ce groupe de clients fonctionne presque de la même

manière que certains clients commerciaux c’est-à-dire de huit (8) heures du

matin jusqu’à quatre (4) heures de l’après midi. En pratique, ce sont des bureaux

et leur facteur de demande est d’environ 0.7. Un total de quinze (15) organismes

Publics et Autonomes ont été identifiés au cours de cette étude.

Appareils couramment utilisés dans un organisme public et autonome (O.P.A)

Appareils Quantité Puissance unitaire (Watt)

Puissance Totale (Watt)

Ventilateur 2 50 100

Climatiseur 1 2500 2500

Lampe Electrique

(1T)

6 40 240

Glaceur 1 80 80

Ordinateur 2 840 1680

Imprimante 1 40 40

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE34

Page 35: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

TOTAL ---- ---- 4640

Puissance totale pour un O.P.A : 4640 Watts

Facteur de demande pour les clients commerciaux : 0.7

Demande maximum : Dmax = 4640 0.7

Nombre d’organismes Publics et Autonomes : 15

Facteur de coïncidence : FC = 0.63

Puissance totale demandée pour ces clients :

P =

Cette puissance représente la puissance totale à installer pour cette

catégorie de clients.

6) Clients industrielsTrois (3) clients industriels alimentés en triphasé ( ) dont leur

puissance consommée a pu être identifiée à partir de la plaque signalétique du

banc de xfos les alimentant sur l’ancien réseau de l’EDH. Ce sont :

Hôpital Sainte Thérèse (un banc contenant 2 xfos de 10 KVA et 1 xfo de 37.5

KVA)

Source de Congélation (avec un banc de 3 xfos de 50 KVA)

Unibank (ayant un banc de 3 xfos de 25 KVA)

Tableau récapitulatif

Puissance nominale (KVA)

Puissance Réelle (KW)

Hôpital Sainte Thérèse 57.5 51.75

Source de Congélation 150 135

Unibank 75 67.5

TOTAL 282.5 254.25

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE35

Page 36: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Suivant la considération faite pour les clients commerciaux ayant leur

propre transformateur, la puissance consommée réellement par ces trois clients

industriels est de 177.975 kW.

2.1.3.-Calcul de la charge pour la commune de PaillantLa méthode utilisée pour évaluer la quantité de ménages de chaque type

dans la ville n’est pas applicable pour la commune de Paillant. Car l’IHSI n’est

pas en mesure de nous fournir l’information concernant le nombre de ménages

pour la dite commune. Donc, il n’y a pas de base pour choisir un échantillon. Sur

ce, obligation était faite à nous de compter les différents ménages. Le tableau qui

suit montre les données recueillies lors du comptage. A noter qu’aucun client

industriel, tel qu’il est défini, n’a été trouvé dans cette commune.

Type de clients Quantité

A 53

B 56

C 68

Commercial 6

Industriel 0

Eclairage des rues 1

OPA 1

Total 185

Calcul de la puissance totale pour les différents types de clients résidentiels

Type de Clients résidentiels

Quantité Facteur de coïncidence

Puissance demandée

Puissance Totale (kW)

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE36

Page 37: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

(W)

A 53 0.4 2214 46.937

B 56 0.4 1360 30.464

C 68 0.4 1023.75 27.846

Total ---- ---- ---- 105.247

Parmi les clients commerciaux, trois (3) églises, trois (3) grandes écoles et

un hôpital ont été identifiés.

Les calculs effectués pour les différents clients commerciaux au niveau de

la ville de Miragoâne sont aussi appliqués pour ceux de la commune de Paillant.

Le tableau qui suit donne les résultats pour ces clients :

Type de Clients commerciaux

Quantité Facteur de coïncidence

Puissance demandée (W)

Puissance Totale (kW)

Eglise 3 1 497 1.491

Ecole 3 1 1447.5 4.342

Hôpital 1 ---- ---- 9.45

Total --- 15.283

Un seul Organisme Public et Autonome a été trouvé dans cette commune.

Il s’agit de la Mairie de la dite commune.

Facteur de coïncidence

Puissance demandée (W)

Puissance Totale (kW)

1 3248 3.248

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE37

Page 38: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

N.B.- L’hôpital trouvé est alimenté à partir d’un transformateur monophasé

de 15 KVA. Donc, pour trouver la puissance réelle de ce client, on a considéré

un facteur de puissance en appliquant la formule :

Puissance réelle = Puissance apparente facteur de Puissance ou encore

P = S . De plus un transformateur est utilisé à 70% de

sa capacité. De ce fait, la puissance réelle consommée par cet hôpital est de

9.45 kW.La puissance réelle totale pour la commune de Paillant est alors :

Tableau récapitulant la puissance totale demandée par chaque type de clients

Type de clients Miragoâne Paillant Puissance totale (kW)

Résidentiels 882.371 105.247 987.618

Commerciaux 154.817 15.283 170.1

Industriels 177.975 0 177.975

O.P.A 30.694 3.248 33.942

Total ---- ---- 1369.635

Ainsi, la puissance réelle totale à installer pour tous les clients de la zone

d’étude est de 1369.635 kilowatts soit 1.37 MW.

2.2.-Eclairage de rues et des Places publiques

2.2.1.-Avantages et inconvénients

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE38

Puissance demandée (kW)

Page 39: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Personne ne peut ignorer que l’électricité est à la base du développement

dans n’importe quel pays du monde. Sur cette ligne d’idée, peut-on imaginer

l’électrification d’une ville sans éclairer ses rues ? Nullement. Tout cela est pour

dire que l’éclairage de rues se révèle d’une importance capitale dans le

développement d’une ville. En effet, il facilite la vie nocturne en améliorant le

confort visuel des piétons, des automobilistes ; augmente l’activité commerciale ;

protège contre les accidents ; augmente le rendement du travail. Aussi permet-il

de prévenir l’action des gens mal intentionnées pendant la nuit.

Toutefois, il faut éviter un niveau d’éclairement trop élevé. Car, dans une

telle condition, les usagers de la route (piétons, automobilistes, cyclistes et

motocyclistes) auraient un sentiment de confiance et de sécurité trop grand. Il

ne faut pas oublier que le problème de l’éclairage est avant tout un problème de

vision. En d’autres termes, pour s’éclairer correctement dans de bonnes

conditions, il faut soulever divers points de détail qui sont d’une grande

importance pour les yeux. Donc, un mauvais éclairage (éclairage mal fait)

attaque les yeux.

Par ailleurs, juste avant d’entrer d’emblée dans les calculs d’éclairage, il

s’avère nécessaire de définir quelques concepts relatifs à ce domaine.

2.2.2.- Définition de quelques concepts importants pour l’éclairagea) Lumière

Selon l’Illuminating Engineering Society, la lumière est définie comme

l’énergie rayonnante selon son pouvoir à produire une sensation visuelle

b) Intensité lumineuseLa lumière se mesure comme toute grandeur. Considérons une bougie de

stéarine, elle émet de rayons dans toutes les directions. Cependant, ces rayons

sont dans la partie la plus large de la flamme, c'est-à-dire que la lumière est plus

intense dans le plan horizontal. On a pris comme unité d’intensité lumineuse la

quantité de lumière émise dans ce plan et on lui a donnés le nom de bougie.

Notons que la nouvelle dénomination est le << Candela>>.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE39

Page 40: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

c) Flux lumineuxToutefois, une intensité variable avec la direction des rayons lumineux ne

permet de faire une comparaison entre les différentes sources lumineuses au

point de vue de la production de lumière. On a donc été conduit à considérer

l’ensemble des rayons lumineux dans toutes les directions. Cette quantité de

lumière totale émise par une source s’appelle le flux lumineux.

d) Eclairement ou IlluminationIl est intéressant d’apprécier non pas la lumière émise par une source,

mais celle reçue par un objet. Une surface est plus ou moins éclairée selon que

le flux lumineux qui tombe sur elle est plus ou moins important. On appelle

éclairement d’une surface le flux lumineux tombant sur chaque mètre carre de

cette surface. On dit que l’éclairement est de 1 lux lorsqu’une surface de 1 mètre

carré reçoit un flux de 1 lumen. Pour donner une idée concrète : un journal

déplie, place a 1 mètre d’une bougie, a un éclairement de 1 lux environ. Nous

voyons que cette notion est très importante puisqu’elle nous donne l’effet utile de

l’éclairage.

D’après ce qui précède, l’éclairement d’un objet varie avec la distance de

celui-ci par rapport à la source lumineuse. Il varie inversement

proportionnellement au carré de la distance.

e) LuminaireUn luminaire est un appareil d’éclairage complet pour la bonne répartition

du flux lumineux, comprenant la ou les douilles, la ou les lampes et tout

l’appareillage pour le contrôle de la lumière.

f) LuminanceOn définit la luminance comme étant le nombre de candela par mètre

carre de surface apparente.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE40

Page 41: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Lorsqu’une surface de 1 mètre carré émet, dans une direction déterminée,

une intensité lumineuse de 1 candela, on dit que la luminance dans cette

direction est de 1 candela

g) EblouissementSi on fixe une lumière vive pendant quelques instants, on éprouve un

certain malaise. La rétine de l’œil est trop fortement impressionnée et il s’ensuit

des contractions du nerf optique. Pour empêcher cette gêne, il faut masquer le

foyer lumineux à la vue.

L’éblouissement peut d’ailleurs se manifester soit par réflexion

occasionnée par des surfaces brillantes (papier glace, bois vernis, métal poli),

soit par contraste, lorsqu’on passe sans transition de l’obscurité à la lumière

violente.

h) Niveaux d’éclairementDes expériences ont mis en évidence l’influence de l’éclairement sur la

rapidité de la vision, la fatigue oculaire et nerveuse, ainsi que la précision et le

rendement du travail.

Elles ont montré la nécessité d’un éclairement d’autant plus intense que le

travail est plus précis et que les objets ont des facteurs de réflexion plus faibles.

i) Coefficient d’utilisationC’est un coefficient exprimant le pourcentage de flux lumineux qui

atteindra l’une ou l’autre des deux surfaces de longueur infinie ; l’une s’étendant

en face et l’autre à l’arrière du luminaire quand ce dernier est monté suivant les

recommandations du constructeur. Pour trouver le coefficient d’utilisation, on

exprime les dimensions transversales de la chaussée en fonction de la hauteur.

j) Facteurs de dépréciationCe sont les principales causes de perte de lumière des luminaires utilisés

pour l’éclairage des rues. Ces facteurs défavorables existent toujours à des

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE41

Page 42: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

degrés plus ou moins grands. Donc, il faut en tenir compte lors des calculs

d’éclairage. Ce sont :

k) LLD (Lamp Lumen Depreciation)

Ce facteur mesure le rapport entre le flux initial d’un nombre de lampes

neuves et le flux de ces mêmes lampes au moment du remplacement a l’époque

prévue. Ce facteur indique habituellement le rapport fondé sur une durée de vie

de 70% de la vie des lampes.

l) LDD (Lumen Dirt Depreciation)

Ce facteur mesure le rapport entre le flux lumineux initial émis par un

luminaire propre et le flux qu’émet ce même luminaire au moment ou il doit être

nettoyé.

2.2.3.- Choix de la méthode de calculLes normes de l’éclairage amène a calculer l’éclairage des rues suivant l’une ou

l’autre des deux méthodes suivantes :

1.-Lumen method : utilisée pour déterminer l’éclairement moyen de la

chaussée

2.-Lumen Intensity method : utilisée pour déterminer l’éclairement en un

point précis de la chaussée.

La première est utilisée car elle permet une répartition de la lumière plus

ou moins uniforme sur la chaussée.

2.2.4.- Détermination de l’éclairement moyenUne courbe appelée << courbe d’utilisation >> permet de calculer

l’éclairement moyen sur une grande chaussée. Pour un type de luminaire donné,

la courbe d’utilisation est donnée par le constructeur. Elle fournit une méthode

pratique de détermination de l’éclairement moyen sur une chaussée quand on

connaît les paramètres suivants:

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE42

Page 43: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

. Hauteur de feu du luminaire

. Distance de la lampe par rapport au poteau

. Largeur de la chaussée

. Distance entre deux luminaires consécutifs

. Flux lumineux de la lampe utilisée

Formule de détermination de l’éclairement moyenCette formule est différente suivant que la lampe soit exposée ou non à la

poussière. Ainsi, on a :

Lampe non exposée à la poussière :

Lampe couverte de poussière :

E : Eclairement horizontal moyen en footcandle (fc)

Cu: Cœfficient d’utilisation du luminaire

S : Distance entre deux luminaires consécutifs en pieds (ft)

w : largeur de la rue en pied (ft)

LLF : Facteur de dépréciation déterminé expérimentalement ou estimé s’il n’est

pas connu.

2.2.5.- Calcul de l’illumination d’une rueI.- Hauteur des poteaux

Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20

à 50 pieds (6 à 15m). Des poteaux de 60 à 140 pieds sont utilisés dans les pays

développés. En Haïti, les poteaux sont de 30, 35, 40 pieds (Normes ED’H).

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE43

Page 44: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

II.- Niveau d’illuminationLes niveaux d’illumination standard sont généralement ainsi fixés :

Rue avec activité mineure : 0.5 à 1 fc

Rue à activité moyenne : 1 fc

Rue à activité majeur : 1 à 2 fc

Les rues de la zone d’étude sont des rues à moyenne activité.

III.- Distance entre les luminairesEn général, les luminaires sont espacés de 100 à 164 pieds (30 à 50 m).

IV.- Hauteur des luminairesElle dépend du type utilisé. Le luminaire est généralement placé dans la

gamme de hauteur 30 à 50 pieds par rapport à la chaussée. Les constructeurs

donnent les hauteurs admises pour un luminaire donné.

V.- Choix des luminairesTout calcul d’éclairage doit commencer par le choix d’un luminaire adapté

à l’utilisation qu’on va faire de la partie à éclairer. A cet effet, plusieurs types de

luminaire peuvent être utilisés. Toutefois, dans le cadre de l’éclairage de rues,

l’un ou l’autre des deux types suivants est utilisé : luminaire fermé et filtré,

luminaire ouvert et non filtré.

Pour effectuer cet

éclairage de rues le luminaire suivant est utilisé « Luminaire M-400A2 POWER /

DOOR avec cutoff optics, reflector No.35-222829-01 (général électrique) ». C’est

un type de luminaire ouvert et non fermé. Donc LLD = 0.8

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE

Type de luminaire LDD

Fermé et filtré 0.95

Ouvert et non filtré 0.8

44

Page 45: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Pour trouver la lampe à utiliser, on doit calculer la quantité de flux émise.

Pour cela, la fameuse formule de détermination de l’éclairement moyen sera

d’une grande utilité.

=> avec et :

LLD x LDD. On prend LLD= 0.97 => LLF= 0.776. On peut utiliser LLF= 0.8. C’est

une bonne approximation car pour une rue la valeur de LLF est souvent

comprise entre 0.8 et 0.9

a) Calcul pour les rues Bel Air, nouvelle cité, et route menant à hôpitalLargeur de la route : 26’ (7.8m)

Distance entre deux luminaires consécutifs : 164’

Hauteur d’un luminaire : 30’

House side (Hs) : 3’75

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE45

Figure II.- 2

HS St.S

Page 46: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Calcul du Coefficient d’utilisation On sait que

: dépend du rapport ( ) de la largeur transversale partant du bord de la

route (où se trouve le luminaire) au composante normale du flux lumineux émis

par la lampe (House side) sur la hauteur du luminaire par rapport à la route,

c’est-à-dire : avec

: dépend du rapport ( ) de la largeur transversale partant de la

composante du flux lumineux émis par la lampe à l’autre bord de la route (Street

side) sur la hauteur du luminaire par rapport à la route, c’est-à-dire :

avec

Ayant terminé ces calculs, on va dans le tableau de la courbe d’utilisation

du luminaire pour trouver les coefficients d’utilisation et , ensuite on

les additionne pour trouver le coefficient d’utilisation total : .

On a :

D’où :

Comme c’est précisé plus haut, toutes ces rues sont considérées comme étant à

moyenne activité. Alors, E=1 fc

Le flux vient alors :

A partir de Lamp selection data de CSI section 16551, la lampe suivante a

été choisie : CeramaluxTM High pressure sodium 150W BT-28 Mog. C150 (durée

de vie moyenne 16000heures)

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE46

Page 47: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

b) Calcul pour la route de Desruisseaux Largeur de la route : 35’ (10.6m)

Distance entre deux luminaires consécutifs : 164’

Hauteur d’un luminaire : 30’

House side (Hs) : 3’75

Des calculs similaires à ceux effectués précédemment permettent d’avoir :

D’où :

A partir du même catalogue, le choix suivant est effectué : Mercury vapor lamp

400W BT-37 H33GL-400/N (durée de vie moyenne 24000 heures).

c) Calcul pour la route de PaillantCette route peut être considérée comme étant à basse activité.

Largeur de la route : 40’ (12m)

Distance entre deux luminaires consécutifs : 328’

Hauteur d’un luminaire : 30’

House side (Hs) : 5’

Des calculs similaires à ceux effectués précédemment permettent d’avoir :

D’où :

A partir du même catalogue le choix de la lampe CeramaluxTM High pressure

sodium 250W E-18 Mog. C250 (durée de vie 15000 heures) est effectué.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE47

Page 48: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

2.2.6.- Détermination du nombre de luminairesL’un des objectifs des calculs d’éclairage de rues est de savoir la

puissance consommée par la totalité des lampes. De ce fait, on doit déterminer

le nombre de luminaires requis pour l’éclairage de la zone d’étude. A cet effet, la

formule suivante sera utilisée :

Tableau présentant le nombre de luminaires pour les différentes rues

Rue Longueur (ft) Distance entre luminaire (ft)

Nombre de luminaires

Belet 2467 164 16

Nouvelle Cité 2385.78 164 15

Desruisseaux 3024 164 19

Route de l’Hôpital 2386.85 164 15

Route de Paillant 37667 328 115

Eclairage pour la place de Fort RéfléchiLa place de Fort Réfléchi a été déjà éclairée et il y a environ soixante

douze (72) luminaires ayant chacun deux (2) lampes incandescentes de 100W.

La puissance réelle nécessaire pour la place dite place est alors :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE48

Page 49: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Tableau récapitulatif pour l’éclairage de rues et des places publiques

Nombre de luminaires

Puissance par luminaire (W)

Puissance Totale (kW)

Belet 16 150 2.4

Nouvelle Cité 15 150 2.25

Route de Desruisseaux 19 400 7.6

Route de l’Hôpital 15 150 2.25

Route de Paillant 115 250 28.75

Place Fort Réfléchi 72 200 14.4

Total ---- ---- 57.65

La puissance totale pour l’éclairage des rues et des places publiques est,

comme montré dans le tableau précédent, de 57.65kW. Finalement, la charge actuelle de la zone d’étude est évaluée à :

ou

environ 1.427 MW. On va récapituler rapidement :

Miragoâne :Eclairage de rues et des places publiques et différents clients : 1274.757 kWPaillant : Eclairage de rues et des places publiques et différents clients : 152.528 kW

2.3.- Calcul des pertesDans toutes les activités qui se déroulent dans le monde, on se trouve

toujours face à des contraintes qui, lorsqu’elles surgissent, ne permettent pas

d’atteindre à 100% l’objectif visé. Bien qu’il existe souvent des moyens pour

contrecarrer ces contraintes ou encore pour réduire leur risque d’arriver, on

n’arrive jamais à les éliminer totalement. Dans ce même ordre d’idée, on peut

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE49

Page 50: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

dire que les responsables des réseaux électriques dans tous les pays du monde,

pour ne pas dire l’énergie électrique elle même, font face à des contraintes

majeures. Ces contraintes viennent de toutes sortes, que ce soit au niveau de la

production, du transport et/ou de la distribution de l’énergie électrique. En

général, les contraintes les plus marquantes ou encore les plus perceptibles sont

les pertes.

Ces pertes peuvent provenir de différentes sources. Mais dans le cadre

de cette étude, les pertes considérées (les pertes d’énergie électrique) sont de

deux (2) types :

Les pertes techniques

Les pertes non techniques

2.3.1.-Pertes techniquesLes pertes techniques sont celles qui proviennent à partir des éléments

constitutifs du réseau de transport et/ou de distribution. Par exemple, des joints

mal ajustés au niveau des conducteurs, des isolateurs cassés, mais aussi les

pertes par effet joule dans les lignes sont entre autres les causes et les

différents types de pertes techniques qu’on peut citer.

2.3.2.- Pertes non techniquesEn général, les réseaux sont sujets à des actes de piratage élevés. En

Haïti où l’électricité est presque une affaire de grande famille car elle est très

rare, les différents réseaux d’énergie électrique ne font pas exception à cette

règle. En effet, dans divers quartiers de la capitale et même dans diverses

régions du pays où l’ED’H fournit l’énergie électrique aux abonnés, on peut, à

tout moment, remarquer des individus illégaux pirater le réseau en se branchant

avec leur propre équipement. Ce qui constitue des pertes que l’on doit

normalement prévoir lorsqu’on construit le réseau et ces pertes sont qualifiées

de pertes non techniques.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE50

Page 51: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

2.3.3.- Comment évaluer les pertesConsidérant la complexité de pouvoir calculer de manière exacte les

pertes sur un réseau vieux de plusieurs années, on doit trouver une manière plus

ou moins claire de les quantifier.

Les informations recueillies à l’EDH indiquent qu’en général, l’ED’H

considère que les pertes représentent environ 15% de la charge totale

nécessitée par les clients. Ainsi, en considérant ce pourcentage valable ici,

alors :

La puissance totale qu’on doit délivrer pour alimenter normalement la ville

de Miragoâne et la commune de Paillant est alors :

P = 1.641MW. Puissance pour la ville de Miragoâne :

1274.757 + 191.21355 = 1465.97055 kWPuissance pour la commune de Paillant :

152.528 + 22.8792 = 175.4072 kW

CHAPITRE IIIPREVISION DE LA DEMANDE

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE51

Page 52: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

3.1.- Raison d’être de la prévisionTout le monde est d’accord avec l’idée que la réalisation d’un réseau

électrique nécessite d’énormes dépenses. Cela permet de comprendre qu’on ne

peut pas en construire un à chaque augmentation de la charge ; il doit être

construit pour un temps aussi long que possible. Donc, avant de construire un

réseau, il faut pouvoir évaluer la demande dans les temps à venir. Cela permet

de prévoir comment se comportera le réseau. Il permet aussi de choisir les

matériaux pouvant s’adapter à une évolution de la charge.

Dans ce chapitre, on détermine la quantité d’énergie qu’on doit fournir à la

zone d’étude chaque année, pour la période allant de 2007 à 2016.

3.2.- Méthodes de prévision

Suivant l’étude réalisée par les consultants MONENCO pour l’ED’H, il

existe essentiellement trois grandes approches à la préparation d’une prévision

de la demande. Ce sont :

La méthode globale ou macroéconomique

La méthode microéconomique

La méthode analytique

3.2.1.- Description des différentes méthodes3.2.1.1.- Méthode globale ou macroéconomique

Elle s’appuie sur l’hypothèse d’une relation directe et claire entre la

demande en énergie électrique et certaines variables économiques et

démographiques comme les revenus de la population, le prix de l’électricité, le

prix d’autres formes d’énergie et le temps. On doit préciser toutefois que cette

méthode n’est utilisée que pour les grandes régions.

3.2.1.2.- Méthode microéconomique

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE52

Page 53: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Elle s’applique à des prévisions découpées ; c’est-à-dire village par village

ou par catégorie de clients. Il s’agit d’identifier les forces économiques ou

démographiques qui existent dans un village et, ensuite, de déterminer une

relation entre ces paramètres et l’électricité. Parmi les paramètres à considérer

on inclut la population, le nombre de personnes par ménage, le nombre de

ménages électrifiés et la consommation spécifique par ménage. Le même genre

d’information est employé pour les autres catégories de clients. Cette

méthodologie nécessite aussi des informations suffisamment détaillées pour

permettre l’extrapolation des différents paramètres. Comme exemple de détails

nécessaires, on peut citer la tendance de la consommation spécifique

résidentielle qui est fonction du niveau d’absorption parmi les ménages, des

équipements électroménagers, ce qui implique une enquête régulièrement

reprise auprès des clients afin de déterminer le niveau d’absorption de ces

appareils et le taux de variation de ce niveau pour les différents appareils

impliqués.

3.2.1.3.- Méthode analytiqueLa méthode analytique nécessite des données sur une période historique

assez longue pour permettre une analyse des tendances ; elle requiert

également qu’il soit vraisemblable que le futur ne différera pas trop du passé.

Cette méthode permet l’extrapolation des tendances historiques observées.

3.2.2.- Choix d’une méthodeLa méthode macroéconomique n’est pas choisie car elle requiert, d’une

part la disponibilité d’une base de données statistiques sur les revenus de la

population, le prix de l’électricité, l’évolution démographique, le prix d’autres

formes d’énergie, or pour la zone d’étude en question ces données ne sont pas

disponibles et d’autre part cette méthode s’applique à de grandes régions alors

que la zone d’étude ne recouvre que la ville de Miragoâne et la commune de

Paillant, ce qui représente une petite région à étudier.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE53

Page 54: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

La méthode microéconomique est, elle aussi, rejetée par le fait qu’elle

nécessite des données qui ne sont pas disponibles. En effet, pour utiliser cette

méthode, des données suffisamment élaborées et détaillées doivent être

fournies sur les forces économiques et démographiques de la zone, le nombre

de ménages, le nombre de personnes par ménage, la consommation spécifique

résidentielle.

La méthode analytique semble être la plus adaptée à la situation puisque

la ville de Miragoâne et la commune de Paillant sont déjà électrifiées. De plus, la

méthode requiert des données sur une période historique assez longue or, ces

données sont disponibles à l’ED’H et cette dernière les a fourni sur une période

de trois (3) ans. Enfin, comme la zone sous étude n’est pas tellement

bouleversée par la situation politique du pays, le futur ne sera pas trop différent

du passé. Ce qui est une autre donnée nécessaire à l’application de la dite

méthode. Ainsi, pour faire la prévision de la demande sur les dix (10) années à

venir (2007-2016) pour la zone d’étude, la méthode dite analytique va être

utilisée.

3.2.3.- Taux d’évolution de la charge de pointeEn général, la charge de pointe d’une zone varie d’une année à une autre

et normalement elle doit augmenter en raison du facteur démographique et de la

hausse des différentes activités. Par contre, d’après les données obtenues à

l’EDH, au cours de l’année 2006 c’est le contraire de l’affirmation précédente qui

s’était produite c’est-à-dire il y a eu une baisse de la charge de la zone par

rapport à l’année précédente (2005). Ceci vient par le fait que, au cours de cette

dite année, le port de la ville de Miragoâne a été fermé et pour cette raison, on

n’aura pas à tenir compte de cette année pour faire la prévision pour les dix (10)

années à venir. En outre, la charge de pointe est donnée par l’institution mère

qu’est l’ED’H et, cette dernière ne fournit la charge de pointe que pour des

régions globales. Par exemple, l’EDH donne la charge de pointe pour toutes les

régions alimentées par la centrale de Petit-Goâve. Dans ce cas, pour choisir un

taux d’évolution de la charge de pointe, on pourrait supposer que la charge de

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE54

Page 55: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

pointe des trois (3) zones évoluent de façon similaire puisque Miragoâne est

aussi un maillon de la chaîne, c’est-à-dire le taux d’évolution trouvé à partir des

données concernant les trois (3) zones serait le même pour une d’entre elles et,

en particulier, pour la ville de Miragoâne. Mais, comme nous l’avons dit plus

haut, pour appliquer la méthode analytique, il faut recueillir des données sur une

période considérable. Or, le bureau des provinces ne peut nous en fournir que

pour la période allant de 2003 à 2005 et cela pour trois mois seulement. Donc,

nous ne pouvons pas nous fier à ces maigres données. Il faut alors un autre

recours.

Une étude de prévision de demande réalisée par le bureau de projet de

l’EDH pour la période allant de 1997 à 2010 permet de trouver un taux

d’évolution de la charge. C’était une étude faite pour l’ensemble du pays. Mais,

seule la zone d’étude sera prise en compte.

Pour la ville de Miragoâne et la commune de Paillant, l’étude en question

a révélé que la demande aurait crû à un rythme de 4.2% l’an. Ce taux est

considéré valable pour la présente étude.

Le taux de croissance de la charge d’une année par rapport à la

précédente étant trouvé, pour calculer la charge de la nouvelle année, on

applique la formule :

Où :

Pi : Puissance à l’année i

Pi-1 : Puissance à l’année précédente

t : Taux d’évolution de la charge de pointe par an

Le tableau suivant présente la charge de pointe trouvée pour chaque année à

compter de 2007 à 2016.

Année Pointe (kW) Pointe (MW)

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE55

Page 56: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

2007 1641 1.641

2008 1709.922 1.709

2009 1781.74 1.781

2010 1856.57 1.856

2011 1934.55 1.934

2012 2015.798 2.016

2013 2100.46 2.100

2014 2188.68 2.188

2015 2280.606 2.280

2016 2376.39 2.376

En définitive, la zone sous étude nécessitera d’une puissance de

2.376MW pour fonctionner dans les dix (10) années à venir. Donc le réseau à

construire doit pouvoir être alimenté par la centrale de Petit-Goâve qui, à priori,

est supposé capable de fournir cette puissance.

_____________________________________________________________

CHAPITRE IV

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE56

Page 57: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

ETUDE DU RESEAU DE DISTRIBUTION MT/BT

4.1.-Principaux éléments d’un système de distributionUn système de distribution est le dernier maillon de la chaîne

d’électrification après la production et le transport. Il comprend tous les circuits et

appareillage partant des points terminaux du système de transport vers les

différentes installations réceptrices des clients.

Les subdivisions suivantes peuvent être énumérées :

Les réseaux de sous transport ou de répartition reliant les points

terminaux du transport aux sous-stations des divers centres de

distribution. Dans certains cas, plusieurs réseaux indépendants de

transport ou centres de production situés à proximité peuvent être ainsi

reliés à une même sous-station de distribution.

Les centres de distribution groupant, à part les sous-stations, tout

l’appareillage nécessaire à la répartition de l’énergie par les circuits

primaires.

Les circuits ou lignes primaires de distribution (MT)

Les stations de transformation de la moyenne à la basse tension ou

transformateurs

Les circuits ou lignes secondaires (BT)

Les circuits de branchement des installations réceptrices des clients

comprenant le câblage, l’équipement de comptage etc.

4.2.-Sous-station électrique4.2.1.-Définition

Une sous-station est destinée à recevoir les différents appareils

permettant de contrôler un réseau électrique. Aussi permet-elle le sectionnement

des lignes et la transformation des tensions.

D’une façon générale, on en distingue deux types :

a) Sous-station de transmission

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE57

Page 58: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

b) Sous-station de distribution

a. Souvent l’énergie électrique produite n’est pas consommée à proximité

des centres de production. Donc, il faut transporter cette énergie du

centre de production vers les postes de consommation. Toutefois, à

cause de la distance, ce transport doit se faire à haute tension. A cet

effet, la sous-station de transmission élève la tension produite (MT) pour

le transport (HT)

b. Une sous-station de distribution est une sous-station située au voisinage

des centres de consommation, dont le rôle consiste à abaisser la tension

fournie par la ligne de transmission en une tension exigée pour

l’utilisation des appareils de la clientèle.

4.2.2.- Différents éléments d’une sous-station La plupart des postes de transformation ou sous-station comprennent les

éléments principaux suivants :

o Disjoncteurs

o Sectionneurs

o Interrupteurs à cornes

o Parafoudres

o Sectionneurs de mise à la terre

o Transformateurs

o Transformateurs de tension et de courant

4.2.3.- Définition et rôle des principaux éléments d’une sous-station DisjoncteurLe disjoncteur est un appareil qui peut interrompre des courants importants,

qu’il s’agisse du courant normal ou des courants de défaut. Il a pour rôle

principal d’ouvrir automatiquement un circuit dès que le courant traversant ce

dernier dépasse une valeur prédéterminée. Dans le cas où il sert à interrompre

de forts courants, il joue le même rôle qu’un fusible sauf qu’il a un

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE58

Page 59: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

fonctionnement plus sûr car on n’a pas besoin de le remplacer après chaque

interruption.

SectionneursLes sectionneurs sont des appareils de protection qui permettent d’ouvrir un

circuit en l’absence de tout courant. Ils ne sont doués d’aucun pouvoir de

coupure. Ils servent donc à réparer et à isoler, par exemple, les lignes et les

autres parties du réseau.

Interrupteurs à cornesLes interrupteurs à cornes sont des appareils qui peuvent couper les faibles

courant capacitifs des lignes de transport ou les courants d’excitation des

transformateurs, mais qui ne peuvent pas interrompre les courants de charge

normaux.

ParafoudresLes parafoudres sont des appareils destinés à limiter les surtensions imposées

aux transformateurs ou aux autres dispositifs, instruments et machines

électriques par la foudre et par les manœuvres de commutation des lignes et

des transformateurs.

Sectionneurs de mise à la terreLes sectionneurs de mise à la terre sont des interrupteurs de sécurité qui isolent

un circuit et qui, grâce à leur mise à la terre, empêchent l’apparition de toute

tension sur une ligne lors des réparations.

TransformateursLe transformateur est un appareil électrique très simple, mais il n’en constitue

pas moins l’un des plus utiles. Le transformateur permet de modifier la tension et

le courant dans un circuit. Grâce à lui, l’énergie électrique peut être transportée à

une grande distance de façon économique et distribuée dans les usines et les

maisons.

Transformateur de tension

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE59

Page 60: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Les transformateurs de tension sont utilisés sur les lignes à haute tension

pour alimenter des appareils de mesure (voltmètre, wattmètre etc.) ou de

protection (relais). Ils servent à isoler ces appareils de la haute tension et les

alimenter à des tensions appropriées.

Le primaire des transformateurs de tension doit être branché en parallèle

avec le circuit dont on veut connaître la tension. De plus, on doit toujours

connecter un fil de l’enroulement secondaire à la masse, sans quoi on risque de

subir un choc électrique en touchant à l’instrument de mesure ou un de ses fils

de raccordement.

Transformateur de courant Les transformateurs de courant sont utilisés pour ramener à une valeur

facilement mesurable les courants intenses des lignes à haute tension. Ils

servent aussi à isoler les appareils de mesure ou de protection des lignes à

haute tension.

Comme pour les transformateurs de tension, on doit toujours raccorder un

des fils secondaires à la masse. Toutefois, contrairement à ceux-là, le primaire

des transformateurs de courant doit être branché en série avec l’appareil dont on

veut connaître le courant.

Par ailleurs, il faut souligner que ce ne sont pas les seuls éléments d’une

sous-station. Aussi trouve-t-on des éléments dits éléments facultatifs. Parmi

ceux-ci, on trouve les disjoncteurs à réenclenchement automatique (recloser) et

les autosectionneurs (sectionalizer)

RecloserLe disjoncteur à réenclenchement automatique ouvre le circuit lors de

l’apparition d’un défaut et le referme de nouveau après un délai compris entre

une fraction de seconde et quelques secondes. La séquence d’ouverture et de

fermeture se répète deux ou trois fois selon l’ajustement des dispositifs de

commande internes. Si le court-circuit ne disparaît pas après deux ou trois

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE60

Page 61: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

tentatives de refermeture, le recloser ouvre le circuit en permanence et une

équipe de réparation doit aller sur les lieux pour les réparer.

SectionalizerLorsqu’une ligne d’alimentation comprend plusieurs dispositifs de protection,

il est souvent difficile d’atteindre une coordination acceptable basée seulement

de fusion des coupe-circuits. On utilise alors un autosectionneur dont l’ouverture

dépend du nombre d’opérations successives d’un recloser placé en amont.

4.3.- Etude du réseau de distribution MT4.3.1.- Choix des conducteurs d’une ligne

Les pertes ohmiques, les pertes par effet de couronne et le niveau de

perturbation radiophonique sont des facteurs déterminant dans le choix des

conducteurs d’une ligne. Il est important de choisir un conducteur qui correspond

à l’économie maximale compte tenu de la puissance transportée et des pertes

par effet joule dans les conducteurs. Ainsi, pour choisir un conducteur, on doit se

référer aux critères suivants :

1. Les pertes ohmiques doivent être inférieures à 2% de la

puissance maximale transportée par la ligne.

Ces pertes ohmiques dépendent de la valeur de la résistance du

conducteur et du courant le parcourant. Parfois il est nécessaire de considérer la

capacité maximale de courant pouvant circuler dans le conducteur. Cette

capacité maximale de courant est nécessaire à connaître, à cause qu’elle est

déterminée au maximum de température opérant dans les conducteurs. Cette

température affecte l’affaissement (la flèche) du conducteur entre les supports et

détermine la perte de tension mécanique. Pour des lignes qui ont à fournir des

charges excessives sous certaines conditions, la capacité maximale de courant

pouvant être transportée par les conducteurs devient importante dans la

sélection du conducteur.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE61

Page 62: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

2. Les pertes par effet couronne doivent être inférieures ou égales

à 1.5kW/km de ligne.

Les pertes par effet couronne sont fonction du gradient de tension à la

surface d’un conducteur. Alors, l’effet de réduire l’espacement entre les

conducteurs et de diminuer le poids des conducteurs, a pour conséquence,

d’augmenter le gradient de tension à la surface et par le fait même, d’augmenter

les pertes par effet couronne. Comme il a été mentionné auparavant, ces pertes

peuvent être réduites en utilisant des conducteurs en faisceau dont le flux

magnétique produit par cet arrangement est identique à celui produit par un

conducteur creux ayant un plus gros diamètre.

3. Le niveau de perturbation radiophonique est aussi un des

facteurs limitant le choix d’un conducteur satisfaisant, pour une

tension donnée.

Les décharges produites par l’effet couronne produisent des ondes

électromagnétiques (ou signaux) qui possèdent un spectre de fréquence

radiophonique brouillant la réception sur les postes de radio ou de télévision.

Ces interférences radiophoniques ont lieu pour une grandeur du champ

électrique (ou d’une tension) bien en dessous de la valeur critique (≈ 3000kV/m).

4.3.1.1.- Choix des conducteurs MT Tension d’utilisation

La tension MT dépend de la puissance à transporter et de la longueur de

la ligne principale. D’où la formule :

où :

Ul : tension de ligne

P : puissance active à transiter (w)

L : la distance de transport (m)

k : facteur approximatif dépendant de la régulation et de la longueur de la ligne

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE62

Page 63: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Dans le cas de notre étude, la puissance à transporter est de 2.376 MW,

la longueur de la ligne principale est de 26 km (distance entre Petit-Goâve et

Miragoâne). Pour une ligne courte (≤ 80 km) et une régulation d’environ 5%, on

prend k=0.15.

En appliquant la formule précédente, on a :

Les normes exigent qu’on choisisse une tension normalisée comprise entre

et . Donc, on choisit 23 kV comme tension de ligne. La tension de

phase sera alors :

Choix des conducteurs MT

a) Entre Petit-Goâve et Miragoâne

Pour cela, on calculera le courant à faire circuler dans la ligne. Ce calcul

va permettre de choisir un conducteur. La chute de tension sera calculée pour la

résistance du conducteur choisi. A partir de cette chute, on calculera la

régulation qui sera comparée avec celle fixée (5%). Si cette comparaison révèle

que la régulation fixée est inférieure à celle calculée, on choisira un autre

conducteur. Le même processus va être répété.

Le courant circulant dans les conducteurs est obtenu par la relation

suivante :

Ce qui donne :

Il faut choisir un conducteur qui soit capable de transporter un tel courant

tout en tenant compte de la valeur de la résistance du conducteur pour que la

régulation calculée soit celle demandée.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE63

Page 64: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

D’après la table A-1 de l’annexe A, nous pouvons utiliser un conducteur

du type ACSR #6 qui possède une capacité maximale de 100A et

une résistance de .

La résistance du conducteur #6 à une température de ( au

dessus de la température ambiante ) obtenue à l’aide de la formule

suivante :

, ce qui entraîne :

La chute de tension causée par la résistance de ce conducteur est

obtenue par la relation suivante :

. Nous avons donc :

La régulation se calcule comme suit :

La régulation obtenue est beaucoup supérieure à celle recommandée

(5%), il faut donc prendre en considération ces résultats obtenus pour effectuer

un second choix.

Comme la chute de tension est 6.3 fois plus grande que celle permise, il

faut augmenter la section du conducteur d’au moins 6.3 fois. Sur ce, le choix se

porte sur le conducteur ACSR 4/0 qui possède une capacité maximale de 340 A

et une résistance de 0.3679 Ω/km .

Suivant la même démarche, à 75˚C, ce conducteur a une résistance de

0.4 Ω/km. La chute de tension est alors 620.256 V. Ce qui donne une régulation

de 4.67 %.

La régulation obtenue est inférieure à celle recommandée, ce qui est très

satisfaisant. Cependant, au point de vue d’échauffement, ce conducteur est

plusieurs fois plus gros que nécessaire car sa capacité maximale de courant est

de beaucoup supérieure au courant qui va y circuler ( 340 A >> 59.64 A).

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE64

Page 65: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

En définitive, pour le réseau MT entre Petit-Goâve et Miragoâne, le

conducteur ACSR 4/0 sera utilisé. Ce dernier a une résistance de 0.4 Ω/km.

b) Au niveau de la ville de Miragoâne

Pour effectuer le calcul des conducteurs MT à l’intérieur de la ville, la rue

la plus longue sera considérée. Cette rue correspond à celle de la route de

Desruisseaux qui a une longueur d’environ 922 mètres. Ainsi, un calcul pareil à

celui effectué pour déterminer le conducteur entre Petit-Goâve et Miragoâne

nous permet de trouver le conducteur ACSR 2/0 à l’intérieur de la ville de

Miragoâne. La résistance de ce conducteur est, d’après le tableau A-1 de

l’annexe A, à 75˚C.

c) Au niveau de Paillant

Comme à l’intérieur de la ville, le conducteur à utiliser dans le réseau MT

de Paillant est le ACSR 2/0.

4.3.1.2.-Réactance des conducteurs 4/0 et 2/0D’après le tableau A-1 de l’annexe A, la réactance du conducteur

ACSR 4/0 est ou j et celle du

ACSR 2/0 est ou . Etant donné qu’on a affaire à une

ligne courte, on ne tient pas compte de la réactance capacitive de cette dernière.

4.3.1.3.- Choix des éléments de protection pour les transformateurs En général, les transformateurs sont sujets à des risques de surtension

et/ou de surintensité au cours de leur utilisation. Donc, il faudra prévoir pour leur

protection des éléments pouvant satisfaire ce travail. C’est ainsi que dans cette

partie, nous allons déterminer la capacité de fusibles et des parafoudres

pouvant protéger les transformateurs contre les surintensités et les survoltages.

Le courant des fusibles est donné par la relation :

Imax = 1.5In

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE65

Page 66: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Avec :

Imax : courant du fusible,

In : courant nominal du transformateur.

- Par exemple, pour un transformateur de 50 KVA fonctionnant sous une tension

de 120 volts, In = 3.77A et le fusible à utiliser doit avoir un pouvoir de coupure de

5.655A.

Dans ce cas, on prendra un fusible de 6 A.

- D’autre part, le choix des parafoudres est fonction de la tension nominale du

réseau, la capacité des parafoudres est donnée par :

Umax = 1.25UL-N

Avec :

Umax : tension des parafoudres ;

UL-N : tension de phase.

- Pour le voltage de 23 KV, on a Umax = 16.6 KV. On prendra Umax=21 KV.

4.3.1.4.- Pertes de puissance active et réactive dans les lignes MTLes pertes de puissance active et réactive sont déterminées par :

P = 3LRI2Cos et Q = 3LXI2Sin (cf. Xuan Dai Do)

Dans notre cas, L=26km, I=16A, Cos =0.95 et R75=0.4Ω/km, X=0.3256Ω/km,

P= 7.58kW et Q= 2.03kVARS.

4.3.2.- Mise à la terre (M.A.L.T.)Les réseaux de distribution doivent être mis à la terre pour que les

exigences suivantes puissent être respectées :

1) Maintien de la tension du neutre à un niveau minimal.

2) Sécurité des monteurs et du public

3) Protection des appareils de distribution

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE66

Page 67: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

4) Protection des appareils de communication

5) Utilisation du sol comme chemin de retour, en parallèle avec le

neutre.

L’efficacité du système de mise à la terre dépend primordialement de

l’exactitude de sa conception et de la qualité de sa construction.

Deux modes de mise à la terre sont possibles dépendant de la forme des

électrodes. Le premier consiste en une ou plusieurs tige(s) enfoncée(s) au pied

d’un même poteau et relié de mise à la terre. Le second est réalisé au moyen

d’un fil de cuivre no 4 toronné fixé en spirale sous la base d’un poteau à l’aide de

crampons et relié au fil de mise à la terre.

La tige est une électrode de mise à la terre plus pratique et plus efficace

que la spirale. Cependant, là où l’enfoncement de tiges s’avère impossible, on se

sert de la spirale.

Il doit y avoir une électrode de M.A.L.T. à la terre à tout support de

transformateur de distribution, de disjoncteur, d’auto sectionneur, de

condensateur, de sectionneur tripolaire. La cuve ou la base de chacun de ces

appareils est reliée à l’électrode M.A.L.T. par le fil de M.A.L.T., qui est un fil de

cuivre de calibre no 4. En général, il y a aussi une électrode de M.A.L.T. à toute

fin de section de basse tension.

4.5.- Etude du réseau de distribution BT4.5.1.- Choix des conducteurs BT

En général, d’après les normes de l’EDH, un conducteur de basse

tension est choisi en fonction de la puissance nominale du transformateur auquel

il part. C’est dans cet ordre d’idée que nous allons d’abord identifier les

transformateurs qu’on aura à utiliser afin de pouvoir choisir les conducteurs qui

leur sont appropriés.

Le tableau suivant présente la longueur maximale admissible des

conducteurs suivant la capacité du transformateur dans les circuits basse tension

120/240 V-1 .

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE67

Page 68: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Capacité du transformateur ( kVA)

Longueur maximale (m)

15 225

25 300

37.5 300

50 235

N.B.- La longueur maximale est valide pour des charges également distribuées

de chaque côté du transformateur.

On fixe une régulation de 7%

La chute de tension est donnée par la formule : avec

l : longueur du conducteur ( m )

P : puissance fournie par le transformateur ( W )

: Conductivité du matériau utilisé pour construire le conducteur ( )

A : Section du conducteur ( mm2 )

Sur la base de 240 V la chute de tension est :

D’ après le tableau précédent, la longueur des conducteurs BT ne doit pas

excédée 300 m.

a. Transformateur de 75 kVAPour un transformateur de 75 kVA, on choisit l = 100m.

Calculons alors la section du conducteur approprié :

Cette section correspond à celle du conducteur # 4/0. Donc, le triplex choisi pour

le transformateur de 75 kVA est le #4/0.

b. Transformateur de 50 kVAPour ce type de transformateur, on choisit l = 150m D’où :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE68

Page 69: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

A = 107mm2 est la section du triplex #4/0 qu’on utilisera également pour le

transformateur de 50 kVA.

c. Transformateur de 37.5 kVAOn choisit l = 200m et le calcul de la section du conducteur à utiliser

donne : . Ce qui correspond

au conducteur #4/0

d. Transformateur de 25 kVAOn fixe la longueur du conducteur à l = 300m. Donc :

. Encore une

fois, ça correspond au conducteur #4/0.

4.5.2.- Choix des transformateursEn général, un transformateur n’est jamais utilisé à 100% de sa capacité.

En pratique, on assume que ces derniers ne fonctionnent qu’à environ 70% de

leur capacité maximale. Ainsi, pour choisir un transformateur qui soit capable

d’alimenter un certain groupe de clients, il faut alors tenir compte de ce facteur si

important. De ce fait, on ne peut pas choisir un transformateur dont la puissance

nominale correspond exactement à la puissance de pointe demandée par un

groupe de clients pour alimenter ce dernier.

Dans l’étude en cours, on va supposer que la charge est uniformément

répartie au niveau des différentes zones de la ville de Miragoâne. Ainsi, à partir

de la charge actuelle de cette dite ville, en utilisant le taux d’évolution annuel de

la charge, après dix (10) ans la charge de pointe de Miragoâne sera :

Pdix = Pactuelle (1+taux)10 => Pdix = 1274.757(1+0.042)10 => Pdix = 1923.55 kW

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE69

Page 70: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

De la même manière, la charge de pointe de la commune de Paillant

après dix (10) ans sera :

Pdix = 152.528 (1+0.042)10 => Pdix = 230.158 kWDonc, en considérant que la charge de la ville de Miragoâne est distribuée

dans les quatre (4) zones telles : Bel Air, Nouvelle cité, Route de Desruisseaux

et Route de l’hôpital et ceci, de façon uniforme, chacune de ces zones aura

comme charge :

La puissance apparente correspondant à cette puissance réelle est, en

considérant un facteur de puissance de 0.95 : . Comme

on l’a mentionné dans les lignes précédentes, un poste de distribution

(transformateur) ne peut être utilisé qu’à 70% de sa capacité. En conséquence,

la puissance nominale de 506.197 kVA représente environ 70% de la puissance

nominale totale de tous les transformateurs qu’on aura à utiliser pour chacune de

ces zones. Suivant cette ligne d’idée, la puissance totale des transformateurs

combinés à utiliser pour chacune de ces zones est :

Dans ce cas, on pourrait utiliser un seul type de transformateur pour

alimenter les différents types de clients. Par exemple, le transformateur de 75

kVA pourrait être utilisé pour alimenter tous les clients. Mais, en tenant compte

de la chute de tension et de la longueur des conducteurs utilisés pour ce

transformateur, on remarque qu’il n’est pas économique d’utiliser uniquement ce

type de transformateur. Néanmoins, suivant la zone d’étude, les transformateurs

de 75 et de 50 kVA peuvent être utilisés par le fait que les clients sont plus ou

moins rapprochés les uns des autres. Toutefois, il existe des cas particuliers où

ils ne le sont pas. D’où l’utilisation des transformateurs de 37.5 et 25 kVA. Le

tableau suivant donne la liste de transformateurs à utiliser sur le réseau

Miragoânais ainsi que les fusibles appropriés comme indiqué par les normes de

l’EDH (section PR-301).

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE70

Page 71: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Cependant, il faut noter que dans chacune des quatre (4) zones

identifiées au niveau de la ville de Miragoâne, il y a des zones auxiliaires qui,

malgré qu’elles ne sont pas éclairées, ont beaucoup de clients branchés. Alors

dans ces dernières, des transformateurs sont aussi placés dans le but

d’alimenter ces clients.

Transformateurs Quantité Fusibles

75 kVA 5 15T

50 kVA 4 10T

37.5 kVA 3 8T

25 2 6T

Cette même démarche appliquée à la commune de Paillant donne :

Puissance apparente des clients :

Puissance totale des transformateurs à utiliser :

Transformateurs Quantité Fusibles

75 kVA 3 15T

50 kVA 2 10T

25 kVA 1 6T

4.5.3.-Pertes de puissance active dans le réseau BTOn admet que la charge est uniformément repartie ; donc la perte est déterminée

par la formule :

P = (LR)I2

Où :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE71

Page 72: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

P : puissance active perdue,

L : longueur du tronçon,

I : courant traversant le conducteur.

4.5.4.- Calcul du courant dans les câblesPour un conducteur #4\0 Al, on a : 0.4 ohm/km à 75 degrés.

Les courants nominaux dans nos différents transformateurs sont :

Pour un transformateur de 75 KVA, I = I = 312.5 A.

Pour un transformateur de 50 KVA, I = I = 208.33 A.

Pour un transformateur de 37.5 KVA, I = I = 156.25 A.

Pour un transformateur de 25 KVA, I = I = 104.17 A.

4.5.5.- Calcul pertes de puissance active dans un transformateur de 75 KVA

On a la formule de perte (cf. Xuan Dai Do) :

P = (LR)I2

- Pour R = 0.4Ω/km à 75 degrés et L= 250m, on a :

P = (0.4× 0.25) × (312.5)2 P = 6.51 KW

4.5.6.- Choix Triplex et ΔU en % pour le réseau BT

Etant donné qu’on a déjà procédé au choix du triplex. On a ΔU =

-Pour un transfo de 75 KVA, on choisit L= 100 m donc :

ΔU = ΔU = 5.2%

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE72

Page 73: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

-Pour un transfo de 50KVA, on choisit L=150m,

ΔU = ΔU

= 5.2%

-Pour un transfo de 37.5 KVA, on choisit L=200m,

ΔU = ΔU = 5.2%

-Pour un transfo de 25 KVA, on choisit L=300m,

ΔU = ΔU =5.2%

4.5.7.- Calcul du courant dans le réseau BTDans le réseau BT, le courant se calcule par la formule :

P=UI cos

4.6.- Calcul des courants de court-circuit

Cette section se consacrera au calcul des courants de défaut. Ce qui va

nous permettre de dimensionner le disjoncteur assurant la protection des

équipements de la sous-station en cas de court-circuit. Ces défauts peuvent être

de trois (3) types :

Défaut monophasé

Défaut biphasé

Défaut triphasé

Dans la pratique, seuls les défauts monophasé et triphasé sont courants.

Le calcul va être fait en utilisant la méthode per unit sur une base de 100MVA et

2.4kV (Tension délivrée par les groupes).

SCHEMA UNIFILAIRE

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE73

T2

23kV 23kV

BL = 26km

Load

A

G3

G1

G2

Page 74: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Caractéristiques des éléments du schéma précédent

Eléments Puissance (MVA)

Tension (kV)

Xd = Xi

(p.u)X0

(p.u)Rd = Ri

(p.u)R0

(p.u)

G1, G2, G3 1.5 2.4 0.2 ---- ---- ----

T1 3 2.4 / 23 0.0622 0.0622 ---- ----

T2 2.5 2.4 / 23 0.06 0.06 ---- ----

Ligne 100 23 2.3429 10.0233 1.8072 2.6815

N.B.- Les impédances directe, inverse et homopolaire des lignes sont données

dans OVERCURRENT PROTECTION System - Faults de l’annexe A en ohm

par 1000 pieds, mais dans le tableau qui précède on les donne en p.u sous une

base de 100MVA et 23kV tout en considérant que la longueur de la ligne en

question est de vingt six (26) kilomètres.

Diagramme des impédances ‘‘directe – inverse’’

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE74ZG3 ZT2

1pu

Défaut B

ZL

ZT1

1puZG2

1puZG1

Page 75: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Diagramme des impédances ‘‘Homopolaire’’

Réduction autour du défaut Ba) Séquence directe – inverse b) Séquence homopolaire

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE75

Défaut B

ZLZT1 // ZT2

ZG3ZT2

Défaut B

ZL

ZT1

1pu

ZG2 // ZG1

ZL

1pu

Défaut B

Défaut B

Z0

Défaut B

Zd

ZT1

Défaut B

ZT2

ZL

Page 76: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Après calcul, on trouve : Zd = Zi = 1.807 + j7.957 (p.u) et Z0 = 2.6815 + j11.35 (p.u)

D’où les valeurs réelles : Zd = Zi = 9.559 + j42.0925 ohms Z0 = 14.1851 + j60.0415 ohms

Courant de court-circuit monophasé (Icc )

avec

.

D’où :

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE76

Icc1Φ = 271.14 A

Page 77: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Courant de court-circuit triphasé ( )

avec

D’où :

Ainsi, nous aurons besoin d’un (1) disjoncteur réenclencheur (recloser)

pouvant couper des courants de 307 A.

CHAPITRE VCALCULS MECANIQUES

5.1.- IntroductionPour effectuer le transport et la distribution de l’énergie électrique, il faut

avoir des poteaux juste pour supporter les conducteurs, les transformateurs, etc.

… Comme ces derniers vont exercer des efforts sur les poteaux, on devrait

choisir des poteaux pouvant supporter ces efforts. De ce fait, les calculs

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE77

Icc3Φ = 307.64 A

Page 78: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

mécaniques vont permettre de déterminer la hauteur et la classe des poteaux à

utiliser et de les haubaner quand ce sera nécessaire.

5.2.- PortéeOn choisit d’utiliser 40m comme portée maîtresse pour le réseau.

5.3.- Paramètre de poseCes paramètres sont : la flèche initiale en mm et la tension mécanique en

newtons auxquelles un conducteur neuf doit être tendu lors de la pose. Ces

valeurs varient avec la température ambiante au moment de l’installation et elles

sont données pour chaque conducteur dans les tableaux ‘‘flèches, tensions’’ à la

section CO-300 des normes de l’EDH.

Le relation existant entre la flèche et la tension mécanique est donnée

par : .

Avec f : flèche en m

P : poids du fil par unité de longueur (kg/m)

L : la portée en m

T : tension mécanique des fils en kg

Pour un conducteur ACSR 2/0, avec une portée de 40m et une

température ambiante d’environ 25˚C, d’après le livre des normes de l’EDH on

doit avoir une tension mécanique de 1090N et une flèche initiale de 240mm.

5.4.- Choix des poteauxLes poteaux en bois sont arrangés suivant des catégories appelées

classes. Ainsi parle-t-on des poteaux de classes 1-2-3-4-5-6-7. Toutefois, dans le

cadre de la rénovation, pour la construction moyenne tension on utilise les

classes : 2-3-4-5

Force de rupture et moment maximal des différentes classes de poteaux

FORCE DE RUPTURE (lbs) CLASSES

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE78

Page 79: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

3700 2

3000 3

2400 4

1900 5

Cette force de rupture est supposée appliquée à 24 pouces sous la tête

du poteau. A partir de cette force de rupture, on peut calculer le moment

résistant de différents types de poteaux c’est-à-dire le produit de cette force par

la distance du bras de levier.

En supposant que la force est appliquée perpendiculairement au poteau,

le moment se calcule par la formule : Force x bras de levier.

Exemple.- Un poteau de 35’-5 à 29’ hors sol. La force de rupture est alors

appliquée à 29’-2’=27’ par rapport au sol. Donc on a moment résistant de :

Voir le tableau suivant pour les autres cas.

Hauteur Poteau (ft)

Classe Profondeur (ft) Moment résistant (lb.ft)

35’ 2

3

4

5

6’

6’

6’

6’

40’ 2

3

6’

6’

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE79

Page 80: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

4

5

6’

6’

45’ 2

3

4

5

6’6’’

6’6’’

6’6’’

6’6’’

50’ 2

3

4

5

7’

7’

7’

7’

Dans l’étude en cours, deux (2) types de poteaux seront considérés :

o Poteau d’alignement

o Poteau d’angle

Pour les poteaux d’alignement, c’est la base du poteau qui est plus

importante. Tandis que pour les poteaux d’angle, c’est la tête du poteau qui est

plus importante.

5.4.1.- Détermination de la classe des poteaux d’alignement

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE80

Page 81: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Soit un montage en ligne droite ou avec un angle inférieur à 5 degrés

(MT301) supportant les charges:

-3 conducteurs 2/0

-1 neutre 2/0 (En cas ou éventuellement on en vient à l’ajouter)

-1 basse tension Triplex 4/0

- 1 câble Téléco 2’

-1 transformateur 75 KVA de masse 925 lbs (réf. normes EDH TR-102)

Les normes de l’EDH nous montrent qu’on peut choisir un poteau de

classe 5 pour un transformateur dont la masse n’excède pas 420kg ou 925 lbs.

Donc, pour le transformateur de 75kVA de masse 925lbs, on peut, à priori,

choisir cette classe de poteau dont la force de rupture est de 1900 lbs.

Calcul du moment résultant de la force du ventDans le calcul des moments, on doit en considérer cinq (5) types :

o Sur le poteau

o Sur le conducteur 2/0

o Sur le triplex 4/0

o Sur les câbles de Téléco

o Sur le transformateur

a) Moment résultant de la force du vent sur le poteau

en lb.ft où :

P : Pression du vent en lb/ft2 et P = 0.0025V2 pour les surfaces cylindriques

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE81

Page 82: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

V : Vitesse du vent en mi/h,

L : Longueur hors sol du poteau en ft

Ct : Circonférence à la tête du poteau en inch

Cg : Circonférence à la ligne du sol en inch

On utilise les valeurs du tableau suivant tiré du Southern Yellow Pine

(Douglas Fir)

Classe Circonférence à la tête

Circonférence au niveau du sol

35’ 40’ 45’

5 19 29 31 32,5

4 21 31,5 33,5 35

3 23 34 36 37,5

2 25 36,5 38,5 40,5

Avec P = 0.0025V2 et V = 60mi/h => P = 9lb/ft2. Donc, pour un poteau de classe

5 et de 35’ de hauteur enfoui à 6’ dans le sol, on a :

b) Moment résultant de la force du vent sur les conducteurs 2/0Dans ce cas, on a : où :

P : Pression du vent en lb/ft2

S : Surface projeté du conducteur en pi2

d : Diamètre du conducteur en pi

a1+a2 : Somme des portées adjacentes en pieds (a1 = a2 = 40m =

131.23ft).

F : Force du vent sur les conducteurs en lb

n : Nombre de conducteurs

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE82

Page 83: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Pour les conducteurs 2/0, on a : . Alors :

Les conducteurs étant placés à environ34’2’’ du sol, on a donc un moment :

c) Moment résultant de la force du vent sur le Triplex 4/0Pour le triplex 4/0, on a toujours avec

dTx = 32mm = 0.032m = 0.10498ft ≈0.105ft

D’où:

En général, le triplex est placé à environ 26’ au dessus du sol.

Ainsi, on a:

d) Moment résultant de la force du vent sur le câble de Téléco En général, les câbles de la Téléco ont un diamètre de 2’’ ou 0.167’.

Dans la pratique, on place les câbles de la Téléco à environ 19’ du sol. Alors, on

aura :

e) Moment résultant de la force du vent sur le Transformateur M = F× L

Avec F = P×S

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE83

Page 84: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

S étant la surface du transformateur soumise à la pression du vent,

P la pression du vent et L le bras de levier. De plus, les transformateurs sont

placés à environ 2’ de la tête du poteau.

Pour un transformateur de 75 kVA, qui est le plus gros transformateur utilisé, on

a (cf. Normes EDH TR-102):

l = 3.5’ et d = 1.833’

f) Moment total subi par le poteau

En conclusion, le poteau 40’-5 ayant un moment maximum de 60800

lb.ft peut être utilisé comme poteau d’alignement dans la présente étude.

5.4.2.- Détermination de la classe des poteaux d’angle

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE84

Page 85: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

La distance du point d’ancrage par rapport à la base du poteau est très

importante dans la détermination de la classe des poteaux.

Sur le poteau d’angle, les conducteurs trouvés sont :

3 conducteurs 2/0

1 Triplex 4/0

On va considérer plusieurs cas allant des poteaux d’angle de 6 degrés jusqu’à

90 degrés.

Comme on l’a fait pour la détermination de la classe des poteaux

d’alignement, on va déterminer la tension résultante s’exerçant sur le poteau.

La tension résultante s’exerçant sur le poteau est donné par :

où N est le nombre de conducteurs

et θ l’angle formé entre les conducteurs.

Les tensions mécaniques des conducteurs sont données par les

normes de l’EDH et elles dépendent de la portée.

a) Poteaux dont l’angle est compris entre 6 et 25 degrés

Pour un Poteau de 40 pieds, les 3 conducteurs se trouvent à environ

34.167 pieds.

= 268.77lbs

=200.11lbs

Moment résultant :

Un poteau de classe 5 peut répondre à ces exigences.

b) Poteaux dont l’angle est compris entre 26 et 60 degrés

On a :

= 620.89lbs

=462.287lbs

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE85

Page 86: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Moment résultant :

Encore une fois,un poteau de classe 5 pouvant subir un moment maximum de

60800lb.ft peut être utilisé.

c) Poteaux dont l’angle est compris entre 61 et 90 degrés

On a :

= 878.074lbs

=653.78lbs

Moment résultant :

Le poteau de classe 5 convient.

5.5.- Haubanage5.5.1.- Généralités

Une ligne de distribution doit être maintenue en équilibre statique,

c’est-à-dire pouvoir supporter sans fléchir ni courber toutes les forces

horizontales, verticales et latérales causées par l’équipement et l’appareillage de

distribution, aussi qu’aux pressions exercées par des vents latéraux de

0.432kPa* (9lb/pi2).

A certains points stratégiques, l’emploi de supports tels que les

ancres et haubans sont nécessaires afin d’assurer cet équilibre. L’efficacité du

haubanage réside dans le choix approprié des haubans, tiges, et ancres en

fonction de leur emplacement et du type se sol.

5.5.2.- AncrageL’ancre fait appel à la résistance mécanique de plusieurs éléments

dont celle du sol où elle est enfouie. Il est difficile de reconstituer la résistance

originale d’un sol, même si le remplissage et le compactage sont exécutés avec

soin.

a) Ancre à cône

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE86

Page 87: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

L’ancre à cône est celle qui est généralement utilisée. Le béton étant

lourd et cassant, on devra prendre les mesures nécessaires pour éviter tout

dommage lors du transport ou de l’installation. (Voir HA-101)

b) Ancre à bûche

L’ancre à bûche peut être utilisée. Celle-ci est fabriquée à partir d’un poteau de

bois. (Voir HA-102)

c) Ancre à roc

Ce type d’ancre est utilisé lorsque le sol renferme un massif imposant

de roc non friable et dont l’excavation s’avèrerait impraticable.

Les tableaux et abaques fournissent les détails concernant le choix

des éléments de haubanage, en fonction de la force à équilibrer et des classes

de sol. Il ne faut pas oublier que le système d’ancrage ne peut être plus fort que

son élément le plus faible.

Les différentes forces énumérées précédemment ont pour effet de

faire fléchir un poteau d’angle. Pour contrecarrer cet effet, on utilise des

haubans. Toutefois, l’utilisation de ces derniers ne se fait pas n’importe

comment ; il faut de soigneux calculs. Sur ce, on se donne pour tâche de calculer

les haubans et la distance minimale d’ancrage qu’il faut dans le cas des

différents poteaux d’angle. Les calculs seront faits pour les conditions

défavorables : 15ºC et 0.432 kPA.

5.5.3.- Choix du haubanLe type de hauban à utiliser dépend de la force à contrebalancer.

Cette force est donnée par la formule :

Où :

FH : Force à contrebalancer (hauban)

Fp : Force du conducteur primaire

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE87

Page 88: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Fs : Force du conducteur secondaire

N : Nombre de conducteurs primaires

Les valeurs de Fs et Fp sont données par le tableau HA-110 du livre

des normes de l’EDH pour les différents angles et conducteurs.

La valeur du facteur K dépend de la portée et est donnée par le

tableau suivant :

K Portée en mètre

0.5 30-35-40-45

1 50-55-60-65-70

5.5.4.- Choix de la tige d’ancrage La tige d’ancrage est choisie pour résister à l’effort des haubans et doit par

le fait même résister à l’effort requis en (kN) pour un L /H spécifique. Il est parfois

nécessaire d’utiliser deux (2) tiges et deux (2) ancres séparées pour respecter

l’effort requis maximum, ou lorsque la qualité du sol exige l’emploi de deux (2)

ancres séparées.

Lorsqu’une tige doit supporter un hauban de communication (usage en

commun), on doit calculer séparément l’effort requis en (kN) de ce hauban pour

sa hauteur d’attache spécifique (L/H). Cette valeur doit être additionnée à l’effort

requis pour les haubans d’EDH. Si l’effort requis total dépasse la capacité de la

tige, le hauban devra être installé sur sa propre tige.

5.5.5.- Choix de l’ancre La surface de l’ancre, l’effort requis en (kN) et la classe de sol sont les trois

(3) facteurs déterminants pour le choix de l’ancre. L’abaque HA-111 permet de

sélectionner l’ancre appropriée pour les différentes classes de sol. Lorsque la

résistance du sol est insuffisante, il est parfois requis d’utiliser deux (2) tiges et

deux (2) ancres séparées. Pour les sols de classe 3, 4, 5, 6 et 7 l’ancre à cône

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE88

Page 89: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

de section 0.160m2 ou l’ancre à bûche de calibre ( ) peur être

utilisée. Pour raison d’encombrement, on choisit d’utiliser l’ancre à cône.

5.5.6.- Distance minimale d’ancrage Pour trouver cette distance, il faut déterminer le rapport L/H donné

par l’abaque du livre des normes de l’EDH (section HA-111).Ce rapport dépend

de la force à contrebalancer et de l’hauban choisi.

H

L

a) Poteau dans un angle compris entre 6 et 30 degrés

i. Choix de l’hauban

Fp=2030 N et Fs=5100 N

D’où :

D’après l’abaque HA-111 des normes de l’EDH, l’hauban correspondant à cette

force est de calibre 5/16’’. On doit alors choisir une tige de ¾’’ à deux (2) cosses.

ii. Calcul de la distance minimale d’ancrage

Avec la force FH = 8640N et

l’hauban choisi, l’abaque HA-111 nous permet de choisir le rapport L /H minimal

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE89

Page 90: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

égal à : 2/5. Etant donné que ce rapport se trouve dans la zone critique, on prend

L/H = ½.

Or H = 40’-6’-2’ = 32’ => L = 32/2 = 16’

b) Poteau dans un angle compris entre 31 et 60 degrés

i. Choix de l’hauban

Fp=3100 et Fs=8320 N

D’où :

On choisit l’hauban de calibre 5/16’’ et la tige de ¾’’ à deux (2) cosses.

ii. Calcul de la distance minimale d’ancrage

Avec FH = 13460N et un hauban de calibre 5/16’’, on a d’après l’abaque HA-

111 : L/H = 3/5.

D’où :

c) Poteau dans un angle compris entre 61 et 90 degrés

i. Choix de l’hauban

Fp=4010N et Fs=11060 N

D’où :

Dans ce cas, on pourrait choisir l’hauban de calibre 5/16’’. Néanmoins, le

rapport L/H qui correspondrait à ce hauban pour la force trouvée serait de ¾.

Pour éviter d’avoir une trop longue distance, c’est-à-dire pour éviter d’occuper

trop d’espace, on peut choisir un hauban de calibre 7/16’’ ou deux (2) haubans

de calibre 5/16’’ et la tige de ¾’’ à deux (2) cosses est toujours de mise.

ii. Calcul de la distance minimale d’ancrage

Pour FH = 17560N et un hauban de calibre 7/16’’, on a toujours d’après l’abaque

HA-111 : L/H = 1/2.

D’où :

5.5.7.- Rapport L/H

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE90

Page 91: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Le rapport L/H est un facteur déterminant pour le choix et l’efficacité des

éléments du système d’ancrage. Il est défini comme étant le rapport de la

longueur (L) comprise entre le poteau et la tige d’ancrage, sur la hauteur (H) du

poteau.

5.5.8.- Haubanage spécial Lorsque le hauban ne peut être installé suivant les critères généraux, on

peut avoir recours à des montages spéciaux.

a) Haubanage vertical

ATTACHE

HAUBAN

POTEAU

CHAUSSEE

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE91

Page 92: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Ce type de hauban est utilisé lorsque l’ancrage sur terrain privé ou public

est prohibé et lorsqu’il existe un passage pour piéton à proximité du poteau. Ce

type de support doit toutefois être utilisé pour contrebalancer de faibles forces.

b) Hauban aérien

Poteau à haubanerPoteau auxiliaire

Hauban aérien

Chaussée

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE92

Page 93: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Ce type de hauban peut être utilisé dans les deux (2) cas suivants :

i. Entre les deux (2) poteaux de la ligne, lorsque la portée est limitée

par deux (2) fins de course secondaires. Dans ce cas, le fil de

hauban sert à équilibrer les forces résultantes des deux réseaux

basse tension et doit pouvoir supporter la plus grande de ces deux

(2) forces.

ii. Lorsqu’il est impossible d’ancre à proximité du poteau, on utilise

un hauban aérien. Celui-ci doit contenir la force à contrebalancer

et la transférer à un poteau supplémentaire situé dans l’axe (180˚)

de la force.

CHAPITRE VIEVALUATION DU COUT DU PROJET

6.1.- IntroductionL’un des facteurs les plus importants dans la réalisation d’un projet est de

pouvoir évaluer le coût d’investissement de ce dit projet. Ainsi, il devient plus que

nécessaire dans l’étude en cours d’évaluer le projet sur le plan financier. Pour ce

faire, il suffit d’inventorier les différents équipements et matériels qui seront

utilisés dans la construction du réseau de basse tension (Type et quantité).

6.2.- Inventaire de matériels à utiliser avec leur prix.

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE93

Page 94: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

Dans le tableau qui suit, nous allons dresser la liste des matériels à utiliser

dans le réseau. Ils sont tirés dans le livre des normes de l’EDH.

NO D’ITEM

Description Quantité Prix unitaire ($US)

Prix total ($US)

A04 Ancre à Cône en béton, 250 po.

Carrés

18 8.45 152.1

A07-A Attache Câble 3/16’’ 31/2’’ 2/0 @

4/0

20 0.95 19

A08-A Attache préformée 5/16’’ 36 4.57 164.52

B01-A Boîtier isolant C5 11/4’’ #2 6 0.35 2.1

B02-D Boulon d’espacement, 5/8’’ 14’’ 52 3.74 194.48

B03-B Boulon d’isolateur bobine 5/8’’

16’’

156 6.38 995.28

B05-D Boulon mécanique 1/2’’ 6’’ 5 1.98 9.9

NO D’ITEM

Description Quantité Prix unitaire ($US)

Prix total ($US)

B05-H Boulon mécanique 5/8’’ 10’’ 15 2.64 39.6

B05-I Boulon mécanique 5/8’’ 12’’ 51 3.52 179.52

B05-J Boulon mécanique 5/8’’ 14’’ 20 3.96 79.2

B05-O Boulon mécanique 3/4’’ 14’’ 6 4.20 25.2

B10-B Connect. Boul. fendu 7/16’’,

cond. 2 @2/0

95 6.60 627

C04-B Câble Triplex #4/0 Al 5300 3.08 16324

C09-B Cheville d’acier, tige longue ¾’’

6’’

52 13.41 697.32

C15-A Conducteur nu #2 ACSR 1370 0.37 506.9

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE94

Page 95: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

C17-B Connecteur compressible WR

159

20 1.32 26.4

C17-C Connecteur compressible WR

189

27 1.76 47.52

C17-O Connecteur compressible WR

369

6 3.00 18

C17-P Connecteur compressible WR

389

13 3.02 39.26

C18-B Connecteur pour tige de MALT

Cu

18 6.93 124.74

C24-A Coupe Circuit à élément fusible 51 6.70 341.7

C25-A Crampon en acier galvanisé 2’’

11/16’’

102 0.50 51

C26-A Cosse compressible pour cond.

#2/0 Al 2tr.

110 6.93 762.3

NO D’ITEM

Description Quantité Prix unitaire ($US)

Prix total ($US)

E01-A Ecrous à œil pour boulon, 5/8’’ 45 10.56 475.2

E03-A Elément fusible 6T 7 3.52 24.64

E03-B Elément fusible 8T 9 3.74 33.66

E03-C Elément fusible 10T 15 3.96 59.4

E03-D Elément fusible 15T 20 4.35 87

E04-B Entretoise p-à-f 7’ 102 56.65 5778.3

F01 Ferrure à crochet pour hauban 18 12.76 229.68

F02-A Fil de hauban 5/16’’ 873 0.44 384.12

F03-A Fil d’attache #4 Al 36 0.4 14.4

G02 Garde de hauban en 18 14.85 267.3

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE95

Page 96: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

polyéthylène 7’

I02 Isolateur bobine cl. 53-2 200 3.52 704

I03-B Isolateur à cheville, cl. 55-3 102 7.05 719.1

I04 Isolateur de suspension cl. 52-1 115 15.40 1771

M04-A Manille secondaire pour isolateur

31/8’’

105 7.59 796.95

M10 Moulure pour fil de MALT

polyéth. ½’’ 96’’

255 2.42 617.1

P02-A Parafoudre 9kV de distribution 51 66.00 3366

P05-A Pince d’amarrage #4 @ 2/0 Al 51 36.50 1861.1

P10-I Poteau de bois 40’ classe 5 26 380.00 9880

R05-A Rondelle cintrée 3’’ 3’’ pour

boulon 5/8’’

45 1.76 79.2

R05-B Rondelle cintrée 3’’ 3’’ pour

boulon ¾ ’’

6 1.76 10.56

NO D’ITEM

Description Quantité Prix unitaire ($US)

Prix total ($US)

R06-A Rondelle équarrie 2’’ 2’’ pour

boulon ½ ’’

18 0.55 9.9

R06-B Rondelle équarrie 2’’ 2’’ pour

boulon 5/8 ’’

102 1.25 127.5

R07-B Rondelle frein à ressort ½ ’’ 18 0.22 3.96

R07-C Rondelle frein à ressort 5/8’’ 140 0.33 46.2

R07-D Rondelle frein à ressort ¾’’ 52 0.55 28.6

S05 Support à double unité 51 16.17 824.67

S06 Support au poteau pour coupe

circuit

51 11.55 589.05

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE96

Page 97: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

T02-A Tige d’ancrage 5/8’’ 18 22.50 405

T03-B Tige de mise à la terre 8’ 3/4’’ 51 26.40 1346.4

T04-B Tire-fond 41/2’’ 1/2 ‘‘ 18 1.40 25.2

T05-A Traverse en bois 5’7’’ 10 60.50 605

T09-B Transfo 25 kVA 2b 7 2585.00 18095

T09-C Transfo 37.5 kVA 2b 9 3124 28116

T09-D Transfo 50 kVA 2b 15 3612 54180

T09-E Transfo 75 kVA 2b 20 4485 89700

---------- TOTAL ----- ----- 242678.23

Comme l’indique le tableau précédent, le coût total des matériels à utiliser

monte à US $ 242678.23. La main d’œuvre est évaluée à 40% du coût total des

matériels et les imprévus à 10%. Le tableau suivant donne le coût définitif.

Coût total des matériels 242678.23

Main d’œuvre 97071.292

Imprévus 24267.823

Coût définitif 364017.345

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE97

Page 98: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

CONCLUSION

Il ressort de notre étude que l’électricité est à la base du développement d’un

pays. Donc, si l’on veut le développement d’Haïti, il faut commencer par le

système électrique. Conscient de cela, le gouvernement haïtien se donne pour

objectif d’entreprendre la rénovation ou l’électrification des chefs-lieux de

département. C’est ainsi qu’il nous a été donné pour projet de fin d’étude

l’électrification de la ville de Miragoâne (chef-lieu du département des Nippes).

Le travail n’a pas été facile. Il fallait vaincre certains obstacle tels que : nos

différences de caractère, la rareté de documents, l’insuffisance d’information etc.

Sans nous vanter, nous estimons que c’est un travail soigné. La preuve est que

tous les points développés ont été l’objet de mûres recherches. La bibliographie

en dira davantage. De plus, c’était une expérience importante pour ne pas dire

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE98

Page 99: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

indispensable pour notre formation d’ingénieur car nous avons appris l’art de

travailler en équipe et avons comblé beaucoup de lacunes nuisibles pour le

marché du travail. Par exemple, nous n’avons pas eu de cours sur la prévision,

non plus sur les calculs mécaniques. Grâce à ce projet, nous avons maintenant

assez de connaissances pour effectuer des travaux axés sur ces deux points. A

présent, notre souhait est que ce projet soit effectif, et ceci pour le

développement de Miragoâne et de Haïti chérie.

BIBLIOGRAPHIE

Installations électriques (Emile BONNAFOUS), 5e éditions

Transport et distribution d’énergie électrique (Xuan Daï Do)

Electrotechnique (Théodore Wildi)

Wiring Manual, automation and Distribution (Klöckner MOELLER)

Cours d’électrification (Lionel VIL)

Calendrier 2001(IHSI)

Livre des normes de l’EDH

Calculs mécaniques (Jules André JOSEPH)

Catalogue pour lampes (General electric)

Stratégie de développement du sous-secteur de l’électricité en Haïti (2006

à 2011)

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE99

Page 100: CHAPITRE 0 - JobPaw · Web view2.2.5.- Calcul de l’illumination d’une rue I.- Hauteur des poteaux Les poteaux utilisés sont dans les gammes 20 à 40 pieds (6 à 12 m) ou 20 à

ELECTRIFICATION DE LA VILLE DE MIRAGOANEFDS // Electromécanique // Promotion : 2002-2007

SITES INTERNET CONSULTES

www.alliance-haiti.com

www.alterpresse.org

www.edf.com

www.firmenordsud.com

www.ge.com

www.haiti-reference.com

Nixon ALEXANDRE, Jonas HERVIL, Nathanael JEAN PHILIPPE, Stevenson PIERRE100