Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several...

86
http://lib.uliege.be https://matheo.uliege.be Assessment of UAV potential for bioacoustic monitoring of birds and bats: Tests under controlled conditions in Belgium Auteur : Broset, Stéphane Promoteur(s) : Lejeune, Philippe; Michez, Adrien Faculté : Gembloux Agro-Bio Tech (GxABT) Diplôme : Master en bioingénieur : gestion des forêts et des espaces naturels, à finalité spécialisée Année académique : 2017-2018 URI/URL : http://hdl.handle.net/2268.2/5155 Avertissement à l'attention des usagers : Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger, copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite. Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Transcript of Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several...

Page 1: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

http://lib.uliege.be https://matheo.uliege.be

Assessment of UAV potential for bioacoustic monitoring of birds and bats:

Tests under controlled conditions in Belgium

Auteur : Broset, Stéphane

Promoteur(s) : Lejeune, Philippe; Michez, Adrien

Faculté : Gembloux Agro-Bio Tech (GxABT)

Diplôme : Master en bioingénieur : gestion des forêts et des espaces naturels, à finalité spécialisée

Année académique : 2017-2018

URI/URL : http://hdl.handle.net/2268.2/5155

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Page 2: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

ASSESSMENT OF UAV POTENTIAL FOR BIOACOUSTIC MONITORING OF BIRDS AND

BATS: TESTS UNDER CONTROLLED CONDITIONS IN BELGIUM

STEPHANE BROSET

TRAVAIL DE FIN D’ETUDES PRESENTE EN VUE DE L’OBTENTION DU DIPLOME DE MASTER BIOINGENIEUR EN GESTION DES FORETS ET ESPACES NATURELS

ANNEE ACADEMIQUE 2017-2018

CO-PROMOTEURS: PR. PHILLIPPE LEJEUNE & DOCTEUR ADRIEN MICHEZ

Page 3: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Toute reproduction du présent document, par quelque procédé que ce soit, ne peut être

réalisée qu'avec l'autorisation de l'auteur et de l'autorité académique de Gembloux Agro-Bio

Tech.

Le présent document n'engage que son auteur.

This document may not be reproduced by any means without the permission of the author and

the Dean of Gembloux Agro-Bio Tech.

This document commits its author only.

Page 4: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

ASSESSMENT OF UAV POTENTIAL FOR BIOACOUSTIC MONITORING OF BIRDS AND

BATS: TESTS UNDER CONTROLLED CONDITIONS IN BELGIUM

STEPHANE BROSET

TRAVAIL DE FIN D’ETUDES PRESENTE EN VUE DE L’OBTENTION DU DIPLOME DE MASTER BIOINGENIEUR EN GESTION DES FORETS ET ESPACES NATURELS

ANNEE ACADEMIQUE 2017-2018

CO-PROMOTEURS: PR. PHILLIPPE LEJEUNE & DOCTEUR ADRIEN MICHEZ

Page 5: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Remerciements Jetiensàremerciersincèrementtouteslespersonnesquim'ontaidéedanslaréalisationdeceTFEetquicontribuentainsiàl‘aboutissementdecescinqannéesd'étudeàlaFacultédeGemblouxAgro-BioTech:

- LeProfesseurPhilippeLejeuneetleDocteurAdrienMichez,mesco-promoteurs,pourleurconfiance,leursconseilsetremarquesconstructives;

- Cédric,technicienàl’unitédeGestiondesRessourcesForestières,pourl’encadrementlorsdessortiesterrains;

- Jean-Yves,instructeurRPAS,pourlaformationàl’attestationdepiloted’RPASsanslaquellejen’auraispaspuvolerdemespropresailes;

- LeGTPlecotusdeNatagoraetenparticulierPierrette,ThierryetBéatricepourleurexpertise,leursoutienmatérielettechnique,leursastuces,leurgentillesseetleuraccueil;

- Lesmembresduclubd’aéromodélismedeBertrixpourlepartagedeleurterraindejeu;

- Éric,pourlamiseàdispositiondesesprairies;- GaëtanetJean-Philippe,mesexpertsornitho,quiontécoutéattentivementpasloin

de5h30d’enregistrements;- Touslespassionnésdebioacoustique,etparticulièrementPeterBoesman,qui

partagentactivementleursenregistrementsenlibreaccès;- Mélanie,pourlacorrectionlinguistique;- LaMeuteélargieetStéphaniepourlesmomentsd’évasionetdecraquage.Unmerci

plusparticulieràGauthierquim’atransmissapassionpourl’ornithologieetquiaconsacréunepartiedesontemps(dès6hdumat’undimanche)pourréaliserdespointsd’écoute;

- Mafamille,mesamisetMadypourlesoutienmoraletlesencouragements.

Page 6: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Abstract Theimportanceofbiodiversitynolongerneedstobedemonstrated.Theconservationofthisheritagerequiresdatawhosecollectionmethodologymayvaryaccordingtothetaxonstudiedandthetargethabitat.Theconstantevolutionoftechnologyallowsnewapproachestobedeveloped in order to increase the quantity and/or quality of these data, in particular bystudyingnewspeciesandhabitats.Forseveralyears,UAVs(unmannedaerialvehicles)havecontributedtotheenhancementofthisdatabasethroughimagery.Todate,veryfewstudiesprovideinformationontheeffectivenessofUAVsforbioacousticmonitoring.Therefore,thismaster’sthesisaimstoevaluatethepotentialofUAVsforbioacousticmonitoringofbirdsandbatsbymeansoftestscarriedoutundercontrolledconditions,i.e.byplayingsoundtracksofthesetaxa.ThemainobjectiveistocomparedetectiondistancesandprobabilitiesbetweenUAVs(quadcopter&fixed-wing)andgroundrecordings.Afewtestswerealsoconductedinvivo to get a first insight into the effectiveness of this technique compared to standardmethods:pointcounts(birds)andpassivegroundrecordings(bats).AlltestswereconductedinWallonia(Belgium).Thesongsof9birdspeciesandthecallsof5batspecies,correspondingtoarepresentativesampleofthesoundvariability intermsoffrequencyandintensity,wereplayedthroughaloudspeakerplacedatdifferentdistancesfromthedrone.Thisexperimentwasrepeatedatseveralaltitudes.Theeffectivedetection radius (EDR) is lower forUAV-basedrecordings thanground-basedrecordings.BatsdetectabilityissensitivetoaltitudemakingtheoverallEDRtwicesmallerforamicrophone flyingat 5m than for ground recordings.However, for themajorityofbirdspecies(5outof9),theEDRremainscloseforbothmethods(difference≤20%)regardlessofaltitude. Under in vivo conditions, the drone has always detected fewer individuals thanstandardmethodsforbothtaxa.These initial results lead to the conclusion that UAV-based bioacoustic monitoringunderestimaterealityandcannotthereforesubstitutestandardmonitoringmethodsinthestudyarea. For avian surveys, thismethod couldbe complementary to traditionalones inordertoobtaindataonthediversityorpresenceoftargetspeciesinareasdifficulttoaccessforhumanbeings.However,thepoorperformanceofchiropteranstestsdoesnotjustifysuchuse.Obviouslytheseresultsareonlyvalidforourequipment,hencetheuseofquieterdroneswillclearlyimprovethem.Extensive testing in less accessible areas such like tropical canopies should therefore beconsideredtoreinforcetheseconclusions.

Page 7: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Résumé L’importance de la diversité biologique n’est plus à démontrer. La conservation de cepatrimoinenécessitedesdonnéesdontlaméthodologiedecollectepeutvarierenfonctiondutaxonétudiéetdel’habitatcible.L’évolutionconstantedelatechnologiepermetdemettresurpieddenouvellesapprochesafind’augmenterlaquantitéet/oulaqualitédecesdonnées,notamment par l’étude de nouvelles espèces ou d’habitats. Les drones participent depuisquelquesannéesàenrichircettebasededonnéesparlebiaisdel’imagerie.Àcejour,trèspeud’étudesrenseignentsurl’efficacitédesdronespourdesinventairesbioacoustiques.Cetravailde fin d’études vise donc à évaluer le potentiel des drones pour des inventairesornithologiques et chiroptérologiques par bioacoustique grâce à des tests effectués enconditions contrôlées, c’est-à-dire en émettant des enregistrements pour ces taxons.L’objectif principal est de comparer les distances et probabilités de détection entre desenregistrementsausoletdesenregistrementsavecunquadricoptèreetundroneàvoilurefixe. Quelques essais ont également été réalisés in vivo pour avoir un premier aperçu del’efficacitédecettetechniquefaceauxméthodestraditionnelles:pointsd’écoute(oiseaux)etenregistrementspassifsausol(chauves-souris).TouslestestsontétéeffectuésenWallonie(Belgique).Leschantsde9espècesd’oiseauetlescrisde5espèceschauves-souris,correspondantàunensemblereprésentatifdelavariabilitésonoreentermesdefréquenceetd’intensité,ontétéémis par un haut-parleur placé à différentes distances du drone. Cette expérience a étérépétéeàplusieursaltitudes.Lerayoneffectifdedétection(RED)s’avèreplusfaiblepourlesenregistrementsdronesquepourceuxexécutésausol.Pour leschauves-souris, ladétectabilitéestsensibleà l’altituderendantglobalementleREDdeuxfoispluspetitpourunmicrophonevolantà5mquepourdesenregistrementsausol.Cependant,pourlamajoritédesespècesd’oiseau(5sur9),leREDreste proche pour les deuxméthodes (différence ≤ 20%) peu importe l’altitude. Lors desconditionsréellesd’inventairedesdeuxtaxons,ledroneatoujoursdétectémoinsd’individusquelesméthodestraditionnelles.Ces premiers résultats permettent de conclure que les inventaires acoustiques par dronesous-estiment la réalité et ne peuvent donc pas remplacer les méthodes d’inventairestraditionnelles. Pour les inventaires ornithologiques, cette méthode pourrait êtrecomplémentaireauxtraditionnellesafind’obtenirdesdonnéesdediversitéoudeprésenced’espèces cibles dans des zones difficiles d’accès pour l’homme. Par contre, les faiblesperformances obtenues pour les chiroptères ne justifient pas une telle utilisation.Évidemmentcesrésultatssontvalablesuniquementpournotrematériel,c’estpourquoiunenetteaméliorationestenvisageableavecunéquipementplussilencieux.Pour renforcer ces conclusions, il faudrait donc envisager des tests approfondis avec undispositifaméliorédansdeszonesd’accessibilitérestreintecommelacanopéetropicaleparexemple.

Page 8: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Table of contents

1 Introduction................................................................................................................11.1 Context...........................................................................................................................11.2 UAV-basedacousticmonitoring:currentstatus...............................................................2

1.2.1 Birds...................................................................................................................................21.2.2 Bats....................................................................................................................................2

1.3 Objectives.......................................................................................................................4

2 Material&Method.....................................................................................................52.1 Testsundercontrolledconditions...................................................................................5

2.1.1 Recordersandspeakersdescription..................................................................................52.1.2 Soundtracks.......................................................................................................................62.1.3 Fixed-wingtrials.................................................................................................................82.1.4 Quadcoptertrials.............................................................................................................112.1.5 Dataanalysis....................................................................................................................13

2.2 Testsunderrealconditions...........................................................................................152.2.1 Birds.................................................................................................................................152.2.2 Batsexperimentalprotocol.............................................................................................17

3 Results&Discussion.................................................................................................193.1 Fixed-wingtrialsundercontrolledconditions................................................................193.2 Quadcoptertrialsundercontrolledconditions..............................................................19

3.2.1 Noisecharacterisation.....................................................................................................193.2.2 Birds.................................................................................................................................273.2.3 Bats..................................................................................................................................39

3.3 Testsunderrealconditions...........................................................................................493.3.1 Birds.................................................................................................................................493.3.2 Bats..................................................................................................................................533.3.3 UAVdisturbanceonwildlife............................................................................................59

3.4 Generaldiscussion........................................................................................................60

4 Conclusion................................................................................................................62

5 References...................................................................................................................i

6 Appendix.....................................................................................................................I

Page 9: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Figures overview Figure1.SpectrogramofCommonPipistrelle(Pipistrelluspipistrellus)echolocationcall

recordedwithaPeersonicRPA2detectorhanging4mbelowaquadcopter(motors=T-motorMN3510;360KV;propellers=T-motor15x5CF;ESC=X-rotor15AOPTO;flightcontroller=3DRPixhawk1;battery=Multistar4Ah4S10CLipo;frame=12mmOD10mmIDwovencarbontubes&1.5mm3Kcarbonplate;LEDlights=5mmred+green12V).Thequadcopternavigatedundersemi-autonomousflightthroughthelandscape(~200malongtreelinessurroundingafield)(Mooreetal.,2018)..................3

Figure2.SpectrogramofMyotisbat(Myotissp.)echolocationcallrecordedwithaPeersonicRPA2detectorhanging4mbelowaquadcopter(motors=T-motorMN3510;360KV;propellers=T-motor15x5CF;ESC=X-rotor15AOPTO;flightcontroller=3DRPixhawk1;battery=Multistar4Ah4S10CLipo;frame=12mmOD10mmIDwovencarbontubes&1.5mm3Kcarbonplate;LEDlights=5mmred+green12V).Thequadcopternavigatedundersemi-autonomousflightalongwaterways,hedgeandtreelines(Moore,2018)...........................................................................................................3

Figure3.Firstfixed-wingdronetested......................................................................................9Figure4.Secondfixed-wingdronetestedandequippedwiththeZOOMH1HandyRecorder9Figure5.Experimentalarrangementforfixed-wingflightsundercontrolconditions.The

fixed-wingflewatseveraldistancesfromthespeaker.Distancesinbracketscorrespondstothebatexperimentationandtheothertothebirdexperimentation.UAVflightaltitudeswere20,40&60mforbirdsand10&20mforbats.Recordingswerealsomadeatgroundlevelasblanksamples(altitude0,withoutUAV).Birdandbattransect-linelengthswererespectivelyof420and70m...............................................10

Figure6.AudioMothinsulationcasingwitha26kg/m3densitypyramidfoam(casing=6x8x7cm;top=13x15cm)........................................................................................................12

Figure7.Experimentalarrangementsforquadcopterflightsundercontrolconditionsaccordingtothestudiedtaxa.Thespeakerwasplacedatseveraldistancesfromthequadcopterhooveringpoint.Thelatterhooveredatmultiplealtitudes.Recordingswerealsodoneatgroundlevelasblanksamples(altitude0,withoutUAV)...........................13

Figure8.MapofbirdpointcountstationsatGembloux,Wallonia,Belgium.OrthophotosfromSPW(2015).............................................................................................................16

Figure9.Spectrogramsofquadcopteraudiblenoisesatseveralverticaldistances,recordedbytheZOOMH1HandyRecorder.Therecorderwasmountedonaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoveritmetrebymetre.Softwareused:RavenLite2.0.............................................................................20

Figure10.Spectrogramsofquadcopterultrasonicnoisesatseveralverticaldistances(1to9m),recordedbytheAudioMothwithouttheinsulationcasing.Therecorderwasmountedonaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoverit.Softwareused:RavenLite2.0..................................................21

Figure11.Spectrogramsofquadcopterultrasonicnoisesatseveralverticaldistances(10to40m),recordedbytheAudioMothwithouttheinsulationcasing.Therecorderwasmountedonaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoverit.Softwareused:RavenLite2.0..................................................22

Figure12.Spectrogramsofquadcopterultrasonicnoisesatseveralverticaldistances(1to9m),recordedbytheAudioMothwiththeinsulationcasing.Therecorderwasmounted

Page 10: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

onaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoverit.Softwareused:RavenLite2.0............................................................23

Figure13.Spectrogramsofquadcopterultrasonicnoisesatseveralverticaldistances(10to20m),recordedbytheAudioMothwiththeinsulationcasing.Therecorderwasmountedonaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoverit.Softwareused:RavenLite2.0..................................................24

Figure14.Spectrogramsofquadcopterultrasonicnoisesat1metreand8metres(correspondingtothenylonlinelength),recordedbytheAudioMothwiththeinsulationcasing.Leftside=UAVonandmotorsswitchedoff,middle=motorsrunningwithoutpropellers,rightside=motorsrunningwithpropellers.Therecorderwasmountedonaone-metretripodwiththemicrophoneorienteddownwardandthedroneascendedoverit.Softwareused:RavenLite2.0..................................................24

Figure15.SyntheticgraphofthesingingrangesintermsoffrequencyoftheselectedbirdspeciescomparedwiththesoundsemittedbythedifferentUAVcomponents.Theintensityoftheredcolourisproportionaltotheamplitudeofthenoise......................26

Figure16.Syntheticgraphoftheemission(echolocation)rangesintermsoffrequencyoftheselectedbatspeciescomparedwiththesoundsemittedbythedifferentUAVcomponents.Theintensityoftheredcolourisproportionaltotheamplitudeofthenoise................................................................................................................................26

Figure17.Logisticregressioncurvesfortheeffectofaltitudeonoverallbirdspeciesdetectability.Calculatedwithandwithoutblanksamplealtitude(=altitude0)andforbothbirdexperts.............................................................................................................27

Figure18.EffectiveDetectionRadiusdependingonbirdspecies,expertandcalculationmethod............................................................................................................................29

Figure19.ComparisonofdetectionprobabilityfunctiondeterminedbythedistancesamplingmethodandbyregressionfortheCommonChaffinch(Control,Expert2).....29

Figure20.DetectionprobabilityfunctionsofCommonBlackbird,CommonChaffinch,CommonReedBunting,CommonWoodPigeon,EurasianBlackcapandEurasianWrenforexpert1onthebasisofgroundrecordings(control).Redpointswerenotusedtobuildtheregressionmodel.............................................................................................31

Figure21.DetectionprobabilityfunctionsofGoldcrest,SedgeWarblerandSongThrushforexpert1onthebasisofgroundrecordings(control)......................................................32

Figure22.DetectionprobabilityfunctionsofCommonBlackbird,CommonChaffinch,CommonReedBunting,CommonWoodPigeon,EurasianBlackcapandEurasianWrenforexpert2onthebasisofgroundrecordings(control).Redpointswerenotusedtobuildtheregressionmodel.............................................................................................33

Figure23.DetectionprobabilityfunctionsofGoldcrest,SedgeWarblerandSongThrushforexpert1onthebasisofgroundrecordings(control).Redpointswerenotusedtobuildtheregressionmodel......................................................................................................34

Figure24.DetectionprobabilityfunctionsofCommonBlackbird,CommonChaffinch,CommonReedBunting,CommonWoodPigeon,EurasianBlackcapandEurasianWrenforexpert1onthebasisofUAVrecordings...................................................................35

Figure25.DetectionprobabilityfunctionsofGoldcrest,SedgeWarblerandSongThrushforexpert1onthebasisofUAVrecordings.Redpointswerenotusedtobuildtheregressionmodel.............................................................................................................36

Figure26.DetectionprobabilityfunctionsofCommonBlackbird,CommonChaffinch,CommonReedBunting,CommonWoodPigeon,EurasianBlackcapandEurasianWren

Page 11: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

forexpert2onthebasisofUAVrecordings.Redpointswerenotusedtobuildtheregressionmodel.............................................................................................................37

Figure27.DetectionprobabilityfunctionsofGoldcrest,SedgeWarblerandSongThrushforexpert2onthebasisofUAVrecordings.........................................................................38

Figure28.Logisticregressioncurvesfortheeffectofaltitudeonoverallbatspeciesdetectability.Calculatedwithandwithoutblanksamplealtitude(=altitude0)............39

Figure29.DetectionprobabilityfunctionsofBarbastelle,Serotine,Natterer’sbat,Myotissp.andNoctule(echolocation&socialcalls)onthebasisofgroundrecordings(altitude0).Redpointswerenotusedtobuildtheregressionmodel...............................................44

Figure30.DetectionprobabilityfunctionsofCommonPipistrelle(echolocation&socialcalls)onthebasisofgroundrecordings(altitude0).Redpointswerenotusedtobuildtheregressionmodel.............................................................................................................45

Figure31.Batdetectionprobabilityfunctionsatanaltitudeof5m.Redpointswerenotusedtobuildtheregressionmodel.Speciesnotincludedwereneverdetected....................46

Figure32.Batdetectionprobabilityfunctionsataltitudesof10and15m.Redpointswerenotusedtobuildtheregressionmodel.Speciesnotincludedwereneverdetected.....47

Figure33.Batdetectionprobabilityfunctionsatanaltitudeof20m....................................48Figure34.SpeciesmeandetectionsperpointforUAVandstandardpointcountsplotted

againstanequivalencyline.“After/before”modality:standardpointcountsconductedjustafterorbeforetheUAVones.(A)Audial&visualdetections;(B)Audialdetections..........................................................................................................................................50

Figure35.SpeciesmeandetectionsperpointforUAVandstandardpointcountsplottedagainstanequivalencyline.“During”modality:standardpointcountsconductedatthesametimeasUAVones.(A)Audial&visualdetections;(B)Audialdetections..............51

Figure36.ExamplesofbatcallsspectrogramsobtainedatthesametimebythegroundrecorderandtheUAVrecorderhooveringat13mintheforest....................................54

Figure37.ExamplesofbatcallsspectrogramsobtainedatthesametimebythegroundrecorderandtheUAVrecorderhooveringat23mintheforest....................................55

Figure38.Examplesofbatcallsspectrograms(Pipistrelluspipistrellus)obtainedatthesametimebythegroundrecorderandtheUAVrecorderhooveringat13mintheedgeofthepond................................................................................................................................56

Figure39.ExamplesofbatcallsspectrogramsobtainedatthesametimebythegroundrecorderandtheUAVrecorderhooveringat23mintheedgeofthepond..................57

Page 12: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Tables overview Table1.Xeno-cantocodesofthebirdsoundtracksselection.Foreachspeciesapreselection

of3to5identifiablesounds(atleast3songs+1or2call(s)and/or1or2alarmcall(s))wasmadefromxeno-canto.Foreachrepetition,thesoundwasrandomlydrawnwithreplacementoutofthispreselection................................................................................7

Table2.Sourcesofthebatsoundtracksselectionusedforeachrepetition.Allthetrackswereadjustedtoobtainafive-seconddurationplayback................................................8

Table3.Locationandenvironmenttypeofthebirdpointcountstations.............................15Table4.Chi-squareTestofIndependencefordifferenceindetectionbetweenthetwo

experts.............................................................................................................................27Table5.Chi-squareTestsofIndependence(p-value)fordifferenceindetectionbetween

severalUAValtitudes,andthusforeachexpert.............................................................28Table6.Chi-squareTestsofIndependence(p-value)fordifferenceindetectionbetween

severalUAValtitudes.NAmeansthattherewasnodetectionatall.............................40Table7.AnalysisofvarianceofthemeansofbatdetectionsinresponsetoUAValtitudes

(withoutaltitude0).........................................................................................................40Table8.MultiplecomparisonsofbatdetectabilitymeansregardingaltitudeusingTukey’s

method............................................................................................................................40Table9.Groupsofaltitudewiththesamebatdetectionrate,determinedbythecomparison

ofmeans..........................................................................................................................41Table10.Comparisonofmanualdetectionpercentage,semi-automaticdetectionefficiency

andEDRforbats,betweenaltitudes.Semi-automaticefficiencycorrespondstofalsenoisewithinmanualdetectionclassifiedasnoisebyKaleidoscopeViewersoftware.EDRvalueswithastarcouldnotbecalculatedbyregression.Theycorrespondthustothefurthestdistancewiththehighestprobabilityofdetection.EDRwerenotcalculatedformanualdetectionunder15%.WeattributedaslashtoEDRforwhichtherewerenotenoughdetectionstocalculate.......................................................................................42

Table11.Comparisonofspeciesrichness(numberofspecies)andabundance(numberofindividuals)perpointcountbetweenstandardandUAVmethods.Standardmethodonlyincludedaudialdetection........................................................................................52

Table12.ComparisonofbatcallsdetectionpercentagesbetweengroundrecorderandUAVrecorderhooveringat13and23mfortwokindsofhabitats(forestandpond)...........58

Page 13: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

Appendix overview Appendix1.Selectionofhighqualitybirdrecordingsfromxeno-canto....................................IAppendix2.MultiplecomparisonofbirdEDR:betweenexperts,betweenground-based

recordings(control)andUAV-basedrecordings,betweencalculationmethods(distancesamplingandregression)..................................................................................................II

Appendix3.Assumptionsverificationofregressionmodels(p-value)fordetectionprobabilityfunctionofbirdspecies.NormalityofresidualscheckedwithShapiro-Wilkand/orKolmogorov-SmirnovtestsandHomoscedasticity(variancehomogeneityofmodelresiduals)checkedwithBreusch-Pagantest..........................................................II

Appendix4.Graphsofbirddetectionprobability(allspecies)dependingondifferentsongfeatures(SPL,maximumfrequency,minimumfrequency,meanfrequency)foreachcombinationofexpertandrecordingtype......................................................................III

Appendix5.Assumptionsverificationforanalysisofvariance(graphicandstatistic)betweenbatdetectabilityandaltitude...........................................................................................IV

Appendix6.Assumptionsverificationofregressionmodels(p-value)fordetectionprobabilityfunctionofbatspecies.NormalityofresidualscheckedwithShapiro-Wilkand/orKolmogorov-SmirnovtestsandHomoscedasticity(variancehomogeneityofmodelresiduals)checkedwithBreusch-Pagantest.........................................................IV

Appendix7.Graphsofbatdetectionprobability(allspecies)dependingondifferentsongfeatures(maximumfrequency,minimumfrequency,meanfrequency,FME)foreachgroupofaltitude...............................................................................................................V

Page 14: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

List of abbreviations

AC AlternatingCurrentACNI AccipiternisusACSC AcrocephalusscirpaceusAECA AegithaloscaudatusALAE AlaudaarvensisALAR AlopochenaegyptiacaANPL AnasplatyrhynchosAPAP ApusapusBUBU ButeobuteoCACA CardueliscannabinaCOCO CorvuscoroneCOMO CorvusmonedulaCOOE ColumbaoenasCOPA ColumbapalumbusDC DirectCurrentDEMA DendrocoposmajorEDR EffectiveDetectionRadiusEMCI EmberizacitrinellaERRU ErithacusrubeculaESC ElectronicSpeedControllerESW EffectiveStripWidthFATI FalcotinnunculusFM FrequencyModulationFME FrequencyofMaximumEnergyFRCO FringillacoelebsFUAT FulicaatraGACH GallinulachloropusGAGL GarrulusglandariusHIRU HirundorusticaiFM InitialFrequencyModulationIPI Inter-pulseIntervalMOAL MotacillaalbaPACA ParuscaeruleusPAMA ParusmajorPD PulseDurationPHCO PhasianuscolchicusPHYCO PhylloscopuscollybitaPIPI PicapicaPOCR PodicepscristatusPOPA PoecilepalustrisPRMO PrunellamodularisQCF Quasi-ConstantFrequencyRPAS RemotelyPilotedAircraftSystem

Page 15: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

SIEU Sittaeuropaea

SOCWAL “SurveillancedesoiseauxcommunsenWallonie”MonitoringprogramforcommonbreedingbirdsinWallonia

SPL SoundPeakLevelSTST SturnussturnusSYAT SylviaatricapillaSYBO SylviaborinSYCO SylviacommunisSYCU SylviacurrucatFM TerminalFrequencyModulationTRTR TroglodytestroglodytesTUME TurdusmerulaUAV UnmannedAerialVehicle

Page 16: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

1

1 Introduction 1.1 Context Nowadayswe are facing an era called the Anthropocene and characterised by amassivebiodiversitylossasaresultofhumanactivities(McCallum,2015;Johnsonetal.,2017).Infact,theMillenniumEcosystemAssessmentreportedacurrentspeciesextinctionrateupto1,000timeshigher thanbackground ratesand forecasteda future rate10 times superior to thecurrentone(MilleniumEcosystemAssessment,2005).Somefurtherevidenceofthisseriousbiodiversitylossisthethreatenedstatusgiventoabout30%ofthespeciesassessedbytheIUCNinthepastdecade(IUCN,2017).Thislossesleadstothealterationofseveralecosystemservices(Cardinaleetal.,2012)andthereforehavedetrimentalimpactsonhumanity.Inthiscontext, it is essential to carry out proper wildlife surveys to highlight any suspiciouspopulation decline and to target endangered species in order to plan appropriateconservationmeasures.Sometaxahavesubstantialecologicalcontributions (e.g.pestscontrol,seeddispersal) likebothbatsandbirds(Kassoetal.,2013;Sekerciogluetal.,2004).Theirpopulationmonitoringis therefore imperative to preserve the benefits of their function within ecosystems.Conventionalmethodologiestoestimateabundanceortodeterminespeciesrichnessofthesetaxaaremainlybasedonacoustics.Examplesincludepoint-countandline-transectsamplingwhicharethemostfrequentlyappliedforbirdcensus(Gregoryetal.,2004;Buckland,2006;Ralphetal.,1995).MorespecificallyinWallonia,amonitoringprogramforcommonbreedingbirds(SOCWAL)wassetupin1990toestimatethepopulationtrendsofthesebirdsovertime.Thisavian survey techniqueconsistsof yearlyaudialandvisual countsona setof specificpoints(Aves,2014).Batsarealsomonitoredthroughacoustictechniquesatacertaintimeoftheyear.Forinstance,censusesbypassiveandactiveultrasonicrecordingsareoftendeployedinthecontextofenvironmentalimpactassessments(Simaretal.,2012).Some innovative techniquescouldheighten thequantityand/or thequalityof thecurrentdatabase. Indeed, the constant evolution of technology allows new approaches to bedeveloped,hencetheuseofdrones—alsocalledunmannedaerialvehicles(UAV)orremotelypilotedaircraftsystems(RPAS)—couldbecontemplatedcarryingoutfaunacensuses.WildlifeUAV-basedsurveyhasalreadybeenconsideredmany times through imagery (Liseinetal.,2013)andtestedspecificallyonbirdswithencouragingresults(Hanetal.,2017;McClellandet al., 2016). In certain situations, its accuracy might substitute human census (Jarrod CHodgsonetal.,2016;Hodgsonetal.,2018).However,droneimagerymonitoringisobviouslylesssuitablefornon-conspicuousspecies (e.g.specieshidden intreesandshrubs,orsmallones).Thisissuecouldbesolvedthankstobioacousticsforacousticallyactivespecieslikebatsandbirds.Audiorecordingsystemsofferawiderangeofbenefitsincomparisonwithpicturerecordingsystem.Theyare lighter,moreenergyefficientandcollectdatamorecompactly(Fristrupetal.,2009).Moreover,audiorecordingsconferadditionaladvantagesoveractivefieldlisteningprocessessuchasamultiplelisteningopportunity(Frommoltetal.,2014;Celis-Murilloetal.,2009),theconsultationbynumerousskilledanalysts(Wilsonetal.,2017),adatacollectionindependentonobserversexpertiselevel(Klingbeiletal.,2015)andanautomaticspeciesidentification(Aideetal.,2013;Zakeri,2017).Forexample,Celis-Murilloetal.,2012have shown that acoustic recordings provide higher probability detections for songbird intropicalareasthanpointcounts.Consequently,thecombinationofadroneandarecorder

Page 17: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

2

deviceseemstobeapromisinginnovativetechniquetotakecensusesinlessaccessibleareaslikehighcanopies,largewetlandsorcliffs.Whenthestudiedareaisonlywalkable(e.g.bogs),dronesmaybeabletotravellongerdistancesfasterthanafieldoperator.1.2 UAV-based acoustic monitoring: current status 1.2.1 Birds Todate,Wilsonetal.(2017)havebeentheonlyonestopublishinpeer-reviewedliteratureastudy which assesses the feasibility of counting songbird using UAVs in the USA. Theysuspended a ZOOMH1Handy Recorder 8metres below aDJI Phantom2 and tested thisequipmentundercontrolledand invivo conditions.Withplaybackofbird recordings, theyfound no significant influence ofUAV flight altitudes (28, 48 and 68m) on detections anddetection radiiwere similar to thoseof standardpoint counts.On the field, they found acomparablenumberofbirdsperUAVandstandardcounts.SpeciesrichnessandabundancewereneverthelessunderestimatesbyUAVcounts,notablyforlow-frequencysingingspeciesandveryabundantspecies.TheyconcludethatUAVassociatedwithbioacousitctechnologiescanbecomeavaluablenewsurveying tool to study songbirds and even other vocal groups. They also incite furtherresearchtoimprovethiscountingtechnique,especiallywithquieterUAV.1.2.2 Bats Todate,thereisnopublishedresearchofbatsmonitoringfeasibilityusingacoustic-mountedUAVs.However,twoBritishfriends–TomAugust,batexpert&TomMoore,dronedesigner,builderandoperator–havebeenexploringthepracticabilityofremotelypilotedsystemsasasurveydeviceforbatssince2014.Thepurposeoftheirprojectcalled“ProjectErebus”istotest whether semi-autonomous vehicles (quadcopter, plane and boat) are able to recordproperbatcalls.Theyarecurrentlywritingapaperwhichwillbesentforpublicationthisyearbutalltheirexperimentationsareavailableontheirwebsite1.Theytestedseveraldesignstogetthebestcompromisebetweenlownoisedisturbances,along flight timeandagood flightstability.Their latest resultsare favourable for the threeplatformsandcanmakethisapproachplausibletobatsurveying(Figures1&2).

1http://projecterebus.weebly.com/blog

Page 18: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

3

Figure 1. Spectrogram of Common Pipistrelle (Pipistrellus pipistrellus) echolocation call recorded with a Peersonic RPA2 detector hanging 4 m below a quadcopter (motors = T-motor MN3510; 360KV; propellers = T-motor 15x5 CF; ESC = X-rotor 15A OPTO; flight controller = 3DR Pixhawk 1; battery = Multistar 4Ah 4S 10C Lipo; frame = 12mm OD 10mm ID woven carbon tubes & 1.5mm 3K carbon plate; LED lights = 5mm red + green 12V). The quadcopter navigated under semi-autonomous flight through the landscape (~200m along tree lines surrounding a field) (Moore et al., 2018).

Figure 2. Spectrogram of Myotis bat (Myotis sp.) echolocation call recorded with a Peersonic RPA2 detector hanging 4 m below a quadcopter (motors = T-motor MN3510; 360KV; propellers = T-motor 15x5 CF; ESC = X-rotor 15A OPTO; flight controller = 3DR Pixhawk 1; battery = Multistar 4Ah 4S 10C Lipo; frame = 12mm OD 10mm ID woven carbon tubes & 1.5mm 3K carbon plate; LED lights = 5mm red + green 12V). The quadcopter navigated under semi-autonomous flight along waterways, hedge and tree lines (Moore, 2018).

Page 19: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

4

1.3 Objectives Theaimofthismaster’sthesis istoassessthepotentialofUAVsinbioacousticsurveysforbirdsandbats,basedonWilson(2017)andMoore(2018)works.Thefirstobjectiveistogivea comparison between detection distances fromUAV-based recordings and ground-basedrecordingsundercontrolledconditionsforasampleofspecies,usingtwokindsofdrones:aquadcopterandafixed-wing.Thesecondobjectiveistoestablisharelationbetweendetectionprobabilitiesandsongfeaturestomakepredictionsonawiderrangeofspecies.Finally,thethirdobjectiveistodeterminethebestoperatingmethod(UAVdevice,flightaltitude)forfieldcensusandtogiveaquickcomparisonbetweenthelatterandtraditionalsurveymethods.

Page 20: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

5

2 Material & Method 2.1 Tests under controlled conditions Before embarking on any real censuses, tests under controlled conditions are needed todeterminetheeffectivedetectionradius,thelinkbetweendetectionprobabilitiesandsongfeatures,andthebestoperatingmethodforthefield.Globally, these experimentations consist of a drone recorder device (quadcopter or fixed-wing)flyingatseveralaltitudesandhorizontaldistancesfromaspeakerwhichplaysacousticsignalsofdifferentspecies.2.1.1 Recorders and speakers description

2.1.1.1 Birds Birdvocalisationsareemittedintheaudiblerange(20Hzto20kHz),whichallowstheuseofclassicalrecorderandspeaker.WechosetheZOOMH1HandyRecorderbecauseitwasusedbyWilson(2017)foritsmultipleattributes. Indeed, it is lightweight(88g, includingbatteries),compact(44x136x31mm),low-cost (> 90€) and includes a built-in cardioidmicrophone, guaranteeing a good soundrecordingfromthegroundwhileminimisingdronenoise.Forallthetests,theZOOMH1HandyRecorderwasequippedwithitshairywindscreen(WSU-1) and the low-cut filter was switched on, both to reducewind noise and low frequencywhirringsoundsfromthedrone.Fileswererecordedin24-bitWAVformatwithasamplingrateof44.1kHz.BirdsongswerebroadcastthroughaJBLFlip4wirelessloudspeaker(outputpower=2x8W;frequencyresponse=70Hzto20kHz)connectedviaBluetoothtoasmartphone.Theskyward-facingspeakerwasraised1.5mabovethegroundthankstoatripod,thoughbirdsongpostcould vary depending on species and environment (Mikkonen, 1985; Polak, 2014; Hulme,1957;Mathevonetal.,2005;Mathevonetal.,1997).Therefore,thisheightwaschosenasthemostrepresentativesongperchheightof theselectedspecies (seesection2.1.2.1). Inanycase,noeffectofaltitudeondetectabilitywasexpected(Wilson,2017),hencechangingthetripodheightforeachspeciesdidnotmatter.

2.1.1.2 Bats Batsproduceultrasonicsignals(>20kHz);hencethenecessityofusingaspecificrecorderandspeaker.AudioMoth is designed as a low-cost open-source environmental acoustic logger forbiodiversity and environmentalmonitoring, which can record both audible range and fullspectrumultrasound2.Wechosethissensormainlybecauseitissmall(58x48x15mm),light(80g,includingbatteries)andinexpensive(43€)andthusmakeitperfecttodeploybydrones.

2https://www.openacousticdevices.info/audiomoth

Page 21: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

6

Moreover,AudioMothisalsooneofthetworecordersusedfortheprojectErebusandafirstscientificpublicationbringsoutthepotentialofsuchadeviceforbioacousticresearch(Hilletal.,2018).Forall theexperimentations,AudioMoth recordinggainandsample ratewerecustomisedrespectivelyonmediumand384kHzviatheAudioMothConfigurationSoftware.Therecorderwasalsocoveredwithahomemadeinsulationcasingforalltrials(seesection2.1.4.3;Figure6).BatcallswereplayedbyanAvisoftUltraSoundGatePlayerBLPro2mountedonaone-metretripod and connected via an USB cable to a laptop. This transmitter is a full-featuredultrasound playback unit for luring bats which comprises a dual speaker system emittingbetween1and125kHz3.Duringourtrials,theultrasoundplaybackunitwasonlypoweredfromtheUSBinterfaceofthecomputer, therebydeliveringanoutputpowerof1.5Wcorresponding toamaximumsound pressure level (SPL) of 100 dB at 10 cm. Volume was configured on the playbacksoftware and on the unit itself, so as to maximise the sound level and to avoid clipping(distortion).2.1.2 Soundtracks

2.1.2.1 Birds As UAV-based monitoring especially target hard-to-access areas like forest canopies orwetlands, a set of 9 European bird species, which are occurring in wooded or wetenvironments, was chosen: Eurasian Wren (Troglodytes troglodytes), Sedge Warbler(Acrocephalus schoenobaenus), Common Reed Bunting (Emberiza schoeniclus), CommonBlackbird(Turdusmerula),EurasianBlackcap(Sylviaatricapilla),CommonChaffinch(Fringillacoelebs),SongThrush(Turdusphilomelos),Goldcrest(Regulusregulus)andCommonWoodPigeon(Columbapalumbus)(DGARNE,2010).Thisselectionwasnotbasedsolelyonhabitat.Infact,thesebirdspeciesembodyarepresentativesampleoftheinvivosoundvariabilityintermsof frequencyand intensity.For instance, theGoldcresthasaweakandhigh-pitchedsong,whereastheCommonWoodPigeon’ssongisverydeep.Tobe consistentwith the vocalisation intensityof eachbird species, soundtracks SPLwasmeasured at 1 m with a GRDE sound level meter (frequency range = 31.5 to 8500 Hz;measuringrange=30to130dB;accuracy=±1.5dB)andadjustedavoidingclippingthankstobothAudacitysoftwareandspeakervolumeaccordingtoBrackenbury(1979):EurasianWren=90dB,SedgeWarbler=80dB,CommonReedBunting=78dB,CommonBlackbird=87dB,EurasianBlackcap=88dB,CommonChaffinch=86dB,SongThrush=100dB,Goldcrest=75dB.Nevertheless,thispaperdoesnotmentionaSPLfortheCommonWoodPigeonwhichwasconsequentlyapproximatedat90dB.Asthepropagationofsounddependsonmeteorologicalparameters(VanDamme,2014),theexperimentation was repeated 3 times for every species x altitude x distance modality.Repetitionsdidnotoccuronthesamedaytomitigatetheimpactoftheweather.Foreach

3http://www.avisoft.com/usg/usgplayerblpro.htm

Page 22: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

7

repetition,birdsounds(song,calloralarmcall)wererandomlydrawnwithreplacementoutofapre-selection(Table1).ThelatterwasformedonthebasisofthreetofivegoodqualityBelgianrecordingsfromxeno-canto:atleast3songs+1or2call(s)and/or1oralarmcall(s)(Appendix 1). This action also allowed to take into account the variability of the differentacousticsignalsproducedbythesamespeciesorbetweenindividuals(Krebsetal.,1980).WithAudacity2.2.1.0,allsoundtrackswerecuttokeepathirty-seconddurationplaybackandsomewereadjustedtomitigateinterferencesofotherspecies.Table 1. Xeno-canto codes of the bird soundtracks selection. For each species a preselection of 3 to 5 identifiable sounds (at least 3 songs + 1 or 2 call(s) and/or 1 or 2 alarm call(s)) was made from xeno-canto. For each repetition, the sound was randomly drawn with replacement out of this preselection.

Quadcopter Fixed Wing

Bird Species repetition 1 repetition 2 repetition 3 repetition 1 repetition 2 repetition 3

Common Blackbird XC104604 XC104604 XC104604 XC281435 XC281441 XC281435

Common Chaffinch XC397523 XC397523 XC365672 XC281752 XC397523 XC281752

Common Wood Pigeon XC394506 XC378844 XC378844 XC380054 XC380054 XC394506

Eurasian Blackcap XC381478 XC393063 XC393063 XC379971 XC381478 XC379948

Eurasian Wren XC281371 XC379950 XC281377 XC281377 XC281378 XC379950

Goldcrest XC281601 XC281601 XC281606 XC281601 XC364246 XC281606

Reed Bunting XC35208 XC281818 XC281818 XC281817 XC281817 XC35208

Sedge Warbler XC281519 XC393062 XC281524 XC393062 XC281522 XC281522

Song Thrush XC281452 XC281452 XC281459 XC348842 XC281452 XC379973

2.1.2.2 Bats

Drone surveysmightbeuseful to recordhigh-flyingbat speciesand/oroccurring in forestcanopies.Inaccordancewiththesecriteria,fiveEuropeanbatspeciesweresettledon:Noctule(Nyctalus noctula), Serotine (Eptesicus serotinus), Barbastelle (Barbastella barbastellus),CommonPipistrelle(Pipistrelluspipistrellus)andNatterer’sBat(Myotisnattereri)(Gaillardetal.,2010;DGARNE,2010;Roemeretal.,2017).Thelatterarealsoarepresentativesampleofawide rangeof bat signals in termsof pattern, frequency, pulseduration and inter-pulseinterval (IPI) (Zoogdiervereniging, n.d.; Laurent et al., 2009). For example, the call of theNatterer’sbatischaracterisedbyasteepfrequencymodulation(FM)withaninitialfrequencyat15kHz,a terminal frequencyat135kHzanda frequencyofmaximumenergy (FME)at43 kHz,whereas theNoctule emits quasi-constant frequency (QFC)with a FME at 20 kHz(Laurent,2009;Verkemetal.,2014).Thesoundlevelofsomebatcallscanreachupto110-135dBat10cm(Jakobsenetal.,2013;Fentonetal.,2016).Nonetheless,thesignalpowerisvariableamongspecies.Forinstance,thecallsofNoctuleareloudwhereascallsofNatterer’sbatarequiteweak(Laurent,2009).Unfortunately, literaturedoesnotprovideanySPLfortheselectedspecies.That’swhytheoutputvolumeofthespeakerwasmaximisedwhileavoidingclipping,inordertoemitsignalsnear100dBat10cm.Moreover,wedidn’thaveanyultrasonicsoundlevelmetretochecksoundtracksintensity.

Page 23: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

8

Bats emit two kinds of calls: echolocation and social calls. The first ones serve as arepresentationofthespacetomovearoundandtohunt(Laurent,2009).Thesecondonesserveasintraspecificcommunication(Barlowetal.,1997;Budenzetal.,2009).Usually, social calls are emitted at lower frequencies than echolocation calls. Indeed, theconditionforasoundwavetocrossanobstacleinitspathisthatthediameteroftheobstacleissmallerthanthewavelength.Thatiswhythehigherthefrequencyis—andsotheshorterthewavelengthis—thegreateristheprobabilitytohitanobstaclewhosedimensionsblockthissound.Inaddition,thetypeofenvironment,thetemperature,theairhumidityandthewind influence the sound attenuation proportionally to the frequency. As a result, lowfrequenciesdissipatelessquicklyandallowcommunicationoveralongerdistance(Tupinier,1996).CommonPipistrelle’sandNoctule’ssocialcallsareoftenmetonthefieldandsowereaddedtotheplaylisttobetterhighlightthepotentialimpactoffrequencyondetectability.Like the bird experimentation, there were three repetitions to take into account soundpropagationvariabilitybecauseofparameterssuchastemperature,humidityoratmosphericpressure.Obviously,therearealsovariationsbetweencallsofthesamespecies.Indeed,batsadapttheirsignalstovisualisetheirenvironmentoptimally.Inclosedhabitats,thesignalwillalwaysmoveontoanFMandinopenhabitats,theQFCcomponentincreases(Verkem,2014).TheIPIcanalsobesmallerinclosedhabitatstoimprovetheresolution.However,goodqualitybatcallsareverydifficulttoobtain,hencethesamesoundtrackswereusedforeachrepetition(Table2).Table 2. Sources of the bat soundtracks selection used for each repetition. All the tracks were adjusted to obtain a five-second duration playback.

Call type Bat species Source

Echolocation

Barbastelle http://www.chauves-souris-passion.be/barbastella_barbastellus_279.htm

Common Pipistrelle Plecotus (Natagora)

Natterer's Bat http://www.bristol.ac.uk/biology/research/behaviour/batlab/downloads/echolocation/

Noctule Plecotus (Natagora) Serotine Plecotus (Natagora)

Social Common Pipistrelle Track 6.73 (Middelton et al., 2014) Noctule http://www.batcalls.com

All the soundtrackswereamplified (avoidingclipping)andadjustedwithRavenLite2.0 toobtainafive-seconddurationplayback. 2.1.3 Fixed-wing trials Basically, these trials tried to emulate traditional transect-line sampling, described byBucklandetal.(1993),undercontrolledconditionsinordertoestimateaglobaleffectivestripwidth(ESW)forfixed-wingdrones.

Page 24: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

9

The advantage of resorting to remotely piloted planes are multiple against multicopters.Firstly,theirabilitytosoarallowsthemtohaveaverymuchlongerflighttime.Secondly,theycancarryahigherloadandthusaccuratemeasuringdevices,whichareusuallyheavier.Finally,theywouldprovequieterastheyonlyincludeonemotorandpropeller.

2.1.3.1 UAV description Atfirst,westartedourtrialswithanentirelyhomemadeplane(Figure3).Itwascharacterisedby a wingspan of 3.20 m (quite big to reduce the flight speed and consequently windinterferences),apayloadof1.5kg,abatteryLipo3S-2000mA,anoverpoweredmotor(550W)toturnabiggerpropelleratlowspeedandsotolessendronenoise,atelemetrymoduleforsemi-autonomousflights,andLEDsplusreflectivepaintforabettervisibilityinthedarkness.

Figure 3.First fixed-wing drone tested.

Unfortunately,thisdronecrashedfatallyduetoatechnicalproblembeforeanydatacouldbecollected. Therefore, a substitution planewas used for all the following experimentationsexplainedinthissection(Figure4).Thelatterwassmalleranddidnothaveanyaileronsonitswings,makingitquickerandlessmanoeuvrable.Therecorderwasfixedbehindthewings,ontheonehand,tomoveitasfarawayfromthepropelleraspossibleand,ontheotherhand,nottomovethecentreofgravitytoomuch.

Figure 4. Second fixed-wing drone tested and equipped with the ZOOM H1 Handy Recorder

Page 25: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

10

2.1.3.2 Study area Trialswereconductedbetween1:30pmand6:00pminmid-April2018attheflyingsiteofthe“ModelAirClubdesArdennesBertrix”(49°51'25"N,5°17'24"E).Thissiteprovidesquiteaflatopenareaofabout7hectares.Suchawideopenspaceslightly reducestheabundanceofcompetingnoisesfromrealbirdsoranthropogenicultrasoundinterferences.Weatherconditionsweredryandsunny(temperaturearound25°C,windspeed<15km/h).

2.1.3.3 Experimental system The plane, equippedwith the recording device, soared at several altitudes andhorizontaldistancesfromthespeakerforeachcallmodalityplayedbythelatter(Figure5).

Figure 5. Experimental arrangement for fixed-wing flights under control conditions. The fixed-wing flew at several distances from the speaker. Distances in brackets corresponds to the bat experimentation and the other to the bird experimentation. UAV flight altitudes were 20, 40 & 60m for birds and 10 & 20m for bats. Recordings were also made at ground level as blank samples (altitude 0, without UAV). Bird and bat transect-line lengths were respectively of 420 and 70 m.

Thesoundlevel(dB)decreasesaccordingtothefollowingequation:

𝑑𝐵#$%&'()*, = 𝑑𝐵#$%&'()*. − 20 ∗ log𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1

whichmeansthatthereisanattenuationof6dBeverytimethedistancedoubles(Tupinier,1996; Van Damme, 2014).Wemade the hypothesis that depending on the distance, thedetectionprobabilitywouldfollowanon-linearreductiontoo.Therefore,thedistancescaleforourtestswasalsonon-linear.Thischoicediminishedsuperfluousdistancemodalitiesthatwewouldhavehadwithaconstantincrement.Wilson(2017)showedthatbirdplaybackswerenotdetectedbeyond90m,thusweoptedforthe following bird distancemodalities: 0, 5, 10, 20, 40 and 80m. The chosen bird flightaltitudeswere20,40and60mlikeWilson(2017)trials.

Page 26: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

11

As high-frequency signals do not spread as far as low-frequency ones, we chose smallerdistances and altitudes for bats.Wewent for 0, 2.5, 5, 10, 20 and 40m for the distancemodalitiesand,10and20mforthealtitudemodalities.Withanaverageflightspeedof45km/h,thetransect-linelengthwasabout420mforbirdsinordertoplaythewhole30-secondsoundtrack.Forbats,seventymetreswereenough.For both taxa, we did blank samples—recordings at ground level without any UAV(altitude0)—tobetterunderstandtheeffectoftheUAVondetectability.Finally,wehad:

- 9speciesx4altitudesx6distancesx3repetitionsforbirds(n=648);- 7callsx3altitudesx6distancesx3repetitionsforbats(n=378).

Asthedroneactuallyusedwasnoisier,fasterandlessmanoeuvrablethantheoriginalonetheresults were not as good as expected. Therefore, after testing the detection of themostaudiblespecies(i.e.thebestdetectedbythequadcopter),thefixed-wingpartwasaborted.2.1.4 Quadcopter trials Basically,theseteststriedtoemulatetraditionalpoint-countsampling,describedbyBuckland(1993),undercontrolledconditionsinordertoestimateaglobalEDRforthequadcopter.Themainadvantageofmulticoptersoverremotelypilotedplanesisitsbettermanoeuvrabilityandtheopportunitytoattachthemicrophonefurtherawayfromthepropellers.Moreover,multicopter recordings are less affected by wind noise than plane recordings thanks tohoveringflights.

2.1.4.1 UAV description The quadcopter usedwas aDJI Phantom4 PRO.Wehad four batteries, each providing amaximumflighttimeof30minutes.Todecreasepropellersandmotorsnoise,recorderswerehungbelowthedronethankstoan8-metrenylonline.

2.1.4.2 Study area Trialswereconductedbetween1:30pmand6:00pmmid-AprilandJune2018attwodifferentsites:the“ModelAirClubdesArdennesBertrix”(49°51'25"N,5°17'24"E)andatwo-hectaremeadowinHenri-Chapelle(50°40'17"N,5°56'54"E).Weather conditions were dry and sunny (temperature around 20-25°C, wind speed <15km/h).

2.1.4.3 Noise characterisation and mitigation First,wedeterminedthebestnylonlinelengthtominimisethedronenoisewhilekeepingagoodflightstability.Infact,UAVoscillationsduetoasuspendedrecorderfollowthephysicallawsofthemomentofaforce,whichis“ameasureofitstendencytocauseabodytorotate

Page 27: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

12

aboutaspecificpointoraxis”(Luebkemanetal.,1995).“Themagnitudeofthemomentofaforceactingaboutapointoraxisisdirectlyproportionaltothedistanceoftheforcefromthepoint or axis” (Luebkeman, 1995). In other words, the longer the nylon line is, themoreunstablethedrone.Bothbirdandbatrecordersweremountedonaone-metretripodwhilethequadcopterwasascendingmetrebymetre, startingat1m fromrecordersandup to45m.Eachstepwasmarkedwithawhistle.Wecheckedallspectrogramstoseefromwhichheightthedronenoisebecameinsignificantintermsofaudibleand/orultrasonicsoundlevel,wechosealinelengthforbirdandbatexperimentations(both8m,seesection3.2.1)andempiricallytestedflightstabilitywithsomeconventionalmanoeuvres.The Erebus project showed that drones emit ultrasounds. They noticed that microphoneinsulationwithfoammitigatedtheseinterferences.Consequently,theaforementionedtrialswerebothdonewithandwithoutacousticfoamfortheAudioMothdevicetojustify.Webuiltaninsulationcasingforthelatterwitha26kg/m3densitypyramidfoam(casing=6x8x7cm;top=13x15cm)(Figure6).Themicrophonewasorienteddownward.

2.1.4.4 Experimental system The quadcopter—equippedwith the recording device suspended 8mbelowwith a nylonline—hooveredatseveralaltitudesfromthespeaker,whichwasmovedtomultiplehorizontaldistancesfromthehooveringpoint,andthusforeachcallmodalityplayed(Figure7).Distanceandaltitudemodalitieswereexactlythesameastheplanetrials(seesection2.1.3.3),exceptfor2extrabataltitudes(5and15m)addedforpurposesofimprovingthepotentialeffectofaltitudes.Infact,quadcoptersareeasiertooperatethanfixed-wingdrones:flying5mabovethegroundistooriskyforfixed-wingdrones.Ithastobenotedthatallaltitudesforthequadcoptercorrespondtotheheightoftherecorderandthereforeitisnecessarytoaddthelengthofthenylonline(8m)toknowtherealhooveringaltitudeoftheUAV.Finally,wehad:

- 9speciesx4altitudesx6distancesx3repetitionsforbirds(n=648);- 7callsx5altitudesx6distancesx3repetitionsforbats(n=630).

Figure 6. AudioMoth insulation casing with a 26 kg/m3 density pyramid foam (casing = 6x8x7 cm; top = 13x15 cm)

Page 28: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

13

Figure 7. Experimental arrangements for quadcopter flights under control conditions according to the studied taxa. The speaker was placed at several distances from the quadcopter hoovering point. The latter hoovered at multiple altitudes. Recordings were also done at ground level as blank samples (altitude 0, without UAV).

2.1.5 Data analysis

2.1.5.1 Birds

At first, the recordings were filtered to attenuate drone noise by means of the “noisereduction”effectonAudacitysoftware(noisereductiondB=16;sensitivity=13;frequencysmoothing = 8). This operation guaranteed a better listening comfort, while preservingunalteredbirdsongs.Then, they were randomly numbered on Excel to be analysed by two experiencedbirdwatchers.Employingexternalstakeholdersandrandomlynumberingtracksavoidedanybiasknowingtheselectedspecies,altitudesanddistancesinadvance.Wechosetwoexpertsratherthanonebecausebirdsongsrecognitiondependsonpersonalskills.Theylistenedtoeachrecordingandassociatedthemwithoneorseveralspecies(sometimestherewererealbirdinterferences)andanaudibilitylevelcodeforeveryspeciesrecognised:0=inaudible,1=difficulttohear,2=audible,3=wellaudibleandclear.Thespeciesandtheapproximatepositionoftherealbirdswhointerferedwiththesoundtrackswerenoteddown.Whentherealbirdwasadifferentspeciesfromthesoundtrack,therewasnoproblemsincetheexpertsgaveacodeforeachspeciesheard.Fortunately,weneverhadasingingbirdofthesamespeciesasthesoundtrackthatwasbeingplayed.Inthiscasewewouldhavetheseexperts’outputs.Afterwards,wecheckediftheidentifiedspecieswerecorrect.Fornon-correctidentification,thecode1,2or3waschangedinto0,unlessthewrongspeciesidentificationwasthesameeverytime(e.g.identifyingallSedgeWarblerrecordingsasReedWarbler).Thiskindoferrorwaslinkedtotheanalystskillsandnottothesongsequencequality.Then,weclassifiedtheseresultsintotwodistinctgroupsofdetectability:codes2and3as“detected”andcode0as“non-detected”.

Page 29: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

14

Forthestatisticalanalysis,wefirstcheckediftherewerevariationsofdetectabilitydependingonexpertandaltitudeusingchi-squaretestsandlogisticregressions.Onthebasisofthoseresults,ESWandEDRwerecalculatedusingtwomethods:the“Distance”packageinR,basedontwocandidatemodelsofdetectioncurves,Half-normalandUniform(Milleretal.,2016),andthrougharegressionoftherealdetectionprobability(proportionofrecordingsdetected)regardingthedistance,stillwithR.TheESW/EDRisthedistancefromthetransect/point-countstation for which the number of individuals missed within it is equal to the number ofindividualsdetectedbeyondit(Buckland,1993),andisobtainedaccordingtothefollowingformula:

𝐸𝑆𝑊 = 𝑝 ∗ 𝑤and𝐸𝐷𝑅 = 𝑤 ∗ 𝑝

wherewisthemaximumdistanceofdetectionandpthedetectionprobability(Guélinetal.,2017).Itscalculationisasfollows:

𝑝 = 𝑔(𝑥) 𝑥 𝑑𝑥I

J

whereg(x) is the detection probability function. For line transects, 𝑥 = .

I and for point

counts, 𝑥 = ,KIL(Kéryetal.,2015).

We rejected the two other frequently used candidatemodels: Hazard Rate and NegativeExponential (Miller, 2016; Guélin, 2017). The first was dismissed because, with our smallnumberofdetections,itprovidedanaberrantdetectionfunctionorwasnotabletofitone.Thesecondwasdismissedbecausetheshapeofanegativeexponential(dramaticdeclineovershortdistances)doesnotfitwithpoint-countdetectioncurve(upholdingofaprobabilitycloseto 1 until sound level attenuated by distance approaches the hearing threshold) (Guélin,2017). We exclusively selected the model using the Akaike’s Information Criterion (AIC).Normally,models should first be checked using theGoodness of fit (Miller, 2016; Guélin,2017). However, we found that models with greater Cramer-von Mises p-value and AICunderestimatedtheEDR.Finally,wechecked inR if therewasa relationbetweenthesong features (frequencyandintensity)andthedetectionprobability.

2.1.5.2 Bats Primarily,songsequenceswererandomlynumberedonExceltoremovethepossibilitytobeinfluencedby theknowledgeofdistance,altitudeand species/callpatterns. Subsequently,theyweredirectlyclassifiedbyourselvesas“detected”(identifiabletracks)or“notdetected”(non-identifiabletracks)onthebasisofthespectrograms.Wedidnotinvolveexternalexpertsasidentificationthankstospectrogramswasbasedonobjectivecriteria(signalshape,PD,IPI,FME,minimumandmaximumfrequencies),usingthesameprincipleastheidentificationtreeofsomebatcallanalysissoftware4.RecordingsofNatterer’sbatwhichwerenotidentifiable

4https://www.ecoobs.com/cnt-batIdent.html

Page 30: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

15

to thespecies levelwereclassifiedas “Myotis sp.”.TheMyotis classification thusgroupedtogetheralltheidentifiableNatterer’sbatrecordingsatthespeciesleveloronlytothegenuslevel. Finally, all the recordings were treated with Kaleidoscope Viewer 4.5.4 to see thenumberoftracksthatwouldhavebeenclassifiedasnoiseifwehaddoneasemi-automaticidentification.Statisticalanalysisfollowedthesameoutlineasthebirdpart(seesection2.1.5.1). 2.2 Tests under real conditions Togetafirstinsightintotheeffectivenessofquadcopter-basedacousticmonitoring,wedidafewcomparative trialson the fieldwith conventional surveymethods.Weused the sameequipmentastheundercontroltrials.2.2.1 Birds We compared quadcopter-based counts with the SOCWAL approach (five-minute pointcounts).UAVflightsweredonebyadroneoperatorwhiletraditionalpointcountsweredonebyanexperiencedbirdwatcher.Theequipmentwasthesameasthetestsundercontrol.

2.2.1.1 Study area Weconductedourtrialson17June2018between6:00and9:30aminGembloux,ateightstationsseparatedatleastby200mandfarfromhabitation(Table3).Halfofthemtookplacein awoodedareaand theotherhalf in anopenarea (mainly agricultural).Woodedareasconsistedofpatchesofdeciduoustrees(oaks,hornbeams,etc.)andopenareasweremainlycropsofcereals,beetsandlegumesorsometimesgrasslands(Figure8).Weatherconditionsweredryandsunny(windspeed<15km/h).

Table 3. Location and environment type of the bird point count stations.

GPS location Environment

Station 1 50°34'10.88"N, 4°42'13.86"E wooded Station 2 50°34'16.63"N, 4°42'20.19"E open

Station 3 50°34'12.48"N, 4°42'29.49"E open

Station 4 50°34'2.44"N, 4°42'29.56"E open Station 5 50°35'10.06"N, 4°47'15.69"E wooded

Station 6 50°35'30.17"N, 4°47'31.10"E open Station 7 50°35'38.72"N, 4°47'13.45"E wooded

Station 8 50°35'37.76"N, 4°46'58.15"E wooded

Page 31: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

16

Figure 8. Map of bird point count stations at Gembloux, Wallonia, Belgium. Orthophotos from SPW (2015).

2.2.1.2 Experimental setup

UAV-basedpointcountsconsistedofatake-off100mfromthepointofinteresttoavoidanybehaviouralmodifications (escape or song cessation) of themost easily disrupted species(JarrodC.Hodgsonetal.,2016).Thequadcopterascendedtothedesiredaltitudeandreachedthestationbyhorizontaltransposition.Thechosenaltitudewas48mfromtheground(40mfortherecorder)becauseweshowedthatflightheighthadnoinfluenceondetectability(seesection3.2.3).Forty-eightmetreswereacceptableforourpoint-countsamples.Infact,therecorderwasfaroverthetreecanopyandbalancingequipmentsafetyagainstthedroneflyingautonomy, therewas no need to fly higher.Moreover, itwas proved that therewere nodisturbanceeffectsonwaterbirds formulticopter flyingabove40m(McEvoyetal.,2016).Some were approached without any behavioural response to within 4 m (Vas et al.,2015).However, this altitude should be revised for other areas. For instance, we canexceptionallyfindtreesmeasuringupto60mhighinWallonia(Dedryetal.,2015).Thedronedevicehooveredandrecordedforfiveminutesatthestation.Alltherecordingswerethenlistenedtobythebirdwatcherwhonotedeverybirddetectionandallocatedthemtoaspeciesidentification.

Page 32: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

17

Forstandardpointcounts,allbirddetectionswerewrittendownasvisualoraudialintoanorthonormalsystemwherethe intersectionof thetwoaxesrepresentedthecentreof thestation.Two counts in wooded areas as well as two in open areas were started by the standardapproach and directly followed by the RPAS recording. And vice versa for the other fourcounts. The aim is to compensate potential bird disturbance biases caused by the droneand/orbythebirdwatcher’smovementstowardsthestation.For the stations started by standard count, the bird expert realised his five-minute datacollectionwhilethedroneoperatorremainedatthelaunchpoint100maway.Assoonastheclassicalcountwascomplete,theUAVwassenttothehooveringpoint.Duringthisfive-minuterecording,theexpertstayedinplaceandwasnotingbirddetectionsagain.Theexpert’sabilityto listen tobirdswasobviouslydistortedby thedronenoise.However, this biaswas alsopresentontherecordedsoundtracksandtheindividualsonsitewereexactlythesameforbothtechniques,offeringagoodcomparison.TherewasnosimultaneouslisteningforthepointcountsstartedwiththeUAV.Theexpertandthedroneoperatorstayed100mawaywhilethedronewasrecordingatthestation.Thebirdwatcherwenttothestationafterthedronereturnedtohistask.We compared themean detections per point for each species betweenUAV-based pointcountsandstandardpointcountsconductedbefore/afterUAV-basedpointcounts,andalsobetweenUAV-basedpointcountsandstandardpointcountsconductedduringUAV-basedpointcounts.2.2.2 Bats experimental protocol Asidefromtestingthequadcoptertoknowifsuccessful recordingscouldhavebeenmadeunder controlled conditions, we were also interested in whether the recorder on thequadcopter would have recorded bat calls that were not detectable on the ground. Forinstance,masts from20to25metresaresometimesdeployed inWalloniatorecordhigh-flyingspecies,thusUAVmightbeanalternativemethod.

2.2.2.1 Study area Ourtestingwascarriedouton15June2018between10:30and11:59pmintheGrünhautforest. Two stations were chosen, one open habitat and one closed habitat: the pond(50°38'47.34"N,5°55'6.17"E)andtheforest(50°39'6.88"N,5°55'47.21"E).Weatherconditionsweresuitableforbatstohunt:noprecipitation,temperaturearound15°Candwindspeedunder10km/h.

2.2.2.2 Experimental setup DJIPhantomquadcoptersarealreadylitthankstotheirLEDsystembuttoimprovethenightvisibilitywiththesuspendedrecorder(8mbelow),weaddedredLEDlightsonthetopandbottomoftheinsulationcasing.Thetoponeallowedtherecordertobeseenfromtheon-boardcameraoftheUAV,whilethebottomoneallowedvisibilityfromtheground.

Page 33: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

18

Forbothstations,agroundrecorder(alsoanAudioMoth)wasattached3metresabovethegroundonatreetrunk.TheUAVhooveredattwodifferentaltitudes—21and31m(hence13and23mforthedronerecorder)—exactlyabovethegroundrecorderfor fiveminutesforeach. Theywere thereby 10 and 20m between the two recorderswhichwere recordingsimultaneously.RecordingsweresortedasbatsignalorasnoisebyKaleidoscopeViewer.Then,wecheckedandidentifiedthebatsignaloutputs,calculatedthedetectionpercentageforallmodalitiesandcomparedsubjectivelythespectrogramsqualitybetweenUAVandgroundrecordings.

Page 34: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

19

3 Results & Discussion 3.1 Fixed-wing trials under controlled conditions Thesetestsdidnotprovideanyexploitableresults.Forinstance,eventheloudestsongbirdsliketheCommonBlackbird,whichwasdetectedupto80mradiallywiththequadcopter,werenotaudiblebyflyingat20mhigh(the lowestaltitude) justoverthespeaker(thesmallesthorizontaldistance).Indeed,onlythepropellerandwindnoiseswereheard.Ourpropellerwaslocatedinthefrontofthedroneinoppositionwiththefixed-wingdroneoftheErebusproject(theTalon)whichwasattherear.Toreducedronenoise,theydecidedtofix the recorder at the front, which increases considerably wind interferences byaerodynamics.Therefore,ourdesignshouldhavebeenwithfewerinterferences.However,inourexperimentationtherecorderwaslikelytooclosetothepropellertoallowproperbirdandbatrecordings.Theseunsuccessfulresultscombinedwithmanoeuvrabilitydifficulties(crashes)urgedusnottoachievealltheplannedmodalitiesandthereforeweabandonedthisparttofocusonthemulticopter.3.2 Quadcopter trials under controlled conditions 3.2.1 Noise characterisation TheUAVemittedmainlylow-frequencynoisewhosesoundleveldecreasedwithdistancetostabilisearound55dBfrom7m(Figure9).Thissoundlevel isquiteclosetotheoneinanoutdoorenvironmentwithoutparticularnoise(around45dB).Significant ultrasounds—also decreasing with distance—were delivered by the drone too(Figures10 to13). Theyare characterisedby amaximal frequencyof about45 kHz andaminimalfrequencyofabout35kHz,withtransmissionofthreepulsationspersecond.Withoutacousticinsulationonthemicrophone,noisevolumesat5mwererespectivelyof85,70and85 for low,mediumandhigh frequencies (Figure10).Withacoustic insulation,wegot thesameresultsat1m(Figure12).Theseresultsthereforejustifiedtheuseofourfoamcasingbyshowingasignificantreductioninnylonlinelength.However,thesesignalsonlydisappearedfrom25mwithoutinsulationandfrom15mwithinsulation(Figures11&13),whichmeansthatevenwithacousticfoamwewerenotabletogettotallysuppressinterferences.

Page 35: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

20

Figure 9. Spectrograms of quadcopter audible noises at several vertical distances, recorded by the ZOOM H1 Handy Recorder. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it metre by metre. Software used: Raven Lite 2.0.

Page 36: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

21

Figure 10. Spectrograms of quadcopter ultrasonic noises at several vertical distances (1 to 9m), recorded by the AudioMoth without the insulation casing. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it. Software used: Raven Lite 2.0.

Page 37: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

22

Figure 11. Spectrograms of quadcopter ultrasonic noises at several vertical distances (10 to 40m), recorded by the AudioMoth without the insulation casing. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it. Software used: Raven Lite 2.0.

Finally,wechoseaneight-metrenylonlineforbothtaxa.Wecouldhavetakenaseven-metrelineforthebirdsbecausetherewasnosoundleveldifferencebetween7and8m(Figure9).However,therewasaslightdifferenceforultrasoundinfavourofalengthof8m(Figure12),andthusforaneaseofuseweoptedforaconstant lengthforeachexperimentespeciallysincethedronewasstillstablewithaneight-metrenylonline.Ashighfrequenciesdissipateoverashorterdistance(Tupinier,1996),wecouldhaveexpectedashorterlengthtomitigatetheUAVultrasonicnoise,butourresultsstillconcurredwithotherreferencesthatrecommendamicrophoneatleast3mawayfromthequadcoptertoreduceultrasonic interferences efficiently and 8m away for audible interferences (Moore, 2018;Wilson,2017).

Page 38: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

23

Figure 12. Spectrograms of quadcopter ultrasonic noises at several vertical distances (1 to 9m), recorded by the AudioMoth with the insulation casing. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it. Software used: Raven Lite 2.0.

Page 39: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

24

Figure 13. Spectrograms of quadcopter ultrasonic noises at several vertical distances (10 to 20m), recorded by the AudioMoth with the insulation casing. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it. Software used: Raven Lite 2.0.

Figure 14. Spectrograms of quadcopter ultrasonic noises at 1 metre and 8 metres (corresponding to the nylon line length), recorded by the AudioMoth with the insulation casing. Left side = UAV on and motors switched off, middle = motors running without propellers, right side = motors running with propellers. The recorder was mounted on a one-metre tripod with the microphone oriented downward and the drone ascended over it. Software used: Raven Lite 2.0.

Page 40: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

25

Theseultrasoundsdidnotcomefromthemotorsand/orthepropellersbecausetheywerealreadyemittedwhentheUAVwaspoweredupwithoutstartingthemotors(Figure14).Theirsoundlevelaswellastheirpatterndidnotchangewhenthemotorswererunning,butthesoundlevelwasaround85dBat1manddecreasedto60dBat8m.Consequently,thenylonlinelengthhadagreatimpactonthisspecificinterference.Themaincomponentsofaquadcopterare:

- oneradioreceiverwhichrelaystheoperatorinstructionstotheflightcontroller;- oneflightcontrollerwhichisthe“brain”ofthedrone;- four ESCs which relay rotation speed instructions from the flight controller to its

motor;- fourmotorswhicharebrushlessinourcase;- fourpropellers;- andonebattery(Leclercq,2018).

WemadethehypothesisthattheseultrasonicsignalscomefromtheESCs.Infact,“brushlessDC motor accomplishes commutation electronically” (Zhao et al., 2011).“Commutation is the process of switching the current applied to themotor's phases in asequence thatwill generatemotion” (Schimdt, 2017). “Usually the high-side switches arecontrolled using pulse-width modulation (PWM), which converts a DC voltage into amodulatedvoltage”(Zhao,2011).ThisgenerationofanACvoltagecontrolledbytheESCmightbetheoriginofthisnoise.Motors and ESCs generate themost of the noise at a short distance (1m), butwhen thisdistance increases (8 m, like for our bat recordings) propellers have a more significantinfluenceonnoisethanmotors,especiallyunder10kHz(+10dB)(Figure14).That’swhyotherpropellerdesignsmightreducetheseacousticinterferences.Thesehighlightednoisescouldmasktheacousticsignalsofcertainspecies(Figures15&16).Wilson(2017)showedthatbirdspecieswithalow-frequencysongcouldbeheavilymaskedbytheUAVnoise.TheCommonWoodPigeon,whichhasaverylow-frequencysong,wasnoexceptiontothisrulebutUAVnoisehadlesseffectonalterationofacousticsignalsfortheotherselectedspecies(Figure15).Forbats,threeoftheselectedspecies(Barbastelle,SerotineandNatterer’sBat)emittedcallswhosefrequencyrangepartiallypassesthroughtheESCnoiseband(Figure16).Thiswasareal issue for theBarbastellewhose typical 35-41 kHzalternating signals in steepFMwascompletelymeltedintotheESCnoise.Nevertheless,Serotine’sflatFMsignalscombinedwithaFMEaround25-27kHzandtheverywiderangeoffrequenciesofNatterer’sbatcallsallowedtheidentificationofthesetwospecies.Wealsonotethatnocall(echolocationandsocial)ofthevariousbatspecieswasstronglyimpactedbymotorsandpropellersnoise(Figure16).

Page 41: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

26

Figure 15. Synthetic graph of the singing ranges in terms of frequency of the selected bird species compared with the sounds emitted by the different UAV components. The intensity of the red colour is proportional to the amplitude of the noise.

Figure 16. Synthetic graph of the emission (echolocation) ranges in terms of frequency of the selected bat species compared with the sounds emitted by the different UAV components. The intensity of the red colour is proportional to the amplitude of the noise.

Page 42: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

27

3.2.2 Birds

3.2.2.1 Expert and altitude effects Wefoundaveryhighlysignificantdifferenceinoveralldetectionratebetweenourtwobirdexperts(p-value<0.01;Table4),meaningthatdetectabilityisdefinitelysubjectiveforeachexpertanddependsparticularlyontheirskills.Wethusdecidedtokeepthedataofthetwoexpertsintwoseparategroupsforallthefollowingcalculations.Table 4. Chi-square Test of Independence for difference in detection between the two experts.

n X-squared df p-value

1296 29.8164 1 4.75e-08***

Logisticregressioncurvesshowedforbothexpertsastabledetectability(allspecies)betweenthe three UAV altitudes, whereas it was rather decreasing when altitude 0 is included(Figure17).

Figure 17. Logistic regression curves for the effect of altitude on overall bird species detectability. Calculated with and without blank sample altitude (= altitude 0) and for both bird experts.

Thereweresignificantdifferencesindetectabilityforsomespeciesbetweentheblanksample(altitude0)andUAValtitudes,especiallyforexpert2(Table5).WhenweonlyconsideredthedifferentUAValtitudeswithoutthecontrolaltitude,therewasnomoresignificantdifference

Page 43: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

28

in detectability (chi-square test for altitudes 20, 40 & 60; Table 5). Thereby, UAV-basedrecordingsdonotprovidethesamedetectionratethanground-basedrecordings.Table5resultsconfirmedanddetailedtheonesfromfigure16.Infact,somespeciesliketheCommonWoodPigeonseemedtobemoreaffectedbythedronenoise.On this basis we decided tomake two groups out of these altitudes for EDR calculation:“Control”foraltitude0and“UAV”foraltitudes20,40and60.

Table 5. Chi-square Tests of Independence (p-value) for difference in detection between several UAV altitudes, and thus for each expert.

Chi-square test for altitudes

0, 20, 40, 60 Chi-square test for altitudes

20, 40, 60

Bird species p-value expert 1

(n = 72) p-value expert 2

(n = 72) p-value expert 1

(n = 54) p-value expert 2

(n = 54)

Common Blackbird 0.6279 0.3035 0.5698 0.5698 Common Chaffinch 0.3497 0.2026 0.7251 0.492 Common Reed Bunting 0.3335 0.002408** 0.5664 0.09275

Common Wood Pigeon 3.231e-06*** 5.133e-05* 0.1054 0.4235 Eurasian Blackcap 0.1718 0.2741 0.3926 0.9285 Eurasian Wren 0.3535 0.02517* 0.348 0.09558

Goldcrest 0.6471 0.04819* 0.7227 0.05697. Sedge Warbler 0.009072** 7.7e-06*** 0.595 0.358

Song Thrush 0.3497 0.01959** 0.7251 0.2212

3.2.2.2 Effective Detection Radius Asweknewexactlythenumberofdetectedandundetectedaudiorecordingsforeachspecies,wewereabletobuilddetectionprobabilityfunctionsonthebasisoftherealprobabilitiesofdetection5alongsidedistancesamplingdetectioncurveswhichonlyuseddetectedspecies.WefoundimportantdifferencesbetweenourtwoEDRcalculationmethods(Figure18;atablewithexactvaluesisavailableAppendix2).Therearetwopossiblereasonsforthisdiscrepancy.First,distancesamplingonlyconsidereddetectedindividualstobuilditsdetectioncurve.Asourtestsundercontrolledconditionsusedanon-lineardistancescale,numberofdetectionsunder20metresisexcessivelyhigherthanthenumberofdetectionsover20metres.Itledtoadetectionfunctionwhichunderestimatedtherealdetectionprobability(Figure19).Secondly,thefirstassumptionofdistancesamplingtheory,whichis“objectsonthelineorpointaredetectedwithcertain”org(0)=1(Buckland,1993),issometimesviolated(Detectionprobability<1at0m;Figures21&24to27).Thus,outliersoccured.Hence,wedecidedtofocusonregressionEDRfortheinterpretation.We note that overall EDR were lower for UAV-based recordings than ground-basedrecordings, but Common Blackbird, Common Chaffinch, Common Reed Bunting, EurasianBlackcapandGoldcrestEDRwereatmost20%smaller forat leastoneof thetwoexperts(Figure18).ThevocalisationsofCommonWoodPigeon,EurasianWren,SedgeWarblerandSong

5Realdetectionprobability=detected/(detected+undetected)

Page 44: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

29

Figure 18. Effective Detection Radius depending on bird species, expert and calculation method.

Figure 19. Comparison of detection probability function determined by the distance sampling method and by regression for the Common Chaffinch (Control, Expert 2).

Page 45: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

30

Thrusharethusmoreaffectedbydroneinterferences.Forinstance,SedgeWarblerEDRfellsharplyby59.1m(-79%)whenweusedtheUAVdevice.SongThrushandEurasianWrenweretheloudestspeciesinourselection(respectively100and 90 dB),whichmade the interpretation of these results complicated in terms of songfeatures. In fact,wewouldhaveexpectedamuch lowersensitivity toUAVnoise forhigh-volume songs.Moreover, these cases cannot be generalised to all noisy species since theCommonBlackbirdhasacousticfeaturesveryclosetotheSongThrush(Figure15)andwasnotreallyaffectedbyUAVnoise.However,identificationofbirdsongsisnotexclusivelybasedonpitchandvolume;musicality,trills,nasality,voicebreaks,polyphonyareotherimportantcriteriatotake intoaccount (Weber,2014).SomespecificsongpatternsweresurelymoredistortedbytheUAVnoise,makingtheEDRspeciesdependant.Obviously,wenotethatthehighestground-basedEDRweremostlyfromloudspecies.Forbothexperts,controlEDRoftheCommonWoodPigeonwastwiceaslargeastheUAVone.WeexpectedthattheCommonWoodPigeonsongsrecordedwithourUAVdevicewouldnot be detected properly because of drone noise. However even the EDR from groundrecordingswaslowcomparedtotheotherloudspecies,especiallysincelowfrequencieshaveto travel greater distances. We attribute these small EDR to the quality of the playedsoundtracks—CommonWood Pigeons aremistrustful and often high perched resulting inremote recordings)—and to the low cut filter on the microphone, which might make itsvocalisationslessperceptible.EDRdifferenceswerealsofoundbetweenexpertsasthechi-squaretestsuggested.Forcertainspecies,thisdifferencewasimportant.Goldcrest’sEDRwas3timessmallerforexpert2thanforexpert1(expert1regression>30m;expert2regression<10m;Table6).Thisgapislinkedtotheabilitytohearthehigh-frequencysongofthisspecieswhichdeclineswithage(Tuckeretal.,2014). Infact,expert1 is inhistwentiesratherthanexpert2isover55yearsold.PlayingcallsoralarmcallsforspeciesliketheSedgeWarblercouldalsobeareasonofthisdivergence.Infact,callsareoftenlessspecificthansongsandthusneedadvancedskillstobeidentified.EDRgaveusaglobalideaofthedistancewhereindividualsarethemostlikelytobedetected,but not the possible maximal distances of detection. This information was provided byregressionswhichmodelleddetectionprobabilityfunctionsonthebasisoftheproportionofdetected and undetected recordings (Figures 20 to 27). The assumptions of all theseregressionswerecheckedinAppendix3.Controlregressioncurveswereallbuiltonthebasisofa100percentdetectionrateat0mandweremainlynon-linear(powerequation3)aswepredicted(Figures20to23).CommonBlackbird, Common Chaffinch and Song Thrush could have been detected beyondexperimentaldistancesbybothexpertsfromgroundrecordings(>100m;Figures20to23).UAVregressioncurveswererarelybuiltonthebasisofa100percentdetectionrateat0mandweremainlylinear,contrarytoourexpectationsthatagreedwiththetheoreticallawofsoundattenuationintheair(Figures24to27).CommonBlackbird,CommonChaffinchweretheonlysongbirdswhichweresometimesdetectedat80mbybothexpertsfromUAV-basedrecordingsandcouldhavebeendetectedbeyondthis(Figures24&26).

Page 46: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

31

Figure 20. Detection probability functions of Common Blackbird, Common Chaffinch, Common Reed Bunting, Common Wood Pigeon, Eurasian Blackcap and Eurasian Wren for expert 1 on the basis of ground recordings (control). Red points were not used to build the regression model.

Page 47: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

32

Figure 21. Detection probability functions of Goldcrest, Sedge Warbler and Song Thrush for expert 1 on the basis of ground recordings (control).

Page 48: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

33

Figure 22. Detection probability functions of Common Blackbird, Common Chaffinch, Common Reed Bunting, Common Wood Pigeon, Eurasian Blackcap and Eurasian Wren for expert 2 on the basis of ground recordings (control). Red points were not used to build the regression model.

Page 49: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

34

Figure 23. Detection probability functions of Goldcrest, Sedge Warbler and Song Thrush for expert 1 on the basis of ground recordings (control). Red points were not used to build the regression model.

Page 50: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

35

Figure 24. Detection probability functions of Common Blackbird, Common Chaffinch, Common Reed Bunting, Common Wood Pigeon, Eurasian Blackcap and Eurasian Wren for expert 1 on the basis of UAV recordings.

Page 51: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

36

Figure 25. Detection probability functions of Goldcrest, Sedge Warbler and Song Thrush for expert 1 on the basis of UAV recordings. Red points were not used to build the regression model.

Page 52: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

37

Figure 26. Detection probability functions of Common Blackbird, Common Chaffinch, Common Reed Bunting, Common Wood Pigeon, Eurasian Blackcap and Eurasian Wren for expert 2 on the basis of UAV recordings. Red points were not used to build the regression model.

Page 53: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

38

Figure 27. Detection probability functions of Goldcrest, Sedge Warbler and Song Thrush for expert 2 on the basis of UAV recordings.

Toconclude,wedemonstratedthatdetectionrateandEDRofground-basedandUAV-basedrecordingswere quite similar, nevertheless it does not necessarilymean thanUAV-basedrecordingswilldetectthesamenumberofindividualsoramountofspeciesthanfieldworkers.Literatureprovedseveraltimesbetterresultswithbioacousticsrecordersthanwithoperatorsonthefield(Acevedoetal.,2006;Zwartetal.,2014).However,ourlesssensitiverecordercould show otherwise for our survey experimentations (Wilson, 2017). In fact, some birdspeciescanbedetectedover250mduringpoint-countsurveys(Guélin,2017).

3.2.2.3 Song features regressions Graphicillustrationsofdetectionprobabilitydependingonsongfeaturessuchassoundlevel,minimal, maximal and mean frequencies did not show any clear relation between thesevariables(Appendix4).Infact,notrendlinecouldbeplotted.Consequently,expertswerenotsignificantlyaffectedbysongfeatureseitherfromofgroundrecordingsorUAVrecordings.Theseresultsjustifyourprevioushypothesismadeinsection3.2.2.1.

Page 54: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

39

3.2.3 Bats

3.2.3.1 Altitude effect

Logistic regression curves showed a declining detectability (all species) for an increasingaltitude,withorwithoutthealtitude0inthemodel(Figure28).Therefore,wedemonstratedthat bat call detection was affected by small variations in flight altitude. This result is inconformitywiththefindingsoftheprojectErebus:detectionofbroadcastultrasoundsat10mandnomoreat20m.Forbats, thecombinationofthedronenoiseandtheflightaltitudedistorteddetectability.

Figure 28. Logistic regression curves for the effect of altitude on overall bat species detectability. Calculated with and without blank sample altitude (= altitude 0).

Detectabilitydependedsignificantlyonflightaltitudeforallbatspecies,evenwithoutblanksample recordings (p-value < 0.05; Table 6). The situation remained the same for low-frequencyecholocationcalls(Noctule)orsocialcallswhosepropagationdistancewashigher.Thereby,thechoiceoftheUAVflightaltitudeduringmonitoringwillbeadeterminingfactorto detect bats effectively. For example, an effective vertical detection of less than 10 munderneaththeforestcanopyshouldbeconsiderediftherecorderissuspendedjustabovetreetops(detectability>0.5;Figure28).Especiallysincetheexperimentaltestswerecarriedoutinopenareasandthefoliagemayattenuatethebatcalls(Martensetal.,1981).Thisdependencywascertainlyduetothepropagationpropertiesofultrasoundbutalsototheorientationoftheloudspeaker.Indeed,thecylindricalshapeofthebirdloudspeakermadethe emission of bird songsmore omnidirectional and therefore able to propagate bettervertically.Thebeamwidthofcallstransmittedbytheultrasonicspeakerwasmuchlimited(horizontalemissions).Nevertheless,thishypothesisshouldnotbe interpretedasabiasofourexperimentalsetupsincesonarcallsofbatcanbehighlydirectionalonthefield,especiallywheneitherfrequencyoremittersizeishigh(Surlykkeetal.,2012;Jakobsen,2013).

Page 55: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

40

Table 6. Chi-square Tests of Independence (p-value) for difference in detection between several UAV altitudes. NA means that there was no detection at all.

Chi-square test for altitudes 0, 5, 10, 15, 20

Chi-square test for altitudes 5, 10, 15, 20

Call type Bat species p-value (n = 90) p-value (n = 72)

Echolocation

Barbastelle 3.398e-10 *** NA Common Pipistrelle 4.427e-06 *** 0.00084 *** Natterer's Bat (Myotis) 3.195e-06 *** NA (0.0005318 ***) Noctule 6.927e-05 *** 0.000501 *** Serotine 2.838e-05 *** 0.0002368 ***

Social Common Pipistrelle 1.612e-05 *** 0.00034 ***

Noctule 0.0001306 *** 0.00648 ***

OnthebasisoftheseobservationswedecidedtocomparestatisticallymeansofdetectionsinresponsetotheUAValtitudesthankstoaone-wayANOVA(AssumptionscheckedinAppendix5).TheideawastomakegroupsofaltitudesforEDRcalculation,keepingourblanksamplealtitudeapart.TheANOVAshowedasignificanteffectofaltitudeondetectability(p-value<0.05;Table7).Detectabilitiesofaltitudes5and20mweresignificantlydifferentanditwasalmosttrueforaltitudes5and15m(Table8).Pairwisecomparisonsgaveustherebythreedistinctgroups:altitude5,altitudes10&15andaltitude20(Table9).Finally,wehadfourgroupsforEDRcalculationbyaddingtheblanksamplealtitude.

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F) altitude 3 7586.1 2528.69 3.391 0.03169 *

Residuals 28 20880.1 745.72

Multiple Comparisons of Means: Tukey Contrasts

Estimate Std. Error t value Pr(>|t|)

10 - 5 = 0 -11.81 13.65 -0.865 0.8226 15 - 5 = 0 -33.33 13.65 -2.441 0.0923 . 20 - 5 = 0 -37.48 13.65 -2.745 0.0483 *

15 - 10 = 0 -21.51 13.65 -1.576 0.4083 20 - 10 =0 -25.66 13.65 -1.879 0.2595 20 - 15 = 0 -4.15 13.65 -0.304 0.9900

Table 7. Analysis of variance of the means of bat detections in response to UAV altitudes (without altitude 0).

Table 8. Multiple comparisons of bat detectability means regarding altitude using Tukey’s method.

Page 56: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

41

Altitude Group

5 b 10 ab 15 ab 20 a

3.2.3.2 Effective Detection Radius

We also found important differences for bats between our two EDR calculationmethods(Table10),hencewedecidedtofocusonregressionstointerpretEDRforthesamereasonsasdiscussedinsection3.2.2.2.WenotethatoverallEDRwerestronglylowerforUAV-basedrecordingsthanground-basedrecordings. Globally, EDR was halved between altitude 0 and altitude 5, except for theSerotinewhoseEDRonlydeclined from18.3 to17.3m(Table10).Thisdrop isevenmoremarkedathigheraltitudes.TheBarbastelle(aswehaveanticipated,seesection3.2.1)andtheNatterer’sbatwerenolongeridentifiablewhenthedronewasrecordingatanyflightaltitude.ThelatterwasstilleffectivelydetectableasMyotisspeciesbutonlyupto5metreshigh.Infact, steep FMwhich are characteristic of the genus were still observable, but very highfrequencieswerequicklyandstronglyattenuated,therebyreducingtheverywidebandwidthtypicalofMyotisnattereri.Social callswere effectively detected at further distances than echolocation calls,with orwithoutusingthedrone:+5.4mfortheNoctuleand+22.5mfortheCommonPipistrelleatground level (altitude 0; Table 10). We demonstrated thus that low-frequency ultrasonicsignals,likeNoctule’secholocationandsocialcalls,orCommonPipistrellesocialcallshadagreaterdetectionrangethanhigh-frequencyultrasonicsignals.Ingeneral,EDRweresmallerthanexpected.Asanillustration,callsofNoctulecanbringtonearly150m(Laurent,2009)butourmaximumEDRforthisspecieswasonlyaround35-40m(altitude 0; Table 10). We could not expect to detect its echolocation calls over 45 m(Figure 29). Another example is the Common Pipistrelle echolocation calls which wererecordedat10-15mfromUAVdeviceduringtheprojectErebustests.Forourexperimentaltests,theyweredetectedwithinthisrangewithoutusingthedrone(Figure30),butwhenwehooveredthequadcopteratthelowestaltitude(5m),EDRwas2.5m(Table10)andmaximumdetectiondistancewas5m(Figure30).Consequently,wemadethehypothesisthatourEDRwereunderestimated.Firstofall,ourexperimentationswerebiasedbythespeakerpowerwhichlimitedcallintensity.Transmittedsoundtracks never exceeded a sound level of 100dB at 10 cm, thus limiting the effectivedetectionradiusofcertainloudspeciessuchastheNoctule.Nevertheless,wedidnothaveaspecific sound level foreachspeciesand thereforewecannotaffirmthat speciesemittingweakcalls,suchastheNatterer’sbat,weresubjectedtoanEDRunderestimation.

Table 9. Groups of altitude with the same bat detection rate, determined by the comparison of means.

Page 57: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

42

Table 10. Comparison of manual detection percentage, semi-automatic detection efficiency and EDR for bats, between altitudes. Semi-automatic efficiency corresponds to false noise within manual detection classified as noise by Kaleidoscope Viewer software. EDR values with a star could not be calculated by regression. They correspond thus to the furthest distance with the highest probability of detection. EDR were not calculated for manual detection under 15%. We attributed a slash to EDR for which there were not enough detections to calculate them.

Altitude 0m (Control)

Call type Bat species Manual detection (%)

Semi-automatic

efficiency (%)

EDR Distance Sampling (m)

EDR Regression (m)

Echolocation

Barbastelle 61.1 36.4 4.8 9.3 Common Pipistrelle 61.1 9.1 4.8 9.3 Natterer's Bat (Myotis) 60.0 (66.7) 0.0 (16.7) 4.2 (6.9) 5.0 (16.0) Noctule 88.9 0.0 13.6 34.6 Serotine 72.2 23.1 7.3 18.3

Social Common Pipistrelle 77.8 14.3 13.6 31.8 Noctule 100.0 5.6 14.7 40.0

Altitude 5m

Call type Bat species Manual

detection (%)

Semi-automatic

efficiency (%)

EDR Distance Sampling (m)

EDR Regression (m)

Echolocation

Barbastelle 0.0 / / / Common Pipistrelle 38.9 85.7 3.8 2.5* Natterer's Bat (Myotis) 0.0 (44.4) / (75.0) / (4.6) / (5*) Noctule 83.3 40.0 7.7 19.8 Serotine 66.7 75.0 6.9 16.0

Social Common Pipistrelle 72.2 61.5 7.1 17.3 Noctule 83.3 26.7 7.7 19.8

Altitudes 10 & 15m

Call type Bat species Manual

detection (%)

Semi-automatic

efficiency (%)

EDR Distance Sampling (m)

EDR Regression (m)

Echolocation

Barbastelle 0.0 / / / Common Pipistrelle 5.6 100.0 / / Natterer's Bat (Myotis) 0.0 (11.1) / (100.0) / / Noctule 63.9 82.6 7.3 16.8 Serotine 33.3 100.0 8.1 10*

Social Common Pipistrelle 27.8 90.0 6.6 5* Noctule 66.7 83.3 7.2 5*

Altitude 20m

Call type Bat species Manual

detection (%)

Semi-automatic

efficiency (%)

EDR Distance Sampling (m)

EDR Regression (m)

Echolocation

Barbastelle 0.0 / / / Common Pipistrelle 0.0 / / / Natterer's Bat (Myotis) 0.0 (0.0) / / / Noctule 27.8 100.0 6.5 5* Serotine 5.6 100.0 / /

Social Common Pipistrelle 16.7 100.0 / 10* Noctule 38.9 100.0 7.0 10*

Page 58: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

43

Secondly,trialswereconductedduringthedaytimetoavoidrealbatinterferences.“Daytimevertical temperature profiles typically create refractive regimes that imposemore severelimitsonmaximumrangeofdetection”(Fristrup,2009).Moreover,therelativehumidityintheairisalsohigheratnightandassoundattenuationdecreaseswhenmoistureincreases,soundspropagatefurtherandfasterduringnighttime(VanDamme,2014).Itshouldthereforebeappropriatedtoretrythesametestswithamorepowerfulspeaker,measurementandadjustmentofcallsoundlevelsinconjunctionwithrealityandevenhigherqualitysoundtracks(assoundlevelisdirectlydependenttosoundtrackquality)toconfirmthisunderestimationassumption.Manualdetectionpercentagesillustratedtheeffectofaltitudeondetectability:calldetectionwasover60%atground levelanddramatically fellbetween0 to38.9%at20metreshigh(Table10).Altitudealsoaffectedtheabilityofourbatcallanalysissoftwaretodetectcallsproperly.Indeed,thesoftwareassignedafalsenoiseclassificationfrom0to36.4%ofmanualdetectionsaccordingtospecies,withtherecordingsfromgroundlevel,andthuswasefficient(Table 10).However, it already assigned a false noise classification from26.7 to 85.7%ofmanualdetectionsaccordingtospecies,withthefive-metrehighUAVrecordings,andthuswasnot efficient anymore (Table 10). Thesepercentages still increasedwhen the altitudeincreased:nomorecallsweredetectedsemi-automatouslyat20metres.SuchresultsmeanthattheaptitudeofUAVnoisetodrownoutbatsignalswassignificantforourbatcallanalysissoftware.ThisefficiencyassessmentisarealissuetoconsiderUAV-basedbioacousticmonitoringforbatsbecausemanualanalysisofalargenumberofrecordingsisextremelytime-consumingsincebatsemitseveralcallspersecond.Therebytherequirementtoanalysedataentirelymanuallyisaverylimitingfactorofthisnewtechnique.Regression curves of detection probability depending on distance—whose assumptions ofwerecheckedinAppendix6—wereallnon-linear(powerequation2or3)butrarelybuiltonthebasisofa100percentdetectionrateat0mforUAV-basedrecordings(Figures29to33).Thiswasprobablyduetothedirectionalityoftheultrasoundtransmittedbythespeaker(coneshape)combinedwithtosoundlevelwhichmadebetterdetectionratesatsmalldistancesover0m(2.5and5m).Indeed,acertaindistancewasneededfortheacousticsignalstoreachthe microphone efficiently overhead. The ground-based recordings were obviously notaffectedbythisphenomenonbecauseforanyhorizontaldistancethemicrophonewasalwaysinthetrajectoryofthetransmittedsignal.Finally,ourEDRresultshighlighteddeficienciesandpitfallsofbatUAV-basedrecordingslikethe restricteddetection range, thesensitivity tocall frequencies, the inability todetectallspeciesliketheBarbastelleandtheinefficiencyofbatcallanalysissoftwares.However,itstilldoesnottotallyrejecttheuseofthistechniquebecausethedifferencebetweenUAV-basedandground-basedrecordingswasduetothecombinationofthedronenoiseandthealtitudedifference.Infact,wedidnotcomparerecordingswithandwithoutdroneuseatthesameverticaldistancefromthespeaker.ItcouldthereforebepossiblethatUAVdevicedetectmoreindividualsthangroundrecorderforsomehigh-flyingspecies.Thetestsunderrealconditionswillallowustoanswerthisquestion.

Page 59: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

44

Figure 29. Detection probability functions of Barbastelle, Serotine, Natterer’s bat, Myotis sp. and Noctule (echolocation & social calls) on the basis of ground recordings (altitude 0). Red points were not used to build the regression model.

Page 60: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

45

Figure 30. Detection probability functions of Common Pipistrelle (echolocation & social calls) on the basis of ground recordings (altitude 0). Red points were not used to build the regression model.

Page 61: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

46

Figure 31. Bat detection probability functions at an altitude of 5 m. Red points were not used to build the regression model. Species not included were never detected.

Page 62: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

47

Figure 32. Bat detection probability functions at altitudes of 10 and 15 m. Red points were not used to build the regression model. Species not included were never detected.

Page 63: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

48

Figure 33. Bat detection probability functions at an altitude of 20 m.

3.2.3.3 Song feature regressions We previously found that low-frequency signals like social calls were better detected.However, graphs of detection probability depending on song features such as minimal,maximal,meanandpeakfrequenciesdidnotshowanyclearrelationbetweenthesevariables(Appendix7).Indeed,noregressionmodelcouldbebuilt.Nevertheless,weobservedagreatertendencyofhighdetectionprobabilitiestocoincidewithlowerfrequencyparameters(min,max,mean and peak) for an altitude higher than 10metres. Thus, frequency features incombinationwithaltitudehadaneffectondetectabilityevenifitcouldnotbemodelled.

Page 64: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

49

3.3 Tests under real conditions 3.3.1 Birds Atotalof39birdspecieswereidentifiedduringourfieldsession:ACNI,ACSC,AECA,ALAE,ALAR,ANPL,APAP,BUBU,CACA,COCO,COMO,COOE,COPA,DEMA,EMCI,ERRU,FATI,FRCO,FUAT,GACH,GAGL,HIRU,MOAL,PACA,PAMA,PHCO,PHYCO,PIPI,POCR,POPA,PRMO,SIEU,STST,SYAT,SYBO,SYCO,SYCU,TRTR,TUME.Allofthemweredetectedonstandardpointcounts(26inopenareas,26inwoodedareas),butonly12speciesweredetectedonUAVpointcounts(7inopenareas,9inwoodedareas).Visual detections were also taken into account during standard point counts, thus somespeciesescapedfromtheUAVcensus.Forinstance,raptors(BUBU,FATI)weredetectedonlyvisuallybutthiscannotbeseenonthegraphs inFigures34&35astheirobservationwasratherraremakingtheiraveragenumberperpointverylow.OneofthereasonsforthethreetimeslowertotalspecificrichnessforUAV-basedmonitoringisthereforetheabsenceofvisualdetectionforthelatter.However,intermsofabundanceforthemostdetectedspecies,themeansofaudialdetectionsandalldetections(audial&visual)perpointdidnotreallydiffer(Figures34and35). In fact,weonlyobservedadifference for certain species suchas theCommonWoodPigeon (COPA)or theSkylark (ALAE)whoseabundancewere increasedbyvisualdetections(flyingflocks).ThedifferenceinoveralleffectivenessofthetwocountingmethodscanbeseeninFigure34,i.e.itgivesanefficiencytrendratherthananexactcomparisonsincetheUAVandbirdwatcherdata were not collected at the same time (at least 5-minute interval). As a reminder,performing standard point counts sometimes before and sometimes after the UAV pointcounts allowed to take into account and to counterbalance the potential escape effectsresulting from the operating procedure of two techniques. Then, figure 35 makes acomparisonofthetwotechniquesatthesametimewithacommonUAVnoisebias,thusthespecificrichnessandabundancearesupposedtobeidentical(pointsontheequivalencyline),at least for audial detections, whether the two approaches are equivalent.We found anoveralltendencyofUAVpointcountstounderestimateallspeciesabundance,especiallyforverycommonspeciesliketheEurasianWren(TRTR),theCommonChaffinch(FRCO)andtheEurasianBlackcap(SYAT)(ChartB;Figures34).Theseunderestimationswerelessimportantfortheexactcomparison(Figure35).TheCarrionCrow(COCO),theCommonPheasant(PHCO)andtheWesternJackdaw(COMO)wereevenbetterdetectedwiththedronerecordingsthanby the field operator (audial detection only) (Chart B; Figure 35). However, it cannot beconcludedthatthesespecieswillbebetterdetectedbydronesthanbybirdwatcherswithoutthepresenceoftheUAVsincetherealdetectionabilityofourfieldoperatorwasimpairedbythesoundofthequadcopterhoveringoverhead.Ifitwasthecase,chartsAwouldshowhighermeansofdetectionsforthesespeciesperUAVpointthanperstandardpoint.Sincealtitudehadnoeffectondetectability,thehighermeandetectionsperstandardpointcountonchartsBareexplainedprimarilybyasmaller impactofdronenoise (i.e.maskingcapabilityofbirdsongs)ontheoperator'sdetectionabilityinthefieldthanonhisdetectionability when listening to recordings, except for low-frequency songs (e.g. COMO, COCO).Secondly,theoperator'saudibilitydistanceinthefieldhadagreaterrangethantherecordingdistance.

Page 65: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

50

Figure 34. Species mean detections per point for UAV and standard point counts plotted against an equivalency line. “After/before” modality: standard point counts conducted just after or before the UAV ones. (A) Audial & visual detections; (B) Audial detections.

Page 66: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

51

Figure 35. Species mean detections per point for UAV and standard point counts plotted against an equivalency line. “During” modality: standard point counts conducted at the same time as UAV ones. (A) Audial & visual detections; (B) Audial detections.

Page 67: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

52

Means of species richness (number of species) and of abundance (number of individualsregardlessthespecies)perpoint,consideringonlyaudialdetections,werealwayslowerforUAV-basedmonitoringthanfortraditionalmonitoring(Table11).Pairedt-testsfordifferencebetweenthesemeansgavep-valuesofrespectively0.0003and0.0001 for species richness and abundance of “after/before” modality. The ones of the“during”modalitywere respectively 0.039 and 0.0039. Thus, neither species richness norabundancewereequalfromastatisticalpointofview,confirmingthelowerperformancesofUAV-basedmethodforourstudyarea.Table 11. Comparison of species richness (number of species) and abundance (number of individuals) per point count between standard and UAV methods. Standard method only included audial detection.

Species richness

per point Abundance

per point

Point-count method Period Mean SE Mean SE

Standard (audial detection)

Before/After 9.4 3.0 15.6 5.9

During 3.0 3.3 4.6 5.3

UAV Before/After 3.0 1.9 3.0 1.9

During 1.9 2.4 1.9 2.4

Toconclude,theseresultsdidnotclaimtoadvocateorexcludetheuseofUAVsforacousticbirdsurveysonthebasisofpowerfulstatisticaltests,inviewofthesmallnumberofstationscarriedout.TheaimwastogiveafirstglimpseofUAVpotentialforthiskindofmonitoringand thus further field tests should be undertaken. Despite this, we highlighted somedeficienciesofthisnewapproachincomparisontotraditionaltechniques.Lossesofinformationandaccuracyarethemainproblemsandarecausedbytheabsenceofvisualdetections,alow-qualitysoundscapeandalimitedscopeofthemicrophone.Thelattertwofactors,whichareduetodronenoiseandmicrophonesensitivity,preventtolocateandidentify each individual properly. In fact,multidirectional audible perspectivedeliveredbystereophonic recordings is not comparable with the human ear's perception of thesoundscapedirectlyinthefield(exceptforhighqualityrecorders).Thusabundancemaybewrong, especiallywhen individuals of a same species are found in high densities (Wilson,2017).Withourequipment,speciesrichnessandabundancewereunderestimated.Fortunately,itispossible to improve soundscape quality and recorder range, and consequently birddetections, using aquieterquadcopter like thenewDJPhantom4PROV2.0whosenoisereductionisabout4dB6andamoresensitive(butheavier)recorderliketheZOOMH5HandyRecorder7.

6https://www.dji.com/phantom-4-pro-v27https://www.zoom-na.com/products/field-video-recording/field-recording/zoom-h5-handy-recorder

Page 68: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

53

3.3.2 Bats AlmostalloftheindividualsdetectedwereCommonPipistrelles.Wehadmostlyecholocationcallsbutsomesocialcallswererecordedtoo.Wealsocaughta fewMyotiscalls (probablyMyotisdaubentonii).Allbatsignalsdetectedbybothdevices(UAVandground)werebetterdetectedqualitativelyby the ground recorder than by the UAV-based recorder. A representative sample ofspectrogramswhichshowsthequalityoftherecordedbatcallsforeachmodalityisgiveninfigures 36 to 39.Wenotice that forUAV recordings the noises of the drone reduced thevisibilityofCommonPipistrelle’ssignalsbecauseoftheirintensitywhichlessenedthesizeofthepulsesandnotbyoverlapping.Thiswasperhapsamplifiedbybatflightsfurtherawayfromthedronerecorderthanfromthegroundrecorder.TheESCinterferencebandscanalsobeobservedaround35kHzonUAVspectrograms,distortingtheabilitytoidentifythespecies.Quantitatively,one10-secondbatcallrecordingoutof116wasdetectedbythedronedeviceandnotbythegroundrecorder(Table12,Figure36).Table12detailsthedifferentdetectionpercentagesofeachrecorderandsharedbythetworecordersaccordingtothetwohabitatandaltitudemodes.Totalpercentagesofdetectionssharedbythetworecorderswere44.4or 52.5% depending on the kind of environment. TheUAV detected 0% of additional batsignals forthepondand5.6%fortheforest, thereforethepercentageofexclusivegrounddetectionswas50.0%forthepondand47.5%fortheforest.Therewasnotendencyforthedronetodetectmoresignalsthantherecorderatgroundlevel,evenforthehighestflightaltitude(23m).Forexample,ninetypercentofthedetectionsweresharedbybothrecorderswithnoadditionaldetectionfortheUAVrecorderat13matthepondstationwhereasshareddetectionswere15%withstillnoadditionaldetectionfortheUAVrecorderat23m(Table12).Wecanthereforeimaginethatforourrecordingsession,batstendedto flyclosetothegroundbecausetheircallswerealldetectedbythegroundrecorder,with theexceptionofone recording.Abat flyingatanaltitudeofmore than20metreswouldcertainlyhaveescapedthegrounddetectorrangewhenitwouldprobablyhavebeenproperlyrecordedbythemicrophonesuspendedatanaltitudeof23metres.However,it is also possible that some individuals flew higher than 23 metres, thus above themicrophoneofthedrone.Theymayhaveescapedtherecorderdetectionrangebecausetheverticaldistancetothegroundrecorderwouldhavebeentooimportantandthedownwardorientationplustheinsulationofthedronemicrophonewouldhavepreventeditscallsfrombeingdetected.Ourcontrolledconditiontestsshowedadecreaseindetectabilitywithincreasingaltitude.Forinstance, the analysis software hardly detected any signals above 5 metres. The highpercentageofdetectionssharedbythetwodetectorsfortheflightsat13metresnearthepond (90%) showed that 10metres (i.e. distancebetween the twomicrophones)was themaximumverticaldetectiondistanceoftheUAVmicrophone.Wecanthereforeconcludethatthebatsdetectedforthe23-metrealtitudemodalitywereflyingatanaltitudeofabout15metres.

Page 69: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

54

Figure 36. Examples of bat calls spectrograms obtained at the same time by the ground recorder and the UAV recorder hoovering at 13 m in the forest.

Page 70: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

55

Figure 37. Examples of bat calls spectrograms obtained at the same time by the ground recorder and the UAV recorder hoovering at 23 m in the forest.

Page 71: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

56

Figure 38. Examples of bat calls spectrograms (Pipistrellus pipistrellus) obtained at the same time by the ground recorder and the UAV recorder hoovering at 13 m in the edge of the pond.

Page 72: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

57

Figure 39. Examples of bat calls spectrograms obtained at the same time by the ground recorder and the UAV recorder hoovering at 23 m in the edge of the pond.

Page 73: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

58

Table 12. Comparison of bat calls detection percentages between ground recorder and UAV recorder hoovering at 13 and 23 m for two kinds of habitats (forest and pond).

UAV Recorder Altitude 13m

UAV Recorder Altitude 23m

Total

Forest (n=2)

Pond (n=20)

Forest (n=16)

Pond (n=20)

Forest (n=18)

Pond (n=40)

Ground detections (%) 50.0 100.0 100.0 100.0 94.4 100.0 UAV detections (%) 50.0 90.0 50.0 15.0 50.0 52.5 Detected by Ground & not by UAV (%) 50.0 10.0 50.0 85.0 50.0 47.5 Detected by UAV & not by Ground (%) 50.0 0.0 0.0 0.0 5.6 0.0 Detected by Ground & UAV (%) 0.0 90.0 50.0 15.0 44.4 52.5

Strangelytheonlydronedetectionmissedbythegroundrecordertookplaceintheforestatanaltitudeof13metresandnotat23metres.Thiswasprobablyduetothefactthatthebatpassedbehindthegroundmicrophone.Indeed,thegroundrecorderwasattachedtoatreeandthusitsmicrophonewasorientedparalleltothegroundandnotskywardordownward.Consequently,itsrangecorrespondedtoaconedirectedonlyforwardsmakinganydetectionbehindit(i.e.behindthetreetrunk)impossible.Themicrophoneonthedronereceivedsignalswithinacirclewhosecentrewasthegroundrecorderpositionandthuscouldhavedetectedabatflyingatleast3metreshighinthebackofthegroundmicrophone.Intermsofhorizontaldetectiondistance,itwasimpossibletosaywithanycertaintyifourEDRormaximumdetectiondistancesundercontrolledconditionssuchas5metresforCommonPipistrelle’secholocationcallsataverticaldistanceof5metresfromtheUAVmicrophonewerehigherunderinvivoconditions.Onthebasisofourfieldobservations,weestimatedthismaximumdetectiondistancebelow15metreswiththeUAVdevice.Apart fromthesesmallverticalandhorizontaldetectionranges, there iscurrentlyanotherlimiting factor in Belgium for the implementation of such an inventory technique: thelegislationonnightflights. Indeed,UAVflightsduringthenightrequireacostlyderogation(196€)whosevalidityislimited(maximum6months)(SPFMobilitéetTransports,2015).However,legislationvariesgreatlyfromonecountrytoanother.AnoverviewofthisvariabilityisprovidedbytheGlobalDroneRegulationsDatabasewebsite8.Forexample,flyingatnightisallowedintheUKfordroneoperatorswhopassedanadditionaltrainingcourseandupdatedtheiroperationsmanual(Moore,2018).Notethatthereducedvisibilityofobstaclescausedbynightflightsisnotarealproblemsincetrackingflightscantakeplaceduringtheday.ResultantwaypointscanthenbeusedforanautomaticandsafeUAVflight.Toconclude,ourresultsofthisfirstfieldapproacharenotencouraging,aswerethoseofthetestsundercontrolledconditions.Infact,theperformancesoftheUAVwerequalitativelyandquantitativelyunderstandardrecordings.Therewasalotofinformationlosswithverylittleadditional input for thedroneapproach.However, thisexperiment cannotassert that thedrone does not have the potential to significantly collect additional information from thegroundrecordings.Repetitionstorecordmorehigh-flyingbatpassageswouldbenecessary8https://www.droneregulations.info/index.html

Page 74: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

59

to demonstrate the potential of UAVs in targeted surveys of certain species (except theBarbastelle)incanopiesorathighaltitudes.However,ourexperimentationpointedoutthatcomparedtoarecorderfastenedonamastatthesameheightasarecordersuspendedonadrone,recordingsofthelatterwoulddisplayanumberofsignalsdetectedmuchlowerandoftenunusableforpreciseidentification.Therefore,thepresenceandactivitylevelofbatsinthestudyareawouldbeunderestimated.Themainfactorsdissuadingfromtheuseofthistechniquearethereforethelimiteddetectionrange and the second-rate recordings making data analysis complicated. The legislationrelated to the study area may also constitute an obstacle to the implementation of thistechnique.

3.3.3 UAV disturbance on wildlife ItisimportanttoconsiderandtoknowthepossibleimpactsthatUAVsurveyscouldhaveonthemonitoredfauna.Thisthemeisthereforediscussedbytaxoninthissection.

3.3.3.1 Birds BirdsaremoresensitivetoUAVthanterrestrialmammals (carnivores,pinnipeds,primatesandungulates) (Mulero-Pázmányet al., 2017).Wepreviouslymentioned some referencessuchasVas(2015)whichdemonstratedthatthereisnodisturbanceofwaterbirdsbyUAVifsome criteria, like the flight altitude, are respected. This cannotbe generalised to all birdspeciesbecausereactionsdependonintrinsiccharacteristicsofanimalslikelife-historystageoraggregation level (Mulero-Pázmány,2017).Largebirds (bodysize>70cmandweight>1kg)andgregariousspeciesaremorepronetoreacttoUAVflights(Mulero-Pázmány,2017).AcousticmonitoringbyUAVwillmainlyfocusonsmallspeciesfoundinlowdensity,i.e.thoselesssensitivetothepresenceofUAVs.Duringourexperiments,wedidnotnoticeanydisturbance, i.e. songcessation, flightpathchange,escape,attackormobbing,forthefollowingspeciesduringourexperimentalflights:Hirundorustica,Delichonurbicum,Apusapus,Passerdomesticus,Buteobuteo,Milvusmilvus,Falcotinnunculus,Accipiternisus,Coruvscorone,Fringillacoelebs.This new kind of anthropogenic disturbance is consequently not significant enough todiscriminatebirdsmonitoringwithUAV.

3.3.3.2 Bats AsUAVshaveneverbeenusedtomonitorbats,thereisnostudydocumentingtherisksofUAV disturbance on this taxon yet. Drones transmit ultrasounds which surely affect batbehaviour.Changes inbat signalsmayoccur if frequenciesofdronenoiseareoverlappingecholocation calls. This new anthropogenic noise can also act either as an attractive orrepulsivestimulus.Theattractionofbatscouldleadtolethalinjuriesifindividualsflytoocloseto the propellers. The repulsionof bats could producebiases in data collection (e.g. falseabsenceofsensitivespecies)andhavenegativeconsequencesonbatsfitnessbytemporarilyreducinghuntingandbreedingareas.Repulsionisthemostlikelybehaviouralresponsesinceithasalreadybeenproventhatanthropogenicnoisesreduceforagingefficiencyoractivityleveldependingonthespecies(Luoetal.,2015;Bunkleyetal.,2015).

Page 75: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

60

Note that we observed Common Pipistrelles flying at least of 10 metres from the UAV.However,wecannotmakeanyhypothesisonthekindofstimulusforthisspecies.Infact,ourobservationscouldjustturnouttobeafewcuriousorlessdisturbedindividuals.Therefore, research on UAV disturbance on bats must be conducted before any UAVmonitoringisconducted.3.4 General discussion Fixed-wingdronescannotbecompletelyexcludedfromacousticmonitoring. Indeed, if thetestswerecarriedoutwiththedroneinitiallyprovided,theresultswouldundoubtedlyhavebeenbetterconsideringitsenhancementtoreducethenoisesofthedroneandthewind.TheErebusprojectteamwasabletorecordsimulatedbatcallswiththeirfixed-wingdroneflyingatanaltitudeof10metres,butthemicrophoneusedwasnotthesameasours.Theyshowed through noise recording tests that their microphone, the Peersonic RPA2, wasstronglylesssensitivetosoundinterference.Infact,intensenoisewasonlyobservedaround30kHzwiththePeersonicwhileveryintensenoisecoveredthewholespectrogram.Moreover,theymodifytheTalonwithanextensionatthefronttomoveawaythemicrophonefromthesourceof interference.Wecould therefore imagine forbothbirdsandbats to fixabettermicrophone(exclusivetoultrasoundforbats)onanextensionatthebackofthedronethatwouldmovethemicrophonefurtherawayfromthepropeller.However, the recordings will always be of lesser quality for fixed-wing drones than forquadcoptersbecausethelatterisnotinmotion(oratleastatlowerspeed)andthusthewindimpactisconsiderablyreduced.Thedistancebetweenthemicrophoneandthedroneisalsomuchlongerforquadcopters.Depending on the species, bird effective detection radii under controlled conditionswerebetween40and70mforWilson(2017)androughlybetween10et70mforourtrials.Weseethatthemaximaareequivalentbutsomeofourspeciesarenotdetectedaswell.Thegapbetween theseminima can be partially explained by the relative difference between thesoundleveloftheAmericanbirds'vocalisationsandthesoundlevelofourbirds.Indeed,theSPLofourloudestbirdwas15dBhigherthantheSPLofthequietestbird.ForWilson(2017),thisdifferencewasonly6dB.OurcomparisonofstandardandUAVpoint-countmethodsisontheoppositelessinfavourof UAVs compared toWilson (2017) which show less severe underestimations for UAVs.Several reasons may explain this discrepancy. First, the methodologies were not exactlyidentical. In fact, our dronemade its recordings either directly before or directly after atraditionalpointcount.ForWilson(2017),thetwotypesofsurveyforasamestationwerealways20minto2hoursapart.Secondly,oursmallnumberofstations,allconductedonthesameday,mayhavedisadvantagedtheUAVmeansofdetections. In fact, themicrophonecould be more sensitive than the human ear to weather variations and consequently tovariations in sound propagation. Additional repetitions could potentially reduce theunderestimation of the drone. Finally, as already mentioned above, the skills of onebirdwatchertoanothercanbeveryvariable.Obviously,ourtwofieldoperatorswerenotthesameandsoweretheirabilitytodetectbirdsinthefield(i.e.thedistancewithinwhichtheyareabletospotthem).However,therecordingrangeofthedronemicrophonewasthesameinbothcases.Thisfactoristhereforepotentiallyasourceofthisdifference.

Page 76: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

61

OurquadcopternoisecharacterisationtestsshowedapronouncedoverlappingofbatcallstoESC noise. We could therefore consider developing a sound insulation system for thiscomponentofthedronetoimproveourrecordingqualityaswellasthenumberofdetectablespeciessuchastheBarbastelle.However,propellerandmotornoisesarenotnegligibleforboth birds and bats. This is why the continuous development of quieter drones like thePhantomPRO4V2.0promotestheuseofthistechnologytocarryoutbioacousticsurveysinthenear future.Dronesbasedonaballoonsuchas theSpacialHalo9couldbethetypeofdronesuitableforacousticmonitoring.Thesearedronesthatmaintaintheirflightaltitudebymeansofaheliumballoonandarenavigablebyusingaremotecontrollersystem.Thisdevicethereforeemitsverylittlenoiseandmayalsocarryouttransectsbyminimisingtheimpactofthewindthankstoitsveryslowflightspeed(~15km/h)(Juang,2017).Itsflightautonomyisprobablysuperiortoconventionalmulticopters.Inaddition,Fristrupetal.(2009)showedthattheuseofadriftingballoonsystemcombinedwithamicrophoneallowssongbirdsmonitoring.However,ashortcomingintheirsystemwastheabsenceofcontrolofthepositionandflightpathoftheballoon.Consequently,thisnewtypeofdrone—originallydevelopedforindoorcinematography—hasarealpotentialfortheimplementationofbioacousticmonitoringwithUAVs.

9https://spacialdrone.com/halo-/

Page 77: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

62

4 Conclusion Ourtestsundercontrolledconditionsexcludedthepossibilityofusingfixed-wingdronesforbioacousticsurveysbecausethistypeofdevicewastoonoisyandthereforedidnotprovideanyusablerecordings.However,thisconclusionisonlyvalidforourequipment.Adevicewithamicrophone further fromthepropellerand/orbetter insulated from it,amoresensitivemicrophone, a quietermotor and propeller and a larger wingspan should be tested. Thequadcopterhadratherpromisingresultsdependingonthetaxon.Forbats,thepurposeofthequadcopterswastoprovideadditionaldatafortargetedsurveys(e.g. forest canopy). But our tests showed very limited horizontal and vertical detectiondistances,makingtheinputofdataveryrestricted.Then,thepoorperformanceofultrasoundanalysissoftwareindetectingbatsignalsfromUAVrecordingsfurtherreducedthepotentialtocollectadditionaldata.Finally,theimplementationofthistechniquewasdefinitivelyruledoutbythelow-qualityrecordingsobtainedwhichmadetheidentificationofcertainspeciesvery complicated or even impossible. Indeed, chiropterologists often have difficultyidentifyingsomegoodqualityrecordswithcertainty.Thustheriskthatthedataprovidedbythedroneareuselessishighandmakesthisnewtechniqueoflittlerelevance.Especiallysincesomespeciesarenotdetectable,suchastheBarbastellewhichisararespeciesandclassifiedinthe"nearthreatened"categoryoftheIUCNRedList.Overall bird effective detection radii were slightly lower for UAV recordings than groundrecordings during our tests under controlled conditions. However, the absence of visualdetections, the low-quality soundscapeand the limitedscopeof themicrophoneprovidedlower means of detections per UAV-based point count per than standard point count.Therefore,tistechniquecannotreplaceabirdwatcherunderpenaltyofunderestimatingtheabundanceandthespeciesrichnessofthestudiedareabymissinglow-frequencyspeciesorvisiblenon-singingones.However,itcanstillbeconsideredasacomplementarymethodtostandardpointcountswhereaccessiscompromisedforbirdwatchers(i.e.canopiesoftropicalforests),especiallyifquieterquadcoptersandmoresensitivemicrophoneareused.The combination of the lower performances of the UAV against the effectiveness of theSOCWALprogrammeandthesmallportionofareasdifficulttoaccess(e.g.bogs),thisnewapproachcannotbeconsideredinWalloniaeveninacomplementarymanner.However,furtherresearchandpracticalimplementationsarepossibleforbothtaxainstudyareas other thanWallonia. Indeed, the development of an ESC acoustic insulation systemwould allowmore bat species to be detected.Moreover, the use of remotely controlledballoon whose noise emission is practically non-existent, combined with high qualitymicrophones could be very promising for acoustic monitoring of birds and bats inimpracticableareasforgroundoperators.

Page 78: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

i

5 References AcevedoM.A.&Villanueva-RiveraL.J.,2006.UsingAutomatedDigitalRecordingSystemsas

EffectiveToolsfortheMonitoringofBirdsandAmphibians.Wildl.Soc.Bull.,34(1),211–214.

AideT.M.etal.,2013.Real-timebioacousticsmonitoringandautomatedspeciesidentification.PeerJ,1,e103.

Aves,2014.ProgrammedeSurveillancedesOiseauxCommunsenWallonie-Noticeàl’intentiondescollaborateurs,

BarlowK.E.&JonesG.,1997.Functionofpipistrellesocialcalls:Fielddataandaplaybackexperiment.Anim.Behav.,53(5),991–999.

BrackenburyJ.H.,1979.PowerCapabilitiesOfTheAvianSound-ProducingSystem.J.exp.Biol,78,163–166.

BucklandS.T.etal.,1993.DistanceSampling:Estimatingabundanceofbiologicalpopulations,Springer-Science+BusinessMedia,B.V.

BucklandS.T.,2006.Point-TransectSurveysForSongbirds:RobustMethodologies.Auk,123(2),345.

BudenzT.,HeibS.&KuschJ.,2009.FunctionsofBatSocialCalls:TheInfluenceofLocalAbundance,InterspecificInteractionsandSeasonontheProductionofPipistrelle(Pipistrelluspipistrellus)TypeDSocialCalls.ActaChiropterologica,11(1),173–182.

BunkleyJ.P.etal.,2015.Anthropogenicnoisealtersbatactivitylevelsandecholocationcalls.Glob.Ecol.Conserv.,3,62–71.

CardinaleB.J.etal.,2012.Biodiversitylossanditsimpactonhumanity.Nature,486(7401),59–67.

Celis-MurilloA.,DeppeJ.L.&AllenM.F.,2009.Usingsoundscaperecordingstoestimatebirdspeciesabundance,richness,andcomposition.J.F.Ornithol.,80(1),64–78.

Celis-MurilloA.,DeppeJ.L.&WardM.P.,2012.Effectivenessandutilityofacousticrecordingsforsurveyingtropicalbirds.J.F.Ornithol.

VanDammeM.,2014.Acoustiqueenvironnementale-Propagationdubruitdansl’environnment.,1–17.http://www.lcjcapteurs.com/wp-content/uploads/2014/06/111207-Cours-environnement-CHAP04-Propagation-du-bruit-dans-lenvironnement_2.pdf.

DedryL.etal.,2015.ForEstimator :unnouveloutilcartographiquepourmieuxconnaîtrelaforêtwallonne.Forêt-Nature,135(2),40–46.

DGARNE,2010.LabiodiversitéenWallonie.http://biodiversite.wallonie.be/fr/especes.html?IDC=3025,(30/1/2018).

FentonM.B.etal.eds.,2016.BatBioacoustics,Springer-VerlagNewYork.FristrupK.M.&ClarkC.W.,2009.AcousticMonitoringofThreatenedandEndangeredSpecies

inInaccessibleAreas,FrommoltK.H.&TauchertK.H.,2014.Applyingbioacousticmethodsforlong-term

monitoringofanocturnalwetlandbird.Ecol.Inform.GaillardM.etal.,2010.Définitionetcartographiedesenjeuxavifaunistiqueset

chiroptérologiquesvis-à-visdeséoliennesenlorraine,Velaine-en-Haye.GregoryR.D.,GibbonsD.W.&DonaldP.F.,2004.Birdcensusandsurveytechniques.In:Bird

EcologyandConservation:AHandbookofTechniques.Oxford,UK:OxfordUniversityPress,17–56.

Page 79: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

ii

GuélinF.&SaulasG.,2017.DistanceSampling.http://distancesampling.blogspot.com,(2/6/2018).

HanY.G.,YooS.H.&KwonO.,2017.Possibilityofapplyingunmannedaerialvehicle(UAV)andmappingsoftwareforthemonitoringofwaterbirdsandtheirhabitats.J.Ecol.Environ.,41(1),1–7.

HillA.P.etal.,2018.AudioMoth:Evaluationofasmartopenacousticdeviceformonitoringbiodiversityandtheenvironment.MethodsEcol.Evol.,1–13.

HodgsonJ.C.etal.,2018.Dronescountwildlifemoreaccuratelyandpreciselythanhumans.MethodsEcol.Evol.,9(5),1160–1167.

HodgsonJ.C.etal.,2016.Precisionwildlifemonitoringusingunmannedaerialvehicles.Sci.Rep.,6,22574–1.

HodgsonJ.C.&KohL.P.,2016.Bestpracticeforminimisingunmannedaerialvehicledisturbancetowildlifeinbiologicalfieldresearch.Curr.Biol.,26(10),R404–R405.

HulmeD.C.,1957.Song-PostsOfTheBlackbirdInABuilt-Up.IUCN,2017.TheIUCNRedListofThreatenedSpecies-SummaryStatistics2017.IUCNRed

List.http://www.iucnredlist.org/about/summary-statistics#TrendsInBiodiversityStatus,(23/3/2018).

JakobsenL.,BrinkløvS.&SurlykkeA.,2013.Intensityanddirectionalityofbatecholocationsignals.Front.Physiol.,4(89),9.

JohnsonC.N.etal.,2017.BiodiversitylossesandconservationresponsesintheAnthropocene.Science,356,270–275.

JuangM.,2017.That’snoballoon,it’sadrone!HalotakestotheskiesaslatesttrendinUAVs.CNBC.https://www.cnbc.com/2017/05/06/thats-no-balloon-its-a-drone-halo-takes-to-the-skies-as-latest-trend-in-uavs.html,(13/8/2018).

KassoM.&BalakrishnanM.,2013.EcologicalandEconomicImportanceofBats(OrderChiroptera).ISRNBiodivers.,2013,1–9.

KéryM.&RoyleA.,2015.HierarchicalDistanceSampling.https://www.mbr-pwrc.usgs.gov/workshops/hiermod2015/PatuxNOV_2015/distance_sampling_v3.pdf,(3/6/2018).

KlingbeilB.T.&WilligM.R.,2015.Birdbiodiversityassessmentsintemperateforest:thevalueofpointcountversusacousticmonitoringprotocols.PeerJ,3,e973.

KrebsJ.R.&KroodsmaD.E.,1980.RepertoiresandGeographicalVariationinBirdSong,LaurentA.&LemaireM.,2009.LesChauves-sourisdeFrance,Belgique,Luxembourget

SuisseMèze.Biotope,ed.,Paris:PublicationsScientifiquesduMuséum.LeclercqJ.-Y.,2018.Coursthéoriquedestinéauxcandidatsàl’attestationdepiloted’RPAS

(classe2).LiseinJ.,LinchantJ.&LejeuneP.,2013.AerialsurveysusinganUnmannedAerialSystem

(UAS):comparisonofdifferentmethodsforestimatingthesurfaceareaofsamplingstrips.Trop.Conserv.Sci.,6(4),506–520.

LuebkemanC.H.&PetingD.,1995.Architectonics-Lecture5:Moments.http://web.mit.edu/4.441/1_lectures/1_lecture5/1_lecture5.html,(5/7/2018).

LuoJ.,SiemersB.M.&KoseljK.,2015.Howanthropogenicnoiseaffectsforaging.Glob.Chang.Biol.,21(9),3278–3289.

MartensM.J.M.&MichelsenA.,1981.Absorptionofacousticenergybyplantleaves.J.Acoust.Soc.Am.,69(1981),303–306.

MathevonN.&AubinT.,1997.ReactiontoconspecificdegradedsongbythewrenTroglodytestroglodytes:Territorialresponseandchoiceofsongpost.Behav.Processes,

Page 80: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

iii

39(1),77–84.MathevonN.,DabelsteenT.&BlumenrathS.H.,2005.Arehighperchesintheblackcap

Sylviaatricapillasongorlisteningposts?Asoundtransmissionstudy.J.Acoust.Soc.Am.,117(1),442–449.

McCallumM.L.,2015.Vertebratebiodiversitylossespointtoasixthmassextinction.Biodivers.Conserv.,24(10),2497–2519.

McClellandG.T.W.etal.,2016.Rapidpopulationestimateofasurface-nestingseabirdonaremoteislandusingalow-costunmannedaerialvehicle.Mar.Ornithol.,44,215–220.

McEvoyJ.F.,HallG.P.&McDonaldP.G.,2016.Evaluationofunmannedaerialvehicleshape,flightpathandcameratypeforwaterfowlsurveys:disturbanceeffectsandspeciesrecognition.PeerJ,4,e1831.

MiddeltonN.,FroudA.&FrenchK.,2014.SocialCallsoftheBatsofBritainandIreland,PelagicPubishing,Exeter.

MikkonenA.V.,1985.Establishmentofbreedingterritorybythechaffinch,Fringillacoelebs,andthebrambling,F.montifringilla,innorthernFinland.Ann.Zool.Fenn.,22,137–156.

MilleniumEcosystemAssessment,2005.EcosystemsandHumanWell-Being:BiodiversitySynthesis,WorldResourcesInstitute,Washington,DC.

MillerD.L.etal.,2016.DistanceSamplinginR.bioRxiv,29.MooreT.&AugustT.,2018.ProjectErebus.http://projecterebus.weebly.com/blog,

(3/4/2018).Mulero-PázmányM.etal.,2017.Unmannedaircraftsystemsasanewsourceofdisturbance

forwildlife:Asystematicreview.PLoSOne,12(6),1–14.PolakM.,2014.Relationshipbetweentrafficnoiselevelsandsongperchheightinacommon

passerinebird.RalphC.J.,SauerJ.R.&DroegeS.,1995.MonitoringBirdPopulationsbyPointCounts,Albany,

California.RoemerC.etal.,2017.Batflightheightmonitoredfromwindmastspredictsmortalityriskat

windfarms.Biol.Conserv.,215,116–122.SchimdtB.,2017.CommutationtechniquesforthreephasebrushlessDCmotors.

https://training.ti.com/commutation-techniques-three-phase-brushless-dc-motors#,(6/7/2018).

SekerciogluC.H.,DailyG.C.&EhrlichP.R.,2004.Ecosystemconsequencesofbirddeclines.Proc.Natl.Acad.Sci.,101(52),18042–18047.

SimarJ.etal.,2012.Projetséoliens-Notederéférencepourlapriseencomptedelabiodiversité,

SPFMobilitéetTransports,2015.FormulairededemandededérogationRPAS.https://mobilit.belgium.be/fr/resource/formulaire_de_demande_de_derogation_rpas,(20/7/2018).

SurlykkeA.,PedersenS.B.&JakobsenL.,2012.Echolocatingbatsemitahighlydirectionalsonarsoundbeaminthefield.Proc.R.Soc.BBiol.Sci.,276(1658),853–860.

TuckerJ.,MusgroveA.&ReeseA.,2014.TheabilitytohearGoldcrestsongandtheimplicationsforbirdsurveys.BritishBirds.https://britishbirds.co.uk/article/the-ability-to-hear-goldcrest-song-and-the-implications-for-bird-surveys/,(25/6/2018).

TupinierY.,1996.L’universacoustiquedesChiroptèresd’Europe,SociétéLinnéennedeLyon.VasE.etal.,2015.Approachingbirdswithdrones:Firstexperimentsandethicalguidelines.

Biol.Lett.,11(2).VerkemS.,VanderWijdenB.&NyssenP.,2014.Manueld’utilisationdel’expansionde

Page 81: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

iv

tempspourdébutants,WeberM.,2014.Introductiontosonograms.Apassionbirds.

https://apassionforbirds.wordpress.com/2014/06/24/introduction-to-sonograms/,(18/12/2017).

WilsonA.M.,BarrJ.&ZagorskiM.,2017.Thefeasibilityofcountingsongbirdsusingunmannedaerialvehicles.Auk,134(2),350–362.

ZakeriM.,2017.AutomaticBirdSpeciesIdentificationEmployingAnUnsupervisedDiscoveryOfVocalisationUnits.UniversityofBirmingham.

ZhaoJ.&YangweiY.,2011.BrushlessDCMotorFundamentals,Zoogdiervereniging,Limitsofecholocationcallsofeuropeanbats.

http://www.zoogdierenvereniging.nl/sites/default/files/imce/nieuwesite/Zoogdiersoorten/Gewonedwergvleermuis/downloads/geluidentable_EN_1_0.pdf,(19/5/2018).

ZwartM.C.etal.,2014.Theuseofautomatedbioacousticrecorderstoreplacehumanwildlifesurveys:Anexampleusingnightjars.PLoSOne,9(7).

Page 82: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

I

6 Appendix

Appendix 1. Selection of high quality bird recordings from xeno-canto.

Number Code Species Song type URL

1 XC281374 eurasian wren song https://www.xeno-canto.org/281374

2 XC379950 eurasian wren song https://www.xeno-canto.org/379950

3 XC281371 eurasian wren song https://www.xeno-canto.org/281371 4 XC281377 eurasian wren alarm call https://www.xeno-canto.org/281377

5 XC281378 eurasian wren alarm call https://www.xeno-canto.org/281378

6 XC281519 sedge warbler song https://www.xeno-canto.org/281519

7 XC281522 sedge warbler song https://www.xeno-canto.org/281522

8 XC393062 sedge warbler song https://www.xeno-canto.org/393062 9 XC281524 sedge warbler alarm call https://www.xeno-canto.org/281524

10 XC353680 reed bunting song https://www.xeno-canto.org/353680

11 XC281817 reed bunting song https://www.xeno-canto.org/281817

12 XC281818 reed bunting song https://www.xeno-canto.org/281818 13 XC35208 reed bunting call https://www.xeno-canto.org/35208 14 XC281435 common blackbird song https://www.xeno-canto.org/281435

15 XC281434 common blackbird song https://www.xeno-canto.org/281434

16 XC104604 common blackbird song https://www.xeno-canto.org/104604 17 XC281441 common blackbird call https://www.xeno-canto.org/281441

18 XC281439 common blackbird alarm call https://www.xeno-canto.org/281439 19 XC393063 eurasian blackcap song https://www.xeno-canto.org/393063

20 XC379971 eurasian blackcap song https://www.xeno-canto.org/379971

21 XC379948 eurasian blackcap song https://www.xeno-canto.org/379948 22 XC381478 eurasian blackcap call https://www.xeno-canto.org/381478 23 XC397523 common chaffinch song https://www.xeno-canto.org/397523

24 XC379968 common chaffinch song https://www.xeno-canto.org/379968

25 XC281752 common chaffinch song https://www.xeno-canto.org/281752 26 XC365672 common chaffinch call https://www.xeno-canto.org/365672

27 XC281758 common chaffinch call https://www.xeno-canto.org/281758 28 XC379973 song thrush song https://www.xeno-canto.org/379973

29 XC281459 song thrush song https://www.xeno-canto.org/281459

30 XC281452 song thrush song https://www.xeno-canto.org/281452 31 XC348842 song thrush call https://www.xeno-canto.org/348842 32 XC345608 song thrush alarm call https://www.xeno-canto.org/345608

33 XC353829 goldcrest song https://www.xeno-canto.org/353829

34 XC364246 goldcrest song https://www.xeno-canto.org/364246

35 XC281601 goldcrest song https://www.xeno-canto.org/281601 36 XC281606 goldcrest call https://www.xeno-canto.org/281606

37 XC380054 common wood pigeon song https://www.xeno-canto.org/380054

38 XC394506 common wood pigeon song https://www.xeno-canto.org/394506

39 XC378844 common wood pigeon song https://www.xeno-canto.org/378844

Page 83: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

II

Appendix 2. Multiple comparison of bird EDR: between experts, between ground-based recordings (control) and UAV-based recordings, between calculation methods (distance sampling and regression).

Effective Detection Radius of expert 1 Effective Detection Radius of expert 2

EDR Control (m) EDR UAV (m) EDR Control (m) EDR UAV (m)

Bird species Distance Sampling

Regression Distance Sampling

Regression Distance Sampling

Regression Distance Sampling

Regression

Common Blackbird 28.3 74.8 34.4 69.2 29.5 80.0 27.2 69.2

Common Chaffinch 28.3 74.8 27.2 58.7 28.3 74.8 26.8 60.5

Common Reed Bunting 15.5 39.5 13.9 31.9 15.5 39.5 14.0 19.4

Common Wood Pigeon 17.5 34.6 12.6 7.5 14.7 37.4 14.0 18.3

Eurasian Blackcap 26.5 39.5 14.3 31.0 22.9 58.9 26.5 45.7

Eurasian Wren 27.2 58.9 14.5 32.0 14.2 34.6 17.6 22.1

Goldcrest 14.2 34.6 18.4 31.5 6.7 7.1 6.7 8.9

Sedge Warbler 28.3 74.8 13.3 15.7 14.7 37.4 13.7 12.4

Song Thrush 28.3 74.8 15.0 35.0 29.4 80.0 14.5 31.5

Appendix 3. Assumptions verification of regression models (p-value) for detection probability function of bird species. Normality of residuals checked with Shapiro-Wilk and/or Kolmogorov-Smirnov tests and Homoscedasticity (variance homogeneity of model residuals) checked with Breusch-Pagan test.

Bird species Control UAV Control UAV Control UAV Control UAV Control UAV Control UAV

Common Blackbird 0.0006802 0.0006802 NA 0.0006802 0.06881 0.07215 NA 0.07215 0.7707 0.7707 NA 0.7707Common Chaffinch 0.0006802 0.6582 0.0006802 0.5021 0.06881 0.1019 0.06881 0.1267 0.7707 0.8035 0.7707 0.07219Common Reed Bunting 0.0006802 0.6079 0.0006802 0.5293 0.07563 0.1498 0.07563 0.2567 0.7707 0.5078 0.7707 0.5649Common Wood Pigeon 0.01073 0.8064 0.01073 0.6967 0.1243 0.1498 0.118 0.1956 0.635 0.3031 0.635 0.1198Eurasian Blackcap 0.0006802 0.3362 0.0989 0.8327 0.07563 0.1258 0.1029 0.1516 0.7707 0.2406 0.6541 0.1078Eurasian Wren 0.0989 0.6811 0.01073 0.9351 0.1029 0.1537 0.1243 0.2276 0.6541 0.1631 0.635 0.6508Goldcrest 0.06461 0.06461 < 2.2e-16 0.8957 0.1085 0.1085 0.4433 0.2378 0.2953 0.2953 1 0.1632Sedge Warbler 0.0006802 0.655 0.01073 0.3162 0.06881 0.2045 0.118 0.09098 0.7707 0.1726 0.635 0.5899Song Thrush 0.0006802 0.07425 NA 0.6782 0.06881 0.1934 NA 0.1338 0.7707 0.4275 NA 0.3968

Shapiro-Wilk normality test One-sample Kolmogorov-Smirnov test studentized Breusch-Pagan test

Expert 1 Expert 2 Expert 1 Expert 2 Expert 1 Expert 2

Page 84: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

III

Appendix 4. Graphs of bird detection probability (all species) depending on different song features (SPL, maximum frequency, minimum frequency, mean frequency) for each combination of expert and recording type.

Page 85: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

IV

Appendix 5. Assumptions verification for analysis of variance (graphic and statistic) between bat detectability and altitude.

Appendix 6. Assumptions verification of regression models (p-value) for detection probability function of bat species. Normality of residuals checked with Shapiro-Wilk and/or Kolmogorov-Smirnov tests and Homoscedasticity (variance homogeneity of model residuals) checked with Breusch-Pagan test.

Altitudes Altitudes Altitudes10-15 10-15 10-15

Barbastelle 0.1993 NA NA 0.1976 NA NA 0.4095 NA NACommon Pipistrelle 0.1993 NA NA 0.1976 NA NA 0.4095 NA NANatterer's Bat 0.1993 NA NA 0.2201 NA NA 0.4095 NA NAMyotis sp. 0.01804 NA NA 0.1487 NA NA 0.914 NA NANoctule 0.0006802 0.0006802 0.118 0.07215 0.07563 0.08936 0.7707 0.7707 0.635Serotine 0.5414 0.01804 NA 0.1932 0.1487 NA 0.3012 0.914 NACommon Pipistrelle 0.0006453 0.01073 NA 0.1349 0.1243 NA 0.983 0.635 NANoctule NA 0.0006802 NA NA 0.07563 NA NA 0.7707 NA

Echolocation

Social

Shapiro-Wilk normality test Kolmogorov-Smirnov test

Call type Bat species Altitude 0 Altitude 5 Altitude 0 Altitude 5

studentized Breusch-Pagan test

Altitude 0 Altitude 5

Page 86: Assessment of UAV potential for bioacoustic …...studying new species and habitats. For several years, UAVs (unmanned aerial vehicles) have contributed to the enhancement of this

V

Appendix 7. Graphs of bat detection probability (all species) depending on different song features (maximum frequency, minimum frequency, mean frequency, FME) for each group of altitude.