BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

52
BA3-physique -2009- 2010 C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305

Transcript of BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

Page 1: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

BA3-physique -2009-2010 C. Vander Velde 1

IV. Les accélérateurs de particules (suite)

PHYS-F-305

Page 2: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 2BA3-physique -2009-2010

Contenu du chapitre IV

IV.1. Rappels IV.2. La luminosité IV.3. L’accélération IV.4. La focalisation IV.5. Accélérateurs linéaires (LINAC) IV.6. Accélérateurs circulaires (Synchrotrons) IV.7. Collisionneurs IV.8. Faisceaux secondaires IV.9. Anneaux accumulateurs IV.10. Complexes d’accélérateurs IV.11. Références

Page 3: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 3BA3-physique -2009-2010

Quelques principes augmente l’énergie cinétique des particules ( ║ ) guide les particules ( ) seules des particules chargées et stables sont accélérées on les trouve d’abord dans la matière il existe des accélérateurs

les particules circulent dans un tube à vide

Exemple : Le cyclotron – marche bien tant que les énergies sont non relativistes; après il faut modifier la fréquence !

IV.1.Rappels

E

B

à cible fixe des collisionneurs

E pB p

Page 4: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 4BA3-physique -2009-2010

IV.2. La luminositéLors d’une expérience auprès d’un accélérateur, le taux d’interactions que l’on va produire, pour un processus donné, dépend non seulement de la section efficace du processus mais aussi de la probabilité de rencontre des deux particules qui interagissent. Ce paramètre, indépendant du processus, s’appelle la luminosité de l’accélérateur, L, qui se définit à partir de la relation :

Expériences à cible fixe:

-1Taux d'interactions s = σ L l

2 1fL cm s = N ρ

Nf[s-1] : taux de particules du faisceau incident atteignant la cible [cm-3] : nombre

de particules cibles du processus

considéré par unité de volume

Page 5: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 5BA3-physique -2009-2010

région d’interaction

A : aire de la section du faisceau

Collisionneurs:

Soit N1 et N2 les nombres de particules par paquet pour les faisceaux 1 et 2, Nb, le nombre de paquets (bunches) dans le collisionneur et f, la fréquence de ceux-ci, on a :

IV.2. La luminosité

f 1 b

2 1 1 2 b

ρ AL = N ρ N N f

A

N N N fL cm s =

A

Comme nous le verrons les particules sont accélérées par

paquets.

Page 6: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 6BA3-physique -2009-2010

IV.3.L’accélération Champ électrique statique

(condensateurs)

Utilisé pour les tous 1ers accélérateurs

Cockroft – Walton

Van de Graaf

Vmax (DC) ~ 106 V Emax ~ MeV

Champ électrique variable (cavités HF)Champ électrique produit par une onde é.m.

de haute fréquence.

Cockcroft-Walton

Cavités RF du LEP

Page 7: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 7BA3-physique -2009-2010

IV.3.L’accélération

Formation depaquets de particules(bunch)

s

Page 8: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 8BA3-physique -2009-2010

IV.3.L’accélération

Page 9: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 9BA3-physique -2009-2010

IV.3.L’accélérationLes sources alternatives Haute Fréquence utilisées sont presque toujours des klystrons dont la puissance de crête peut atteindre 60 MW. Les particules sont accélérées par impulsions successives convenablement synchronisées. Le faisceau en passant dans une suite de cavités où règne un champ électrique alternatif va pouvoir gagner quelques centaines de MeV d’énergie cinétique.

Le klystron Un faisceau d’e- est injecté dans

une 1ère cavité où les e- sont plus

ou moins accélérés, suivant le

moment de leur passage, par une

RF de faible puissance qui les

structure donc en paquets.

Page 10: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 10BA3-physique -2009-2010

IV.3.L’accélérationLe klystronLe courant alternatif constitué par le faisceau d’électrons produit un champ magnétique induit variable qui à son tour produit une tension alternative dans la cavité suivante, qui est plus puissante que la RF initiale. Le klystron peut comporter plus de deux cavités. Dans la dernière cavité, l’énergie RF produite est récupérée et le faisceau d’électrons ralentis (ils ont fourni une partie de leur énergie cinétique à la RF des

cavités successives) est arrêté dans un

collecteur.

Page 11: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 11BA3-physique -2009-2010

IV.4.La focalisationLes faisceaux doivent continuellement être focalisés pour obtenir des paquets de particules denses et de petites dimensions. En effet, les particules chargées de même signe se repoussent et les paquets ont tendance à diverger.

Aimants dipolairesAvec des aimants dipolaires comme pour le cyclotron, le champ focalisateur est faible. De même pour les aimants dipolaires asymétriques utilisés dans les accélérateurs circulaires.

Page 12: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 12BA3-physique -2009-2010

IV.4.La focalisation Aimants quadrupolaires

Avec un quadrupôle comme celui ci-dessous à g., la force magnétique est focalisante dans le plan vertical mais défocalisante dans le plan horizontal (exemple de particules chargées positivement qui sortent vers l’avant).

on alterne des quadrupôles dont les positions des pôles N et S sont inversées. Leur effet est identique à celui de lentilles optiques successivement convergente et divergente.x

y

Les corrections sont + importantes loin du centre

Page 13: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 13BA3-physique -2009-2010

Faisceau accéléré à 50 keVpotassium

F = qE

IV.5.Accélérateurs linéaires (LINAC) Wideroe linac (1928)

Les particules passent au travers d’une série de tubes à dérive qui sont alimentés par une souce RF. Les particules émises par la source sont accélérées vers le 1er tube de dérive seulement pendant la demi période pendant laquelle ce tube a la bonne polarité. Ce 1er paquet de particules traverse ensuite le 1er tube à vitesse constante, le champ électrique y étant nul. La fréquence de la source de tension est ajustée pour qu’à sa sortie du 1er tube le paquet retrouve un champ accélérateur pendant une demi période, jusqu’à son arrivée dans le tube suivant.

E = 0

25 kV

1 MHz

Page 14: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 14BA3-physique -2009-2010

IV.5.Accélérateurs linéaires (LINAC)

Wideroe linac (1928)A basse énergie (non relativiste), la longueur des tubes L doit être ajustée à la vitesse v des particules au fur et à mesure que celle-ci augmente:

L = v. T/2, où T est la période de la source de tension.

Limitations :

A une certaine énergie: la longueur des tubes devient trop grande la radiofréquence doit être augmentée jusqu’à ~10 MHz, ce qui implique des

pertes de champ. le coût de l’accélérateur est proportionnel à sa longueur et cette dernière à

l’énergie.

Page 15: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 15BA3-physique -2009-2010

IV.5.Accélérateurs linéaires (LINAC)

Alvarez linacMême principe mais le champ est généré par des cavités résonantes ce qui permet d’atteindre des fréquences de 200 MHz. Actuellement il y a encore deux linacs de ce type au CERN, un pour des protons (50 MeV), l’autre pour des ions; ils servent d’injecteurs pour les accélérateurs plus puissants.

Page 16: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 16BA3-physique -2009-2010

IV.5.Accélérateurs linéaires (LINAC)

Accélérateurs linéaires d’électronsPour les électrons, au-delà de quelques MeV, v ~ c et L ~ constant.

Exemples : - Fast Neutron Research Facility linac

- Standford Linear Accelerator = SLAC Longueur totale ~ 3 km(le plus grand)80 000 cavités accélératrices Emax (e-) = 50 GeV

Page 17: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 17BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Synchrotrons

Nouveau concept pour palier aux inconvénients des cyclotrons et des linacs:

accélérateurs circulaires les particules à accélérer passent plusieurs fois dans les mêmes champs accélérateurs réduction de coût.

trajectoire à rayon R constant réduction de la zône de vide à un tube possibilité de vide plus poussé.

conséquences : le champ magnétique augmente proportionnellement à la quantité de mvt la fréquence des cavités accélératrices augmente aussi avec la vitesse

des particules

B, p et f doivent être parfaitement synchronisés “synchrotron”

Page 18: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 18BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Synchrotrons

Schéma de principe des

premiers synchrotrons

Aimants de guidage dipolaires aussi utilisés au début pour focaliser.

A cause de l’aimantation rémanente des aimants, il y a une limite inférieure au champ initial et les particules doivent être injectées avec déjà une certaine énergie cinétique au départ.

Page 19: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 19BA3-physique -2009-2010

aimants de guidage

aimants de focalisation

IV.6.Accélérateurs circulaires Synchrotrons

Dans les synchrotrons plus récents, la focalisation se fait plus volontiers par une alternance de quadrupôles à pôles inversés et les aimants de guidage sont des aimants bipolaires symétriques, comme au LEP.

Page 20: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 20BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Synchrotrons

Les choses ne sont pas si simples, les particules d’un paquet n’arrivent pas rigoureusement ensemble dans le champ accélérateur et ne sont donc pas toutes rigoureusement synchronisées:

•A = particule synchrone (= "idéale")•B en retard, reçoit moins d'énergie R ↓ et f ↑ en avance•C en avance, reçoit plus d'énergie R ↑ et f ↓ en retard

0 cin.

Bf

Tm

Page 21: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 21BA3-physique -2009-2010

Trajectoire d’une particule

Orbite nominale circulaire Une particule

IV.6.Accélérateurs circulaires Synchrotrons

oscillations de chaque trajectoire de particule autour de la trajectoire circulaire nominale nombreux aimants de correction pour obtenir des faisceaux stables et collimés.

Page 22: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 22BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Synchrotrons :

Exemple :LEIR (Low Energy Ion Ring) - CERN

Page 23: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 23BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Radiation émise par une particule chargée ultrarelativiste dont la trajectoire est incurvée sous l’effet d’un champ magnétique. Cette radiation peut couvrir tout le spectre é.m., y compris le visible.

Découverte en 1946 dans l’un des tous premiers synchrotrons, d’où son nom.

Calculons cette énergie radiée.

Page 24: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 24BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Ce phénomène étant un facteur limitatif important pour les accélérateurs circulaires, nous allons justifier la formule qui le concerne.

Rappel du cours de BA2 (électrodynamique)Flux d’énergie radiée par une charge qui accélère (sous l’effet d’un champ):

0

20

0

0

1S= E B (vecteur de Poynting )

μ

εou : S= E n

μ

μ e dvE = ×n ×n

4πx dt

[S] : énergie / (aire x temps)

pour une onde plane (loin de la source, donc x grand), à l’approximation non relativiste.

Page 25: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 25BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Par conséquent, la puissance radiée par unité d’angle solide est :

où est l’angle avec

l’accélération.

La puissance instantanée totale radiée, valide pour des particules non relativistes, s’obtient en intégrant sur l’angle solide :

22

2 20 0

0

ε eμdP dv=Sx sin θ

dΩ μ 4π dt

2 22 2

0 02

e μ e μ1 dv 1 dpP = =

6π c dt 6π m c dt

Page 26: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 26BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Généralisation de ce résultat à des particules relativistes :

L’énergie é.m. radiée,se comporte sous les transformations de Lorentz comme la 4ème composante d’un quadrivecteur, donc la puissance (dE/dt) doit être un invariant de Lorentz et il faut généraliser P ci-dessus de manière à obtenir un invariant :

On a :

2 2 μμ0 0

2 2

dpe μ e μ1 dp dp 1 dpP P

6π m c dt dt 6π m c dτ dτ

Avec d = dt /

2 22 2μμ 2

2

dp dp 1 dE dp dp dp= - =β -

dτ dτ c dτ dτ dτ dτ

Page 27: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 27BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Cas d’un accélérateur linéaire :

La puissance radiée devient (mvt rectiligne)

Comme dp/dt = dE/dx, le rapport de la puissance radiée à la puissance fournie par la source RF est :

2 2 22 220 0

2 2

e μ e μ1 dp dp 1 dpP -β

6π m c dτ dτ 6π m c dt

2 2 20 0

2 2 4

215

2 20

-15

e μ e μP 1 1 dE c dE

dE/dt 6π m c v dx 6π m c dx

2 e 1 dE 2 1 dE2.8x10 m

3 4πε mc mc dx 3 .511MeV dx

m dE3.7x10

MeV dx

lorsque ~1

pour un e

re (voir table des constantes)

Négligeable : dE/dx max : 150 MeV/m (futur collisionneur e linéaire CLIC)

Page 28: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 28BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Cas d’un accélérateur circulaire :

Cette fois, même si dp/dt est faible, dp/dt varie fortement à cause du changement de direction :

On a :

dp 1 dEγω p

dτ c dt

2 22 2 22 2 20 0

2 2

2 4 4

20

e μ e μ1 1P γ ω γ cβ/R cβγm

6π m c 6π m c

2 e c γ β

3 4πε R

p

Page 29: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 29BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Cas d’un accélérateur circulaire :

L’énergie radiée sur un tour de l’accélérateur est

Pour des particules relativistes, ~1 :

A énergie E et R fixés :

2 4 3

0

2πR 1 e γ βΔE = P =

v 3 ε R

44p 13

e p p p4e

m 1000ΔE = ΔE ΔE ΔE 10

m 1/ 2

422

420

2 4

420

1 e EΔ

γmc1 eΔE = E =

3 ε 3 εmc R mcR

Page 30: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 30BA3-physique -2009-2010

IV.6.Accélérateurs circulaires Radiation synchrotron :

Cas d’un accélérateur circulaire :

Exemples :

a) R ~ 4300 m (LEP/LHC) et E = 100 GeV pour e (LEP) :

Au delà de ces énergies, il faut un accélérateur de beaucoup plus grand rayon ou un accélérateur linéaire pour les électrons.

b) R ~ 4300 m (LEP/LHC) et E = 7 TeV pour p (LHC) :

Avec un même accélérateur circulaire, on peut monter beaucoup plus haut en énergie avec des protons qu’avec des électrons.

4

e

E GeVΔE MeV 0.09 2 GeV énergiegagnéeà chaque tour

R m

4

14p

E GeVΔE MeV 10 0.005 MeV négligeable

R m

Page 31: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 31BA3-physique -2009-2010

IV.7. CollisionneursComme nous l’avons vu, les collisionneurs permettent d’obtenir une plus grande énergie dans le système du centre de masse, avec des faisceaux d’énergie limitée. C’est pourquoi, la plupart des accélérateurs actuels sont des collisionneurs. Le plus naturel à priori est d’avoir un collisionneur circulaire :

Schéma de principe du LEP qui de 1989 à 2001 faisait entrer en collisions frontales des e+ et des e-, de 45 GeV chacun, dans un premier temps (étude du boson Z°), puis de ~100 GeV chacun.

cf : 26,7 km !

Circulaires

Page 32: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 32BA3-physique -2009-2010

IV.7. CollisionneursLEP :

f ~104 s-1

Nb = 4 L ~1032 cm-2 s-1

N1, N2 = 2 1010

x, y= 200 µm , 8 µm

Circulaires

Page 33: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 33BA3-physique -2009-2010

IV.7. CollisionneursActuellement, c’est le LHC qui est installé dans le tunnel du LEP et qui va bientôt démarrer. Il fera interagir des protons ou des ions de Pb.

LEP LHC

* [m] 3096.1 2803.9

p0

[GeV/c]104 7000

B [T] 0.11 8.33

Circulaires

Aimants supraconducteurs système de refroidissement à l’He.système

cryogénique

tunnel du LHC

120 tonnes d’ Helium-271,3° C (1,9 K)

Le plus grand frigo du monde!

*Il s’agit du rayon de courbure local < que le rayon du tunnel, car il y a des sections droites.

Page 34: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 34BA3-physique -2009-2010

IV.7. Collisionneurs

~100 m

Circulaires

Page 35: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 35BA3-physique -2009-201010-13 atm

IV.7. CollisionneursAu LHC, contrairement au LEP, ce sont des particules de même charge qui tournent en sens opposés 2 tubes à vides avec guidages indépendants.

Circulaires

cryodipôles de 15 m de long

Page 36: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 36BA3-physique -2009-2010

IV.7. CollisionneursCavité accélératrice du LHC

Circulaires

aimant du LHC (~15 m)

Page 37: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 37BA3-physique -2009-2010

IV.7. CollisionneursParamètres du futur LHC

Page 38: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 38BA3-physique -2009-2010

IV.7. CollisionneursLes collisions ne sont généralement pas parfaitement frontales afin de limiter la zone d’interaction et l’influence réciproque des faisceaux. Au LHC, l’angle sera de 300 µrad.

Page 39: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 39BA3-physique -2009-2010

IV.7. CollisionneursL’accélérateur de protons le plus puissant actuellement (avant le démarrage du LHC), est le Tevatron, à FNAL, aux USA. Il provoque des collisions proton – antiproton avec une énergie de 1.96 Tev dans le SCM (7 x moins que ce qui est prévu au LHC). Sa luminosité est aussi plus faible car il est plus difficile de faire des faisceaux d’antiprotons que de protons (voir plus loin).

L ~6 km

Circulaires

Page 40: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 40BA3-physique -2009-2010

IV.7. CollisionneursDes collisions électron – proton ont aussi été réalisées: accélérateur HERA, à DESY, à Hambourg (arrêté récemment).

e 40 GeV + p 820 GeV L ~ 6 km

Circulaires

Remarque :Ici : S.C.M ≠ S.L.C’est parce qu’il n’était pas possible d’accélérer plus les e-.

Page 41: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 41BA3-physique -2009-2010

IV.7. CollisionneursLa plupart de ces collisionneurs sont donc circulaires, toutefois, nous avons vu que pour les électrons, au-delà d’une certaine énergie, l’énergie radiée par effet synchrotron approche l’énergie gagnée à chaque tour et il faut se tourner vers des collisionneurs linéaires comme le SLC à Stanford; ceux-ci permettent aussi d’effectuer des collisions frontales :

Page 42: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 42BA3-physique -2009-2010

Dans un premier temps seules des particules chargées et stables, qu’on trouve facilement, c’est-à-dire qui composent la matière, furent accélérées et leurs interactions étudiées (e-, p et I+). Ensuite des faisceaux d’autres particules furent construits en déviant le faisceau primaire accéléré sur une cible de matière (au moyen d’aimants). Les interactions qui en résultent produisent différentes particules dont certaines peuvent être sélectionnées pour former un faisceau secondaire et étudier leurs interactions. Même des faisceaux de particules instables peuvent être construits, à condition que leur temps de vie dans le laboratoire soit suffisamment long (). ±

±

p

p

0

IV.8. Faisceaux secondaires

W

e- e-

e+

± µ±

µ

Page 43: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 43BA3-physique -2009-2010

IV.8. Faisceaux secondaires Particules chargées

Celles-ci peuvent être sélectionnées au moyen d’aimants (sélection en charge et en quantité de mvt.) et de séparateurs électrostatiques (masse):

E-

+

L0

Tp eE dt~

p p

eE dl1 e E L

p p

Ex : p = 3 GeV/c, L = 5 m, E = 5 106 V m-1

KK

e E L 1 1~ 0.1 mrad

p~ 0.005

L

Page 44: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 44BA3-physique -2009-2010

IV.8. Faisceaux secondaires

Neutrinos

Focalise -

ou +

Exemple : Faisceau du CERN SPS

Lcorne ~ 30 m (R ~ 1 m)

Ltunnel ~ 300 m, Lblindage (Fe, Terre) ~ 400 m

Ep = 450 GeV < E > ~ 50 GeV < E > ~ 25 GeV varie entre 0 et 400 GeV

~ 1013 p/éjection ~ 1014 ~ 1011 dans le détecteur (S 10 m2)

Page 45: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 45BA3-physique -2009-2010

IV.8. Faisceaux secondaires Neutrinos

Autre exemple : faisceau de neutrinos du CERN vers le laboratoire du Gran Sasso à 730 km (près de Rome)

Page 46: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 46BA3-physique -2009-2010

IV.8. Faisceaux secondaires

Neutrinos

Page 47: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 47BA3-physique -2009-2010

IV.8. Faisceaux secondaires Résumé

Page 48: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 48BA3-physique -2009-2010

IV.8. Anneaux accumulateursPour réaliser des collisions entre particules et antiparticules (e+e- ou pp), il faut construire un faisceau d’antiparticules suffisamment intense (luminosité!). Les faisceaux secondaires sont généralement plusieurs ordres de grandeur moins intenses que le faisceau primaire à partir duquel ils sont construits. C’est pourquoi, les paquets de particules sont stockés dans un anneau de stockage et tournent jusqu’à ce qu’on obtienne des paquets suffisamment denses. Ces anneaux sont aussi utilisés pour augmenter le nombre de particules par paquet pour les particules elles-mêmes.

Ces multiples processus : accélération du faisceau primaire, création des faisceaux secondaires, anneaux de stockage, injections successives dans des accélérateurs de plus en plus puissants, donnent lieu à de véritables complexes d’accélérateurs dans les grands laboratoires:

http://www.hep.ucl.ac.uk/masterclass/Acc_sim2/simulator.html

Page 49: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 49BA3-physique -2009-2010

H2 ionisé 750 eV

400 MeV

8 GeV

150 GeV

Escm = 1.96 TeV

cf. = 6.3 km

http://www.fnal.gov/pub/inquiring/physics/accelerators/chainaccel.html

cible de Ni

Page 50: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 50BA3-physique -2009-2010 http://www-sldnt.slac.stanford.edu/alr/slc.htm

46.6 GeV

~-1 GeV

91.2 GeV ~mZ°

46.6 GeV ~-1 GeV

e- polarisés

Page 51: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 51BA3-physique -2009-2010

H+ - 50 MeV

I+

Synchrotron (~ 6200 m)Collisionneur pp (s = 14 TeV?) L 1034 cm-2 s-1 ?

Page 52: BA3-physique -2009-2010C. Vander Velde 1 IV. Les accélérateurs de particules (suite) PHYS-F-305.

C. Vander Velde 52BA3-physique -2009-2010

CERN Accelerator Complex1. LINAC : H- 50 MeV

2. BOOSTER : 4 Synchrotrons (~ 50 m) superposés accumuler p et accélérer 800 MeV

3. PS : Synchrotron (~ 200 m) ; 3.1013 p 30 GeV (2,4 s)

4. SPS : Synchrotron (~ 2200 m) 450 GeVmultiples faisceaux second. cible fixe ou Collisionneur pp (s = 540 GeV) L 1031 cm-2 s-1

5. LHC: Synchrotron ( ~ 6200 m) Collisionneur pp (s = 14 TeV?) L 1034 cm-2 s-1 ? ou Pb+Pb+

http://public.web.cern.ch/public/en/Research/AccelComplex-en.html