CFMSG – 04-10-22

67
CONCEPTION DES CHAUSSÉES: Approache mécanique, caractérisation des matériaux et leur évaluation dans les plates-formes routières António Gomes Correia Université de Minho, Portugal Président TC3 - SIMSG CFMSG – 04-10-20 A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Transcript of CFMSG – 04-10-22

Page 1: CFMSG – 04-10-22

CONCEPTION DES CHAUSSÉES: Approache mécanique, caractérisationdes matériaux et leur évaluation dans

les plates-formes routières

António Gomes CorreiaUniversité de Minho, Portugal

Président TC3 - SIMSG

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 2: CFMSG – 04-10-22

INTRODUCTIONINTRODUCTIONPAVEMENT MODELLING AND DESIGNPAVEMENT MODELLING AND DESIGN

NON LINEAR BEHAVIOUR OF SOILS AND UGMNON LINEAR BEHAVIOUR OF SOILS AND UGMQUALITY ASSESSMENT QUALITY ASSESSMENT -- LABORATORYLABORATORY

Simple tests Simple tests Functional testsFunctional tests

Mechanical behaviour Mechanical behaviour -- Cyclic Cyclic triaxialtriaxial teststests

QUALITY ASSESSMENT QUALITY ASSESSMENT -- FIELDFIELDRoutine analysisRoutine analysisAdvanced analysisAdvanced analysis

FINAL REMARKSFINAL REMARKS

PRESENTATION

CFMSG – 04-10-20CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 3: CFMSG – 04-10-22

EMPIRICAL PAVEMENT DESIGN

MECHANISTIC PAVEMENT DESIGN

MOVE FROM EMPIRICAL SPECIFICATIONS – INDEX PROPERTIESTO

PERFORMANCE-BASED SPECIFICATIONSMECHANICAL PROPERTIES

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 4: CFMSG – 04-10-22

PAVEMENT PAVEMENT MODELLING & DESIGNMODELLING & DESIGN

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 5: CFMSG – 04-10-22

PAVEMENT MODELLING – 2D / 3D

CFMSG – 04-10-20CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 6: CFMSG – 04-10-22

1. Multi linear elastic systems calculations - linear elastic models - most widely used for pavement design and back analysis calculations. Material properties: Modulus (E) and Poisson ratio (ν).

2. - FEM calculations (2D / 3D) Elastic non-linear models -Available in some codes after Science-EC project (1993). Material properties: Elastic and elastic non-linear stress-strain relationships (K(p,q); G(p,q)) – variants of Boyce model.

Visco-elastic and elastic non-linear stress-strain models -Implemented in FEM codes during COURAGE (1999). Material properties: Elastic non-linear stress-strain; temperature and strain rate dependent.

3. FEM calculations (2D / 3D) - Visco-elastic and elastoplastic models - Implemented in FEM codes and still in development to predict permanent deformations. Material properties: General stress-strain.

MECHANISTIC PAVEMENT DESIGNMECHANISTIC PAVEMENT DESIGN

Page 7: CFMSG – 04-10-22

PAVEMENT DESIGN PROCESS

Modèlesdes

matériaux

Mod. réponse(mod. structurel)

Mod. calageCritère de dim.

Routine

Niveauxdimensionnement

RechercheAvancé

Dimensionnement

Besoin d’une coopération entre le responsable de la modélisation et leresponsable des investigations in-situ et en laboratoire

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 8: CFMSG – 04-10-22

QUALITY ASSESSMENTQUALITY ASSESSMENT

LABORATORYLABORATORY

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 9: CFMSG – 04-10-22

QUALITY ASSESSMENTQUALITY ASSESSMENTLaboratory testsLaboratory tests

SIMPLE TESTS: to general material assessment (petrography, flakiness, plasticity) and fragmentation assessment (LA, MBg, DSC, MDE, Gyratory) - Uses a limited portion of material’s parent grading curve - Not able to predict the overall behaviour of the material.

FUNCTIONAL TESTS:

Construction level - to assess the bearing capacity of UGM to carry loading applied (shear strength test) and spreading the loading (RLT- stifness).

Long term behavior - to assess stifness - capacity of spreading the loading (RTL stifness) and resistance to permanent deformation (RLT - permanent deformation )

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 10: CFMSG – 04-10-22

SELECTION OF MOST APROPRIATED MATERIALSELECTION OF MOST APROPRIATED MATERIAL

based in simple tests based in simple tests (SOIL AND UGM)(SOIL AND UGM)

for most part experienced basedfor most part experienced based

Similar to AC Similar to AC –– volumetric design volumetric design

(Marshall method)(Marshall method)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 11: CFMSG – 04-10-22

A RATIONAL APPROACH TO LABORATORY STUDY OF

MECHANICAL BEHAVIOUR

Strength & Stiffness

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 12: CFMSG – 04-10-22

NON LINEAR BEHAVIOUR OFNON LINEAR BEHAVIOUR OFSOILS AND UGMSOILS AND UGM

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 13: CFMSG – 04-10-22

NON LINEAR ENVELOPE OF MAXIMUM NON LINEAR ENVELOPE OF MAXIMUM SHEARING STRENGTH SHEARING STRENGTH -- UGM

Normal effective stress, σ’

Shea

r st

ress

, τ’

Peak strength

Strength at critical state

φ´p

φ´cv

UGM

NON LINEARITY INCREASES WITH INCREASING RELATIVE DENSITY AND GRAIN CRUSHABILITY

Page 14: CFMSG – 04-10-22

NON LINEAR BEHAVIOURDEFINITIONS OF MODULUS

σ

ε

E0 Esec Etg

lg ε

E

E0

Esec

Etg

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 15: CFMSG – 04-10-22

CYCLIC TRIAXIAL TESTPERFORMANCE TEST

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 16: CFMSG – 04-10-22

EUROPEAN STUDY - COURAGE

Grading curves

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100Sieve size [mm]

Pas

sing

[%

]

Material A, granite, IST Portugal Material B, gneiss, LCPC France Material C, limestone, ZAG Slovenia

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 17: CFMSG – 04-10-22

CYCLIC TRIAXIAL TESTS OF UGM(CEN prENV 00227413 - 1997)

VARIABLE CONFINING PRESSURE CEN - method A

p (kPa)

q (kPa)

0

100

200

300

400

500

600

0 100 200 300 400

A1 A2 A3 A4B1

B2

B3

B4

C1

C2

C3

C4

D1

D2

D3

D4

E1

E2

E3

E4

F1

F2

CYCLIC STRESS PATHS

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 18: CFMSG – 04-10-22

CYCLIC TRIAXIAL TESTS OF UGM(CEN prENV 00227413 - 1997)

CONSTANT CONFINING PRESSURECEN - method B

0 50 100 150 200 250 300

p (kPa)0

50

100

150

200

250

300q (kPa)

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC STRESS PATHS

Page 19: CFMSG – 04-10-22

CYCLIC TRIAXIAL TEST (ECP)Local strain measurements

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 20: CFMSG – 04-10-22

CYCLIC TRIAXIAL TEST (ECP)Results of strain measurements

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 21: CFMSG – 04-10-22

CYCLIC TRIAXIAL TEST (LPC)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 22: CFMSG – 04-10-22

CYCLIC TRIAXIAL TEST (UMinho)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 23: CFMSG – 04-10-22

SOIL / SOIL+ROCK / ROCKSOIL / SOIL+ROCK / ROCK

Page 24: CFMSG – 04-10-22

TYPICAL MOISTURE & DENSITYCONDITIONS FOR UGM - BASE

WATER CONTENT w DRYw OPM - 4 w OPM - 2 w OPM - 1 DENSITY

1 Specimen 100 % ρd OPM

1 Specimen 2 Specimens 1 Specimen 97 % ρd OPM

1 Specimen 95 % ρd OPM

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 25: CFMSG – 04-10-22

STABILISATION AFTER A NUMBER OF CYCLES ? QUASI-ELASTIC BEHAVIOUR ?

0 5000 10000 15000 20000

Nº (cycles)0

50

100

150

200[ε1

p - ε1 p

(100)] (10-4)

0 5000 10000 15000 20000

Nº (cycles)-200

-150

-100

-50

0[ε3

p - ε3 p

(100)] (10-4)

γd = 97 %, w = 3.7 %

γd = 97.2 %, w = 3.9 %

γd = 97 %, w = 4.1 %

γd = 96.9 %, w = 3.2 %

γd = 96.8 %, w = 2.1 %

MFC : 5 % F

TYPICAL RESULTS OFCYCLIC TRIAXIAL TEST – Plastic strains

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 26: CFMSG – 04-10-22

TYPICAL RESULTS OFCYCLIC TRIAXIAL TEST – Plastic strains

5% Fines0.0

50.0

100.0

150.0

200.0

250.00 5000 10000 15000 20000 25000

Number of cycles

Perm

anen

t str

ains

* (x1

0-4)

95.0%; 3.82% 95.0%; 3.54%97.0%; 3.65% 97.2%; 3.87%97.0%; 4.1% 100.0; 3.70%100.0%; 3.74%

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 27: CFMSG – 04-10-22

Courage test results

PERMANENT STRAIN PARAMETER, A1 RESULTS

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

0 10 20 30 40 50 60 70 80 90 100

RELATIVE MOISTURE CONTENT (% of OMC)

PER

MA

NEN

T ST

RA

IN P

AR

AM

ETER

A1 x

10-4

(m/m

)

Gneiss, Control GradingGranite, Control GradingLimestone, Control GradingUK RCC&A Supply GradingA - greywackeB - carboniferous limestoneC - argillaceous limestoneD - ryoliteE - crushed limestoneF - crushed granodioriteG - basalt/dolerite

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 28: CFMSG – 04-10-22

Wheel track – University of Oulu – Fil.

AC 30 mm

UNBOUND GRANULAR MATERIAL 300 mm (test material)

FILTER SAND 270 mm

180 mm

330 mm

1

2

3

Vertical deflection potentiometers

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 29: CFMSG – 04-10-22

Courage test results

PERMANENT STRAIN RATE RESULTS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100RELATIVE MOISTURE CONTENT (% of OMC)

PER

MA

NEN

T ST

RA

IN R

ATE

PA

RA

MET

ERd ε

p/dN

x 1

0-5 (%

/cyc

le)

Gneiss, Control GradingGranite, Control GradingLimestone, Control GradingUK RCC&A Supply GradingGneiss, WT testGranite, WT testLimestone, WT test

measured at 3000 cycles

FAILED

HIGH STRAINSUSCEPTIBILITY

LOW STRAIN SUSCEPTIBILITY

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 30: CFMSG – 04-10-22

TYPICAL RESULTS OFCYCLIC TRIAXIAL TEST- VCP

Un.-Rel. Strains (Anisotropic Boyce model; Hornych et al., 2000)

( )

−γ+

−+

+γ=ε − *p

*qG*p

*qG

nKp

p

aaana

n*

v 312

181

32

2

1( )

+γ+

−γ

−+

−γ=ε − *p

*qGa*p

*qGa

nKp

p

ana

n*

q 6121

181

31

32

2

1

-10

0

10

20

30

40

50

0 100 200 300 400

P (kPa)

v

Anisotropic Boyce model

Measurements

-5

0

5

10

15

20

0 100 200 300 400

P (kPa)q

Anisotropic Boyce model

Measurements

Shear strainsVolumetric strains NON-LINEAR BEHAVIOUR

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 31: CFMSG – 04-10-22

TYPICAL RESULTS OFCYCLIC TRIAXIAL TEST- CCP

Un.-Rel. Strains

CFMSG – 04-10-22

ε = 0,001%

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 32: CFMSG – 04-10-22

Variation du module Esec en fonction de σv et σv’

UGM – STIFFNESS RANKINGTOTAL STRESSES – EFFECTIVE STRESSES

(ECP, Coronado, 2005)

y = 97.12x0.31

y = 228.45x0.116

y = 61.34x0.41

100

1000

10 100 1000Contrainte verticale σv (kPa)

Mod

ule

séca

nt E

sec (

MPa

)

100

1000

10

Mod

ule

séca

nt E

sec (

MPa

)

Normalisé pour e=0.33

y = 36.05x0.50

y = 46.77x0.44

y = 101.23x0.26

100 1000Contrainte verticale effective σ'v (kPa)

Normalisé pour e=0.33

Soacha 30% fins d10=20µm

E plus grand en contrainte totales

Servita 20% fins, d10=45µm Vista H. 10% fins, d10=80µm

Soacha 30% fins d10=20µm

E plus petit en contrainte effectives

Servita 20% fins, d10=45µmVista H. 10% fins, d10=80µm

Page 33: CFMSG – 04-10-22

TYPICAL RESULTS OFCOMPRESSION TRIAXIAL TEST- CCP

PECULIAR BEHAVIOUR OF COMPACTED UGM

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 34: CFMSG – 04-10-22

EMPIRICAL versus MECHANICAL PARAMETERSQUALITY ASSESSMENT

DIFFERENT RANKING !Processed materials behave in a different way to natural materials - Los Angelos and Micro-Deval.

They generally give better mechanical performance in the field than would be expect from the results of such tests.

Therefore performance-related tests (CLTx)

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 35: CFMSG – 04-10-22

QUALITY ASSESSMENTQUALITY ASSESSMENT

FIELDFIELD

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 36: CFMSG – 04-10-22

SIMPLE TESTS: to density and moisture content material assessment

FUNCTIONAL TESTS:

Construction level - to assess the bearing capacity of UGM to carry loading applied and the capacity of spreading the loading (LPT, FWD, SASW, …).

Long term behavior - to assess stifness - capacity of spreading the loading (LPT, FWD, … -representative state conditions?) and resistance to permanent deformation (LPT -permanent deformation).

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

UGM UGM –– QUALITY ASSESSMENT BYQUALITY ASSESSMENT BYININ--SITU TESTSSITU TESTS

Page 37: CFMSG – 04-10-22

NEED TO MOVE FROM EMPIRICALTO MECHANISTIC-BASED SPECIFICATIONS

MECHANISTIC-BASED SPECIFICATIONS(focus on the mechanical properties)

FACILITATE QUANTITATIVE EVALUATIONS(necessary to alternative construction practices

and materials – reclaimed materials)

Performance-based specificationis required to

control the long-term functional and structural performance

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 38: CFMSG – 04-10-22

MECHANICAL-BASED IN SITU TESTS,AIPCR, C12, 1995

PLATE BEARING TESTPLATE BEARING TESTCALIFORNIA BEARING RATIO TEST CALIFORNIA BEARING RATIO TEST -- CBRCBRDYNAPLAQUEDYNAPLAQUEFALLING WEIGHT DEFLECTOMETER FALLING WEIGHT DEFLECTOMETER –– FWDFWDDEFLECTOGRAPHDEFLECTOGRAPHCLEGG IMPACT HAMMERCLEGG IMPACT HAMMERMEXECONE PENETOMETERMEXECONE PENETOMETERDYNAMIC CONE PENETROMETERDYNAMIC CONE PENETROMETERCOMPACTION METERSCOMPACTION METERSDYNAMIC PLATE BEARING TESTSDYNAMIC PLATE BEARING TESTSVARIABLE IMPACT TESTERVARIABLE IMPACT TESTER

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 39: CFMSG – 04-10-22

STIFFNESS - TARGET VALUES(Chaddock & Brown, 1995); Zaghloul, 1997; Flemming, 2000; Nunn et al., 1997; GTR, 1997)

STIFFNESSSTIFFNESS50 50 MPaMPa –– Formation Formation (GTR, 1997)(GTR, 1997)

50 to 65 50 to 65 MPaMPa –– Formation Formation (Flemming et al., 1998)(Flemming et al., 1998)

100 100 MPaMPa –– Foundation Foundation (Flemming et al., 1998)(Flemming et al., 1998)

80 80 MPaMPa –– Formation Formation -- FWD FWD –– stress=200 stress=200 kPakPa; ; D=450 mm D=450 mm ((Chaddock & Brown, 1995)

45 MPa – Ev2 – DIN - Foundation120 MPa – Ev2 – DIN – Sub-base (light traffic)150 MPa – Ev2 – DIN – Sub-base (heavy traffic)

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 40: CFMSG – 04-10-22

CONSTRUCTION TECHNOLOGIESCONSTRUCTION TECHNOLOGIES

SoilSoil and rock mixturesand rock mixtures•• RockfillRockfill (experience(experience fromfrom damdam construction)construction)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 41: CFMSG – 04-10-22

ROCKFILL COMPACTIONROCKFILL COMPACTIONPunctual control: density+water contentPunctual control: density+water content

Page 42: CFMSG – 04-10-22

SOIL COMPACTIONSOIL COMPACTIONPunctual control: density+water contentPunctual control: density+water content

Page 43: CFMSG – 04-10-22

REQUIREMENTS FOR HOMOGENEITYREQUIREMENTS FOR HOMOGENEITY

Brandl (1977)

151520203030ModuliModuli (Ev1, Ev2)(Ev1, Ev2)

334455Dry densityDry density

BaseBaseSubSub--basebaseSubgradeSubgradeCoefficient of variation v (%)Coefficient of variation v (%)

ParametersParameters

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 44: CFMSG – 04-10-22

ROUTINE ANALYSISROUTINE ANALYSIS

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 45: CFMSG – 04-10-22

MODULUS FROM MODULUS FROM FIELD TESTSFIELD TESTS

(Jamiolkowski et al., 1988, 2003)(Jamiolkowski et al., 1988, 2003)

G0, E0 (ε < εl) Gsec, Esec (εsec > εl)

DEPENDANT ON:DEPENDANT ON:Strain levelStrain levelStress historyStress historyRelative densityRelative densityAmbient stressAmbient stressCompressibilityCompressibilityAging & FabricAging & FabricStrain rate

INDEPENDANT FROM:INDEPENDANT FROM:Strain levelStrain levelStress historyStress history

DEPENDANT ON:DEPENDANT ON:Relative densityRelative densityAmbient stressAmbient stressCompressibilityCompressibilityAging & Fabric

Strain rateAging & Fabric

CORRELATIONS WITH G0, E0 are more reliable than with Gsec, Esec

nna peFpSG ′⋅⋅⋅= − )(1

0

Page 46: CFMSG – 04-10-22

Punctual control: LPT (ASTM, DIN, LCPC)Punctual control: LPT (ASTM, DIN, LCPC)

0

50

100

150

200

250

300

0 1 2 3 4 5 6Déplacement moyen (mm)

Pres

sion

app

liqué

e (k

Pa)

Module de plaque

38000

40000

42000

44000

46000

0 100 200 300

Valeur du cycle de rechargement (kPA)

Mod

ule

de p

laqu

e (k

Pa)

( )δ

υ 21251 −=

DQ,E appl

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 47: CFMSG – 04-10-22

PLATE LOAD TESTS ON THE UGM BASEPLATE LOAD TESTS ON THE UGM BASEResponse of Soil and Granular BaseResponse of Soil and Granular Base

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250

pressure (kPa)

resi

lient

ver

tical

str

ain

(mde

f)

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

3,2

resilient surface deflection (m

m)

soil - gauge V7 - 12/02/97soil - gauge V4 - 13/02/97soil - gauge V7 - 14/02/97granular base - gauge V8 - 14/02/97granular base - gauge V9 - 14/02/97granular base - deflectometers

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 48: CFMSG – 04-10-22

Spectral-Analysis-of-Surface-Waves (SASW)(Nazarian et al., 1987; Rix & Stokoe, 1990; Stokoe, 2004; Allen et al., 2000)

Principle:Principle:Measuring the Measuring the propagation velocity of propagation velocity of surface waves of surface waves of RayleighRayleigh type, generating type, generating an experimental an experimental dispersion curve (wave dispersion curve (wave velocity versus velocity versus frequency), and frequency), and evaluating shear wave evaluating shear wave velocity profile (Gvelocity profile (G00) by ) by matching theoretical matching theoretical dispersion curve with dispersion curve with experimental curve.

Advantages:Advantages:It is non It is non destrutivedestrutive..Any layer Any layer thiknessthikness can be evaluated.can be evaluated.Soft layers after compaction may be Soft layers after compaction may be detected after construction.detected after construction.Stiffness evaluations represent Stiffness evaluations represent modulimodulivalues which are independent of strain values which are independent of strain level (e<0,001%).level (e<0,001%).Stiffness is a mechanical property Stiffness is a mechanical property showing how pavement will deflect showing how pavement will deflect under traffic loads.under traffic loads.Reduction factor can be applied to convert the small strain shear modulus in a serviceability modulus.

experimental curve.

DENSITY TESTS AND SASW TESTS COMPLET EACH OTHER AND CAN BE USED TOGETHER TO GAIN A COMPREHENSIVE ASSESSMENT OF

THE QUALITY OF THE FINAL COMPACTED MATERIAL

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 49: CFMSG – 04-10-22

PAVEMENT EVALUATIONPAVEMENT EVALUATIONPunctual control: StiffnessPunctual control: Stiffness

Seismic pavement analyser (SPA)Seismic pavement analyser (SPA)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 50: CFMSG – 04-10-22

Punctual control: StiffnessPunctual control: Stiffness((FWD)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 51: CFMSG – 04-10-22

SOIL COMPACTIONSOIL COMPACTIONPunctual control: Stiffness (Punctual control: Stiffness (LDW)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 52: CFMSG – 04-10-22

SASW versus LPT(Allen et al., 2000)

STIFFNESS FROM SASW MAY NEED TO BE CORRECTED TO THE SAME STRAIN LEVEL OF LPT

CFMSG – 04-10-22CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 53: CFMSG – 04-10-22

FWD versus LDWEv2 (FWD, LDW) - CBRin situ (DCP)

(Livneh & Goldberg, 2001)

FWD

LDW)41,1/1(2 019,6300

300ln600CBR

Ev ×−×=(3)

)41,1/1(2 0354,4300300ln600

CBREv ×−

×=(4)

ms

kE

CBR

=German code: Ev2 LPT (5)

DISCREPANCY IN THESE RESULTS SHOW THE NEED TO USE MORE MECHANISTIC APPROACH

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 54: CFMSG – 04-10-22

EFFECT OF LOADING SPEED ONEFFECT OF LOADING SPEED ONBC & UGM STRAINSBC & UGM STRAINS

-150

-100

-50

0

50

100

0 5 10 15 20 25 30 35 40

speed (km/h)

stra

ins

( µde

f)

V2L11T12

εzzUGM

εxxBCεyyBC

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 55: CFMSG – 04-10-22

V2

T12

L11

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

strains due to wheel load (µdef)

stra

ins

due

to F

WD

load

( µde

f)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

STRAINS MEASURED BYSTRAINS MEASURED BYFWD AND WHEEL LOAD TESTS (40 km/h)FWD AND WHEEL LOAD TESTS (40 km/h)

Page 56: CFMSG – 04-10-22

CONTINOUS COMPACTION CONTROLCONTINOUS COMPACTION CONTROL(LPC; Quibel, 1998)(LPC; Quibel, 1998)

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 57: CFMSG – 04-10-22

ROLLERROLLER--INTEGRATED CONTINOUS COMPACTION CONTROLINTEGRATED CONTINOUS COMPACTION CONTROL(CCC)(CCC)

OPTIMISATION OF COMPACTION

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 58: CFMSG – 04-10-22

CCCCCCA PROMOTION TO NONA PROMOTION TO NON--CONVENTIONAL DESIGN PHILOSOPHYCONVENTIONAL DESIGN PHILOSOPHY

Reduce differential settlements ( for H until 120m Reduce differential settlements ( for H until 120m total relative settlement is less of 1/1000)total relative settlement is less of 1/1000)

In many cases embankments exhibit significant In many cases embankments exhibit significant advantages over bridges:advantages over bridges:

facilitate balance of cut and fill volume during facilitate balance of cut and fill volume during construction;construction;environmentenvironment--friendlyfriendlynegligible long term maintenance negligible long term maintenance

Reduce differential settlements between bridge deck Reduce differential settlements between bridge deck and adjacent embankment fill. and adjacent embankment fill.

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 59: CFMSG – 04-10-22

ADVANCED ANALYSISADVANCED ANALYSIS

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 60: CFMSG – 04-10-22

PMTPMTHSM HSM -- PLAXISPLAXIS

Depth=0,46 m

-1000

100200300400500600700800900

0 0.2 0.4 0.6 0.8 1 1.2dv/v

Pres

sure

(kPa

)

HSM Mod. 1

HSM Mod. 2

Mod. 1 : E50 ref=33 MPa, Eoedo ref=35 MPa, Eur=100 MPa, ν=0,25, φ=38º, ψ=0º, c=70 kPa, k0=1,2Mod. 2 : E50 ref=32 MPa, Eoedo ref=32 MPa, Eur=96 MPa, ν=0,25, φ=36,5º, ψ=0º, c=65 kPa, k0=1,2

Page 61: CFMSG – 04-10-22

PLTPLTHSM HSM -- PLAXISPLAXIS

0

50

100

150

200

250

300

0 1 2 3 4Medium displacement (mm)

App

lied

pres

sure

(kPa

)

PLT 1

PLT 2

HSM Mod1 ( PMT1 values)

HSM Mod2 (PMT2 values)

HSM Mod3 (Adjusted values)

HSM Mod3: γ =18 kN/m3, E50ref =27,5 MPa, Eoedoref =27,5 MPa, Eur=82,5 MPa, m=0,5, c=70 kPa, φ =38º, ψ =0º, n=0,25, k0=1,2

Page 62: CFMSG – 04-10-22

PMT PMT –– PLT PLT -- TXTXSimulationSimulationROUTINE & ADVANCED ANALYSIS (ROUTINE & ADVANCED ANALYSIS (HSM HSM –– PLAXIS)PLAXIS)

(Gomes (Gomes CorreiaCorreia et al., 2004)et al., 2004)

0

10000

20000

30000

40000

50000

60000

70000

80000

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00log(εv ; δ/D)

Mod

ulus

(kPa

)

E Menard (PMT1) E Menard (PMT2)E ur (PMT1)E ur (PMT2)E ur (PLT)E PLT (settlement/D) - ECP 1 E PLT (settlement/D) - ECP 2E PLT (settlement/D) - simulationE sec (PLT) - simulationEsec P/D=0,1Etan P/D=0,1Esec P/D=0,5Etan P/D=0,5Esec P/D=1Etan P/D=1Esec P/D=2Etan P/D=2Esec "Classical" triaxialEtan "Classical" triaxial

Eur (PLT) =3 X Eur (PMT)

Page 63: CFMSG – 04-10-22

FINAL REMARKSFINAL REMARKS

Page 64: CFMSG – 04-10-22

FINAL REMARKS (1/4)FINAL REMARKS (1/4)

NEED TO MOVE FROM EMPIRICAL APPROACH TO NEED TO MOVE FROM EMPIRICAL APPROACH TO MECHANISTIC APPROACHMECHANISTIC APPROACH

MOVE FROM SIMPLE TESTS TO FUNCTIONAL MOVE FROM SIMPLE TESTS TO FUNCTIONAL TESTS TESTS –– USE OF NEW MATERIALS IN ROAD USE OF NEW MATERIALS IN ROAD CONSTRUCTIONCONSTRUCTION

SELECTION OF MATERIALS MUST BE BASED IN SELECTION OF MATERIALS MUST BE BASED IN MECHANICAL TEST RESULTS USING INTEGRAL MECHANICAL TEST RESULTS USING INTEGRAL MATERIAL AT THE STATE CONDITIONS EXPECTED IN MATERIAL AT THE STATE CONDITIONS EXPECTED IN THE FIELDTHE FIELD

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 65: CFMSG – 04-10-22

FINAL REMARKS (2/4)FINAL REMARKS (2/4)

NONNON--LINEAR BEHAVIOUR OF SOILS AND UGM LINEAR BEHAVIOUR OF SOILS AND UGM COMPLICATES INCOMPLICATES IN--SITU TEST INTERPRETATIONSITU TEST INTERPRETATION

MAY CONFLICT WITH SIMPLIFIED ASSUMPTIONS IN THE PAST

DIRECT USE OF MODULI IN PRACTICE ONLY IF: DIRECT USE OF MODULI IN PRACTICE ONLY IF: OBTAINED FOR THE SERVICEABILITY OBTAINED FOR THE SERVICEABILITY STRESSSTRESS--STRAIN CONDITIONSSTRAIN CONDITIONS

ANY CORRELATION OF IN-SITU TEST RESULTS SHOULD SPECIFY THE TYPE OF EQUIPMENT AND TEST PROCEDURE, THE TYPE OF MODULUS

OR ANGLE OF SHEARING RESISTANCE

Page 66: CFMSG – 04-10-22

FINAL REMARKS (3/4)FINAL REMARKS (3/4)

CURRENT PRACTICE HAS TO BE CURRENT PRACTICE HAS TO BE SUPPLEMENTED BY TEST METHODS THAT SUPPLEMENTED BY TEST METHODS THAT WILL PROVIDE CONTINUITY BETWEEN WILL PROVIDE CONTINUITY BETWEEN DESIGN (laboratory) AND CONSTRUCTION DESIGN (laboratory) AND CONSTRUCTION (field) (field)

GG00 IS THE BEST PARAMETER TO BE USEDIS THE BEST PARAMETER TO BE USED

Incorporation of Seismic in the different tests will be of valuable use

CORRELATIONS MUST BE ESTABLISHED WITH G0 AND NOT WITH CBRCORRELATIONS MUST BE ESTABLISHED WITH G0 AND NOT WITH CBR

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal

Page 67: CFMSG – 04-10-22

FINAL REMARKS (4/4)FINAL REMARKS (4/4)

COMPARISON BETWEEN TEST RESULTS COMPARISON BETWEEN TEST RESULTS –– MODULIMODULI--IS ONLY POSSIBLE BY NORMALISING STRESS & IS ONLY POSSIBLE BY NORMALISING STRESS & STRAIN LEVELS OF TESTSSTRAIN LEVELS OF TESTS

EXPERIMENTAL AND ANALYTICAL STUDY IN A GRANITE EXPERIMENTAL AND ANALYTICAL STUDY IN A GRANITE SHOW THAT:SHOW THAT:

EEURUR (PLT) ~3 (PLT) ~3 XX EEMURMUR (PMT)(PMT)

EEMM (PMT) ~1%; E((PMT) ~1%; E(PLT)PLT) ~ 0,1% (ASTM STANDARDS)~ 0,1% (ASTM STANDARDS)

COMPAIRISON OF TEST RESULTS COMPAIRISON OF TEST RESULTS

BACK ANALYSIS OF STRESSBACK ANALYSIS OF STRESS--STRAIN CURVES OR STRAIN CURVES OR LOADLOAD--DISPLACEMENT RESULTSDISPLACEMENT RESULTS

CFMSG – 04-10-20 A. Gomes Correia ([email protected])University of Minho; Campus de Azurém, Guimarães; Portugal