Bases géométriques de l’informatique – Part deux Jean Ponce “Hauts du DI” Email:...

71
Bases géométriques de l’informatique – Part deux Jean Ponce “Hauts du DI” Email: [email protected] Web: http://www.di.ens.fr/~ponce Planches après les cours sur : http://www.di.ens.fr/~ponce/geomvis/lect1.pp http://www.di.ens.fr/~ponce/geomvis/lect1.pd
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    213
  • download

    0

Transcript of Bases géométriques de l’informatique – Part deux Jean Ponce “Hauts du DI” Email:...

  • Slide 1
  • Bases gomtriques de linformatique Part deux Jean Ponce Hauts du DI Email: [email protected]@di.ens.fr Web: http://www.di.ens.fr/~poncehttp://www.di.ens.fr/~ponce Planches aprs les cours sur : http://www.di.ens.fr/~ponce/geomvis/lect1.pptx http://www.di.ens.fr/~ponce/geomvis/lect1.pdf
  • Slide 2
  • References R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000. O.D. Faugeras, Q.-T. Luong, and T. Papadopoulo, The Geometry of Multiple Images, MIT Press, 2001. D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice-Hall, 2002, 2011 (2 nd edition). J.J. Koenderink, Solid Shape, MIT Press, 1990. M. Berger, Gomtrie, Nathan, 1992. D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, 1952.
  • Slide 3
  • Images are two-dimensional patterns of brightness values. They are formed by the projection of 3D objects.
  • Slide 4
  • Slide 5
  • How do we perceive depth?
  • Slide 6
  • Building large-scale 3D models from photographs Structure from motionDense multiview stereo Snavely, Seitz, Szeliski, 2007 Vergauwen, Van Gool, 2006 Brown, Lowe, 2005 Schaffalitzky, Zisserman, 2002 Furukawa, Ponce, 2007 Labatut, Pons, Keriven, 2009 Goesele, et al., 2007 http://phototour.cs.washington.edu/bundler/http://grail.cs.washington.edu/software/pmvs/
  • Slide 7
  • Google Maps Photo Tour Lucasfilm Weta Digital ( Bath & Burke, Weta Digital, Siggraph11) PMVS (http://www.di.ens.fr/pmvs)
  • Slide 8
  • A model built from 25,000 photos (Ubelmann, Dessales, Ponce, 2013)
  • Slide 9
  • What is a camera? x
  • Slide 10
  • What is a camera? x
  • Slide 11
  • What is a camera? x x c r y
  • Slide 12
  • x c r y c
  • Slide 13
  • x c r y x c
  • Slide 14
  • x c r y x c
  • Slide 15
  • x c r y x r y Linear family of lines x x c
  • Slide 16
  • Rank-4 (nondegenerate) families: Linear congruences Figures H. Havlicek, VUT
  • Slide 17
  • Building a parabolic camera (Batog, Goaoc, Lavandier, Ponce, 2010)
  • Slide 18
  • Koenderink (1984) Solid shapes and their outlines
  • Slide 19
  • What does the occluding contour tell us about shape? (Marr & Nishihara, 1978; Koenderink, 1984)
  • Slide 20
  • What does the occluding contour tell us about shape? (Marr & Nishihara, 1978; Koenderink, 1984)
  • Slide 21
  • What does the occluding contour tell us about shape? M. Van Hemskeerk Picasso Drer
  • Slide 22
  • The Geometry of the Gauss Map Gauss sphere Image of parabolic curve Moving great circle Reprinted from On Computing Structural Changes in Evolving Surfaces and their Appearance, By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). 2001 Kluwer Academic Publishers.
  • Slide 23
  • PLAN DU COURS: 1. Introduction gnrale 2. Camras Euclidiennes : perspective centrale, projection parallle; paramtres intrinsques et extrinsques; mires et talonnage Euclidien. 3. Camras affines : lments de gomtrie affine; gomtrie multi vues, analyse du mouvement. 4. Camras projectives : lments de gomtrie projective; gomtrie multi vues, analyse du mouvement. 5. talonnage Euclidien sans mire : la conique absolue de Chasles et ses cousines; analyse du mouvement Euclidien. 6. Camras purement projectives : lments de gomtrie des droites; camras linaires gnrales . 7. Les surfaces Euclidiennes lisses et leurs silhouettes : gomtrie diffrentielle descriptive; le thorme de Koenderink et les graphes d'aspects.
  • Slide 24
  • Euclidean Cameras Pinhole perspective projection Orthographic and weak-perspective models Non-standard models A detour through sensing country Intrinsic and extrinsic parameters
  • Slide 25
  • Animal eye: a looonnng time ago. Pinhole perspective projection: Brunelleschi, XV th Century. Camera obscura: XVI th Century. Photographic camera: Niepce, 1816.
  • Slide 26
  • Slide 27
  • Massaccios Trinity, 1425 Pompei painting, 2000 years ago. Van Eyk, XIV th Century Brunelleschi, 1415
  • Slide 28
  • Pinhole Perspective Equation NOTE: z is always negative..
  • Slide 29
  • Affine projection models: Weak perspective projection is the magnification. When the scene relief is small compared its distance from the Camera, m can be taken constant: weak perspective projection.
  • Slide 30
  • Affine projection models: Orthographic projection When the camera is at a (roughly constant) distance from the scene, take m=-1.
  • Slide 31
  • Planar pinhole perspective Orthographic projection Spherical pinhole perspective
  • Slide 32
  • Diffraction effects in pinhole cameras. Shrinking pinhole size Use a lens!
  • Slide 33
  • Lenses Snells law n 1 sin 1 = n 2 sin 2 Descartes law
  • Slide 34
  • Thin Lenses
  • Slide 35
  • Spherical Aberration Distortion Chromatic Aberration
  • Slide 36
  • A compound lens
  • Slide 37
  • E=( /4) [ (d/z) 2 cos 4 ] L
  • Slide 38
  • Vignetting
  • Slide 39
  • Challenge: Illumination What is wrong with these pictures?
  • Slide 40
  • Photography (Niepce, La Table Servie, 1822) Milestones: Daguerrotypes (1839) Photographic Film (Eastman, 1889) Cinema (Lumire Brothers, 1895) Color Photography (Lumire Brothers, 1908) Television (Baird, Farnsworth, Zworykin, 1920s) CCD Devices (1970)
  • Slide 41
  • Image Formation: Radiometry What determines the brightness of an image pixel? The light source(s) The surface normal The surface properties The optics The sensor characteristics
  • Slide 42
  • Quantitative Measurements and Calibration Euclidean Geometry
  • Slide 43
  • Euclidean Coordinate Systems
  • Slide 44
  • Planes
  • Slide 45
  • Coordinate Changes: Pure Translations O B P = O B O A + O A P, B P = A P + B O A
  • Slide 46
  • Coordinate Changes: Pure Rotations
  • Slide 47
  • Coordinate Changes: Rotations about the z Axis
  • Slide 48
  • A rotation matrix is characterized by the following properties: Its inverse is equal to its transpose, and its determinant is equal to 1. Or equivalently: Its rows (or columns) form a right-handed orthonormal coordinate system.
  • Slide 49
  • Coordinate Changes: Pure Rotations
  • Slide 50
  • Coordinate Changes: Rigid Transformations
  • Slide 51
  • Cameras and their parameters
  • Slide 52
  • Pinhole Perspective Equation
  • Slide 53
  • The Intrinsic Parameters of a Camera Normalized Image Coordinates Physical Image Coordinates Units: k,l : pixel/m f : m : pixel
  • Slide 54
  • The Intrinsic Parameters of a Camera Calibration Matrix The Perspective Projection Equation
  • Slide 55
  • The Extrinsic Parameters of a Camera p M P
  • Slide 56
  • Explicit Form of the Projection Matrix Note: M is only defined up to scale in this setting!!
  • Slide 57
  • Theorem (Faugeras, 1993)
  • Slide 58
  • Calibration Problem
  • Slide 59
  • Linear Camera Calibration
  • Slide 60
  • Linear Systems A A x xb b = = Square system: unique solution Gaussian elimination Rectangular system ?? underconstrained: infinity of solutions Minimize |Ax-b| 2 overconstrained: no solution
  • Slide 61
  • How do you solve overconstrained linear equations ??
  • Slide 62
  • Homogeneous Linear Systems A A x x0 0 = = Square system: unique solution: 0 unless Det(A)=0 Rectangular system ?? 0 is always a solution Minimize |Ax| under the constraint |x| =1 2 2
  • Slide 63
  • How do you solve overconstrained homogeneous linear equations ?? The solution is e. 1 E(x)-E(e 1 ) = x T (U T U)x-e 1 T (U T U)e 1 = 1 1 2 + + q q 2 - 1 > 1 ( 1 2 + + q 2 -1)=0
  • Slide 64
  • Example: Line Fitting Problem: minimize with respect to (a,b,d). Minimize E with respect to d: Minimize E with respect to a,b: where Done !! n
  • Slide 65
  • Note: Matrix of second moments of inertia Axis of least inertia
  • Slide 66
  • Linear Camera Calibration Linear least squares for n > 5 !
  • Slide 67
  • Once M is known, you still got to recover the intrinsic and extrinsic parameters !!! This is a decomposition problem, not an estimation problem. Intrinsic parameters Extrinsic parameters
  • Slide 68
  • Degenerate Point Configurations Are there other solutions besides M ?? Coplanar points: ( )=( ) or ( ) or ( ) Points lying on the intersection curve of two quadric surfaces = straight line + twisted cubic Does not happen for 6 or more random points!
  • Slide 69
  • Analytical Photogrammetry Non-Linear Least-Squares Methods Newton Gauss-Newton Levenberg-Marquardt Iterative, quadratically convergent in favorable situations
  • Slide 70
  • Mobile Robot Localization (Devy et al., 1997)
  • Slide 71
  • (Rothganger, Sudsang, & Ponce, 2002)