Aod Modelling

download Aod Modelling

of 23

Transcript of Aod Modelling

  • 8/18/2019 Aod Modelling

    1/23

    Journal of Shanghai University Eng lish Ed ition ), 2 0 0 2 , 6 ( 1 ) : 1 - 2 3

    A r t i c l e I D 1 0 0 7 -6 4 1 7 (2 0 0 2 )0 1 -0 0 0 1 -2 3

    P h y s ic a l a n d M a t h e m a t i ca l M o d e l i n g o f t h e A r g o n O x y g e n D e c a r b u r i z a ti o n

    R e f i n i n g P r o c e s s o f S t a i n l e s s S t e e l

    W E I J i - H e @ ~ @ )

    School of Materials Science and Engineering, Shanghai University, Shanghai 200072 , China

    A b s t ra c t T h e a v a i l a b le s tu d ie s in th e l i t e r a tu re o n p h y s ic a l a n d m a th e m a t i c a l m o d e l in g o f th e a rg o n -o x y g e n d e c a rb u r i z a t io n (A O D )

    p ro c e s s o f st a in l e s s s t e e l h a v e b r i e f ly b e e n r e v ie w e d . T h e l a t e s t a d v a n c e s m a d e b y th e a u th o r w i th h i s r e s e a rc h g ro u p h a v e b e e n s u m -

    mar ized . W ate r mode l ing was used to inves t iga t e the f lu id f low and mix ing char ac te r is t ic s in the ba th o f an 18 t AOD vesse l , a s we l l a s

    th e b a c k -a t t a c k a c t io n o f g as j e t s a n d i t s e f fe c t s o n th e e ro s io n a n d w e a r o f t h e r e f r a c to ry l i n in g , w i th s u f f i c i e n t ly fu l l k in e m a t i c sim -

    i l a r i ty . T h e n o n - ro ta t in g a n d ro t a t in g g a s j e t s b lo w n th ro u g h tw o a n n u la r t u y e re s , r e s p e c t iv e ly o f s t r a ig h t - tu b e a n d s p i r a l - f la t t u b e

    ty p e , w e re e m p lo y e d in th e e x p e r im e n t s . T h e g e o m e t r i c s im i l a r i ty r a t io b e tw e e n th e m o d e l an d i t s p ro to ty p e ( in c lu d in g th e s t r a ig h t -

    tu b e ty p e tu y e re s ) w a s 1 :3 . T h e in f lu e n c es o f t h e g a s f lo w ra t e , t h e a n g le in c lud e d b e tw e e n th e tw o tu y e re s a nd o th e r o p e ra t in g p a -

    ra m e te r s , a n d th e s u i t a b i l i t y o f t h e s p i r a l t u y e re a s a p ra c t i c al a p p l i c a t io n , w e re e x a m in e d . T h e s e l a t e s t s tu d ie s h a v e c l e a r ly a n d s u c -

    c e s s fu l ly b ro u g h t t o l i g h t t h e f lu id f lo w a n d m ix in g c h a ra c te r i s t i c s i n th e b a th a n d th e o v e ra l l f e a tu re s o f t h e b a c k -a t t a c k p he n o m e n a o f

    g a s j e t s d u r in g th e b lo w in g , a n d h a y e o f fe re d a b e t t e r u n d e r s t a n d in g o f th e r e f in in g p ro c e s s . B e s id e s , m a th e m a t i c a l m o d e l in g fo r t h e

    re f in in g p ro c e s s o f s t a in l e s s st e e l w a s c a r r i e d o u t a n d a n e w m a th e m a t i c a l m o d e l o f t h e p ro c e s s w a s p ro p o s e d a n d d e v e lo p e d . T h e m o d -

    e l p e r fo rm s th e r a t e c a l c u la t io n s o f t h e r e f in in g a n d th e m a s s a n d h e a t b a l a n c es o f t h e s y s t e m . A l s o , t h e e f f e c t s o f t h e o p e ra t in g f a c -

    to r s , i n c lu d in g a d d in g th e s l ag m a te r i a l s , c ro p e n d s , a n d s c ra p , a n d a l lo y a g e n t s ; t h e n o n - i s o th e rm a l c o n d i tio n s ; t h e c h a n g e s in th e

    a m o u n t s o f m e ta l a n d s l a g d u r in g th e r e f in in g ; a n d o th e r f a c to r s w e re a l l c o n sid e re d . T h e m o d e l w a s u se d to d e al w i th a n d a n a ly z e th e

    a u s t e n i t i c s t a in l e s s s t e e l m a k in g ( in c lu d in g u l t r a - lo w c a rb o n s t e e l ) a n d w a s t e s t e d o n d a ta o f 32 h e a t s o b ta in e d in p ro d u c in g 30 4 g ra d e

    s t e e l i n a n 1 8 t A O D v e s s el . T h e c h a n g e s in th e b a th c o m p o s i t io n a n d t e m p e ra tu re d u r in g th e r e f in in g p ro c e s s w i th t im e c a n b e a c c u -

    ra t e ly p re d ic t e d u s in g th i s m o d e l . T h e m o d e l c a n p ro v id e s o m e v e ry u s e fu l i n fo rm a t io n a n d a r e l i a b le ba s i s fo r o p t im iz in g th e p ro c e s s

    p ra c t i c e o f t h e r e f in in g o f s t a in l e s s s t e e l a n d c o n t ro l o f t h e p ro c e s s in r e a l - t im e a n d o n l in e .

    K e y w o rd s s t a in l e s s s t e e l , a rg o n -o x y g e n d e c a rb u r i z a t io n (A O D ) p ro c e s s , f l u id f lo w a n d m ix in g , b a c k -a t t a c k p h e n o m e n o n , n o n - ro ta t -

    in g a n d ro t a t in g g a s j e t s , d e c a rb u r i z a t io n , w a te r m o d e l in g , m a th e m a t i c a l m o d e l in g .

    1 Introduction

    C o m p a r e d t o t h e o t h e r r e f i n i n g p r o c e s s e s o f s t a i n -

    l e ss s t e e l , t h e a r g o n - o x y g e n d e c a r b u r iz a t i o n ( A O D )

    p r o c e s s h a s a n u m b e r o f o b v i o u s a d v a n t a g e s . S i n c e t h e

    f i r s t A O D v e s s e l w a s c o m p l e t e d a n d p u t i n t o o p e r a t i o n

    i n 1 9 6 8 , t h i s s e c o n d a r y s t e e l m a k i n g t e c h n o l o g y h a s

    b e e n a p p l ie d e x t e n s i v e l y a n d d e v e l o p e d r a p i d l y

    t h r o u g h o u t t h e w o r l d . I t n o t o n l y h a s b e c o m e t h e

    p r i n c i p a l m e t h o d o f p r o d u c i n g s t a i n l e s s s t e e l a n d o t h e r

    h i g h c h r o m i u m a l l o y s , b u t i t c a n a ls o b e u s e d t o m a k e

    a l m o s t a l l s t e e l s . A t p r e s e n t , o v e r 7 5 % o f t h e

    Rece ived Nov . 22 , 2001

    P ro je c t s u p p o r t e d b y th e N a t io n a l N a tu ra l S c ie n c e F o u n d a t io n o f

    China (59474016)

    W E I J i - H e , P h . D . , P r o f . , E - m a i l : j i h e w @ e a s t d a y , c o m

    w o r l d ' s s t a i n l e s s s t e e l o u t p u t a r e p r o d u c e d u s i n g t h i s

    p r o c e s s .

    I n t h i s r e f i n i n g p r o c e s s , s e v e r a l a n n u l a r t u b e t y p e

    t u y e r e s a r e u s u a l l y u s e d t o c a r r y o u t h o r i z o n t a l s i d e

    b l o w i n g a n d i n j e c t i o n . T h e m o t i o n o f th e f l u i d s i n t h e

    b a t h i s v e r y v i o l e n t . T h i s c a n p r o m o t e a n d i n t e n s i f y

    t h e h e a t a n d m a s s t r a n s f e r , a n d i s v e r y a d v a n t a g e o u s

    i n a c c e l e r a t i n g t h e r e f i n i n g r e a c t i o n s a n d i m p r o v i n g

    t h e h o m o g e n e i t y o f b a t h c o m p o s i t io n a n d t e m p e r a -

    t u r e . O n t h e o t h e r h a n d , a s a n i m p o r t a n t a p p l i c a t i o n

    o f t h e s u b m e r g e d g a s i n j e c t io n t e c h n i q u e , t h e m o s t

    s e r i o u s s h o r t c o m i n g o f t h e A O D p r o c e s s i s t h e s h o r t

    l i fe o f t h e r e f r a c t o r y l i n i n g . A n o b v i o u s f e a t u r e i s th e

    n o n - u n i f o r m w e a r a n d e r o s i o n o f t h e l in i n g . I t is

    c l o s e l y r e l a t e d t o t h e g a s b l o w i n g c o n d i t i o n s a n d t h e

    f l u id m o t i o n p a t t e r n s i n t h e b a t h . T h e b a c k - a t t a c k

    a c t i o n o f g as j e t s , w h i c h o c c u r s a l l in t h e m e t a l l u r g i c a l

    p r o c e s s e s w i t h a n y s u b m e r g e d g a s b l o w i n g , i s r e -

  • 8/18/2019 Aod Modelling

    2/23

      Journal of Shanghai University

    ferred to as an important factor in bringing about this

    situation. Invest igating and obtaining a clear under-

    standing of fluid flow phenomena and mixing charac-

    teristics as well as back-attack action during the AOD

    process, mathematically modeling this process will

    contribute towards the improvement and optimization

    of the installation design and blowing technology, and

    computer control of the process in real-time and on-

    line.

    The fluid flow and mixing in the AOD vessels with

    different capacities have been investigated by some

    resea rcher s using water modeling [1-4]. Thes e studies,

    to different extents, provided some useful information

    for understand ing the practical process. In all previ-

    ous studies of this type, however, a tube tuyere has

    been used to model an annular tube tuyere, and multi-

    tuyere blowing has been replaced with single tuyere

    blowing [2-4]. Mor eover, the gas blowing rates used

    for the model units have not been adequately deter-

    mined. Thus, kinematic similarity between the model

    and its prototype has not been fully maintained.

    To improve the state of the gas jet at the tuyere

    outlet and the fluid flow pattern, and thus to suppress

    and eliminate the back- atta ck action of gas jets and

    alleviate the erosion to the lining, many studies have

    been conducted, e. g- Ref. [5 - 19]. Some schemes,

    e. 9. , those that altered the circular pipe tuyer e into

    flattened types with dif fere nt flatness values [~' 6.9]

    and spiral types with differ ent s truct ures [7] , reduced

    the width of the annular slit (the subtuyere) as was

    p o s s i b l e [ 7 91, have been evaluated. The results avail-

    able now showed that raising the blowing pressure,

    using the flat-, micro-hole assembling- or spiral-type

    tuyere, reducing the width of the annular slit (the

    subtuyere) of an annular tube tuyere and others may

    all decrease the back-attack frequency, to different

    extent s. The state of a gas jet at the out let of an an-

    nular tube tuyere could markedly be changed to a

    forced rotating motion when the tuyere was altered to

    one with a spiral s tru ctu re (71 . Under a certai n blowing

    condition, the rotating motion of the jet could effec-

    tively decrease the mechanical erosion of the ref racto-

    ry lining by the fluid flow. Howeve r, the fluid flow

    and mixing phenomena in an AOD bath with rotating

    gas jets have not been studied. Moreo ver, there

    would indeed be quite a few something in common for

    the r elevant back-attack behaviors of gas jets in differ-

    ent submerged gas blowing processes. As a result of

    differ ent gas blowing directions , howeve r, the corre-

    sponding gas jets must have different behaviors and

    features, and there will also be some differences be-

    tween their back-attack action. Fur the rmo re, all the

    previous investigations also have not made stricter

    calculations for the gas outlet parameters of the

    tuyere; the sites taken for measuring the back-attack

    pressure have mostly been positioned inside the

    tuyere. Therefore, that cannot necessarily bring to

    light the overall situation of the back-attack phe-

    nomenon.

    With respect to mathematical modeling for the AOD

    process, numerous models have been proposed and de-

    veloped to attempt to accomplish optimization and

    computer control of the process. Some of them are

    based on mass and hea t balances E2°2S3, and some of

    them are in t erm s of the process k inet ics [26-28J and the

    the rmodynamics with mass balance C291. A real -time

    online control model for the refining process has also

    been developed and applied E3°1. Thes e studies, to dif-

    ferent extents, also offered some useful information

    for understanding and improving the process practice.

    Howev er, all these available models for the refining of

    stainless steel have not reflected and described fully

    the real situations of the process and, to a certain de-

    gree , have all this or that shortcomings. Using these

    models, in fact, it is difficult to predict quantitatively

    and accurately the changes in the chemical composi-

    tion and temperature of the bath during the practical

    process and the influence of the relevant factors, as

    well as their interactions.

    Therefore, it is still needed, and is of important

    theoretical and practical meaning, to study furth er

    and more deeply this process. Considering these situa-

    tions, the AOD refining of stainless s teel was investi-

    gated by the author with his research group in recent

    years, taking the process in an 18 t vessel for exam-

    ple. The latest studies and advances made on physical

    and mathematical modeling of the refining process are

    summarized as follows.

    2 P h y s i c a l M o d e l i n g o f t h e A O D

    Process [31 3~3

    2 1 S i m i l a r i ty c o n d i t i o n s a n d d e t e r m i n a t i o n o f

    gas blowing r a t e f o r m o d e l

    In the AOD process, the gas is horizontal ly blown

  • 8/18/2019 Aod Modelling

    3/23

    Vol. 6 No. 1 Mar.2002 WEI J.H. • Physical and Mathematical Modeling of the Argon-Oxygen Decarburization .. . 3

    into the bath from the side wall near the bottom of the

    vessel, through several tuyeres ( 46 ) . The motion of

    the liquid outside the gas-liquid two-phase flow in this

    syst em is gas driven. The motion of the liquid outside

    the gas-liquid two-phase flow will be due to gas agita-

    tion and be independent of the turbulent and viscous

    force characterized by the Reynolds number. The

    buoyancy, inertial force and gravity will mainly gov-

    ern the motion of the gas side blowing streams.

    Therefore, the modified Froude number

    F r

    could al-

    so be chosen as a decisive dimensionless number for

    this system:

    = pa ug ~p g~ (1)

    F r p ~ - p ~ g d p i g d

    where ug is the veloci ty of gas, m. s 1 ; [)~j ind ,,~ are,

    respectively, the density of the gas and the liquid, kg

    • m-a ; g is the acceleration due to gravity, m' s- 2; d

    is the characteristic dimension of the syst em, m. To

    maintain the kinematic similarity of the fluids in the

    prototyp e and its model, accordingly, their modified

    Froude numbers need to be kept equal, besides main-

    taining their geometric similarity. Taking d to be the

    tuyer e diamete r, the following relationship can be de-

    rived from (

    F r ) , , = ( F r ) p :

    P f I O p ~ g l m ) 1 / 2 P r i m ) 1 / 2

    d . , ) 5 /2

    Q m = Q p ( p ~ o ) ~ p i p p a p ~ ( 2 )

    where subscripts m and p indicate respectively the

    model and its prototype; Q is the volume flow rate of

    gas at the standard sta te, Nm 3 h- 1 ; pg0 is the density

    of the gas used at the standard state, kg Nm-3 ; and

    pg is the density of the gas at the tuyere outlet.

    Obviously, for a given original and model system,

    the gas densities at the tuyere outlets both for the

    model and the vessel, Pgm and p g p , are the two key

    parameters, and they are closely related to the gas

    flow properti es in a tuyere. In order to ensure that

    the kinematic similarity between the model and its

    prototy pe was as high as possible, the corresponding

    values were determined on the basis of theoretical cal-

    culations of the parameters of the gas streams in the

    tuyeres. During calculation it was assumed that the

    gas streams in the tuyere used for the water modeling

    would all be adiabatic friction flows. The correspond-

    ing flows in the tuyere used for practical refining were

    treated as heating friction processes since they all

    have a marked heating friction f eatu re [36391. In addi-

    tion, the gases would be heated by the molten steel

    and expand after enter ing the bath. Correspondingly,

    their densities would be reduced. An appropr iate re-

    sponse would be to increase the gas blowing rates for

    the model. This is true principally for the gas stream

    of the main tuy ere. The results of theoretical calcula-

    tions and estimation of the heat transfer between the

    gas jet and the liquid steel in the AOD vessel showed

    that the outlet temperature of the subtuyere gas

    stream would have reached or slightly exceeded the

    average value of the gas in the bath.

    Another factor that needs to be considered is CO

    formation during refining. The averag e utilization ra-

    tio of 02 is about 40%-50% for the AOD refining of

    austen itic stainless steel [4°7. This means t hat the gas

    flow rate of the main tuyere for the model should be

    further raised to simulate the practical effect. All of

    these considerations would improve markedly the

    kinematic similarity of fluid flows between the model

    and its prototype.

    For the blowing refining of austenitic stainless

    steel in an AOD vessel of 18 t capacity, the gases used

    for the main tuyere and subtuyere are, respectively,

    mixed 02 : N2 gas (4 : 1 ) and N2 in the initial (f ir st )

    stage of the refining; and mixed 02: Ar gas (3:2) and

    Ar in the second (middle) period of the refining . With

    a geometric similarity ratio of the model to its proto-

    type (including the straight tube tuyeres) of 1:3, and

    with modeling of the various gases used for refining

    with air, calculations for the initial and middle stages

    of blowing were conducted under conditions of heating

    friction flow of the gases in a practical tuye re. As far

    as the values of Q,~ are concerned, the calculated re-

    sults showed that the difference for the two blowing

    stages was not too large. The calculated results for

    the middle period of blowing (not including the effect

    of CO formation on the value of Q,~) with some relat-

    ed parameters are presented in Table 1.

  • 8/18/2019 Aod Modelling

    4/23

      Journal of Shanghai University

    Table 1 G a s b l o w i n g r a t e s u s e d f o r 1 8 t A O D v e s s e l a n d i t s m o d e l i n m i d d l e b l o w i n g s t a g e a n d v a l u e s o f r e l a t e d p a r a m e t e r s

    1 8 t A O D v e s s e l M o d e l ( 1 : 3 )

    P a r a m e t e r M a i n t u y e r e S u b t u y e r e M a i n t u y e r e ( * ) S u b t u y e r e

    1 2

    G a s b l o w in g r a t e ( Q ) , N m 3 h i 500 x 2 100 x 2 7.9 1 x 2

    p~0 , kg Nm - 3 1 . 4392 + 1 . 6343 + 1 .184 4 +

    p g , k g ' m 3 4 . 2 4 3 0 1 . 2 6 11 1 . 2 8 8 2

    L iqu id m a s s in ba th ( M~ ) , t 18 .0 0

    pL, kg- m - 3 7370 #

    L iq u id l e v el h e i g h t i n b a t h ( H ) , m 1 . 1 0

    D e p t h o f t u y e r e ( H z ) , m 0 . 9 5

    Ga s in le t p re s s u re (P z ) , MPa 1 . 3272 1 . 3996 0 . 1671

    Gas

    o u t l e t p r e s s u r e ( P z ) , M P a 0 . 4 9 9 6 0 . 2 7 4 6 0 . 1 0 31

    G a s i n l et t e m p e r a tu r e ( T 1 ) , K 3 2 3 . 0 3 2 3 . 0 2 9 8 . 0 0

    G a s o u t l e t t e m p e r a t u r e ( T 2 ) , K 5 2 6 . 4 0 1 0 5 2 . 1 0 2 8 5 . 2 1

    F r c a l cu l a te d f r o m g a s b l o w i n g r a t e 8 4 8 . 4 4 7 3 5 . 0 0 8 4 8 . 4 2

    G a s o u t l e t v e l o c it y c a lc u l at e d f r o m F r ( u g ) , m s - l 4 1 6 . 5 2 6 0 5 . 5 0 1 6 0 . 7 6

    G a s o u t l e t v e l o c it y c a l cu l a te d t h e o r e t ic a l l y ( u g ' ) , m s - z 4 1 6 . 2 0 6 0 4 . 4 2 1 6 0 . 1 3

    1 1 . 3 2 x 2 3 . 6 2 5 x 2

    1 . 1 8 4 4 + 1 . 1 8 4 4 +

    1 . 2 6 4 5

    0 . 1 1 3 2

    1000 +

    0 . 3 7

    0 . 3 2

    0 . 2 1 4 2

    0 . 1 0 3 1

    2 9 8 . 0 0

    2 9 0 . 0 0

    7 3 5 . 0 0

    1 2 8 . 6 0

    1 2 8 . 0 0

    * 1 a n d 2 a r e , r e s p e c t i v e l y , f o r t h e c a s e s w h e r e h e a t e x p a n s io n o f m a in t u y e r e g a s a f t e r e n t r y i n t o b a th o f A O D v e s s e l w a s n o t a n d w a s c o n s i d e re d .

    + Re f . [36 - 38] ; ~ : Re f . [41 ] .

    2 . 2 E x p e r i m e n t a l c o n d i t i o n s

    Manometer 14

    m e t e r ~

    V a l v e ~

    ~740

    - ,

    | A n n u l a rerel

    Cumpresse~ a i r , ,~ with s tra ight- I

    . ~ ~ tube or spiral- I

    t~uner fiat main tuyerd

    /

    1

    AOD model

    Pressure sensor

    I ~467 P I

    Dynamic resista-I [ l,ight-beam

    nee strain-mater ~ oscilloscope

    YD-2t type) [ I SCl6Atype)

    a)

    T

    o 10~ 10 ~10°' 10 o

    10°10 I ~ ~'10

    1 0 . 1 ~ 0 ' 10~Vl0

    5:3:

    b)

    F i g . 1

    i t s t u y e r e p o si t io n a r r a n g e m e n t ( b )

    Fig. 1 a) is a schematic diagram showing the di-

    mensions of the model apparatus of an 18 t AOD vessel

    that was used for the experiments. Seventeen tuye re

    positions were fixed on its side wall, and the maxi-

    mum angular separation of two tuyeres being 150 °, as

    shown in Fig. 1 b) . The inner tube of the tuyere

    S c h e m a t i c d i a g r am o f m o d e l a p p a r a t u s o f 1 8 - t A O D v e s s e l u s e d f o r w a t e r m o d e l i n g e x p e r i m e n t ( a ) a n d

    used for the model was made of brass; the outer tube

    of the tuyere was a circular pipe made of red copper.

    The structure and cross-section of the straight tube

    tuyere are presented in Fig. 2 a) and b), respective-

    ly.

  • 8/18/2019 Aod Modelling

    5/23

    Vol. 6 No. 1 Mar. 2002 WEI J. H. : Physical and Mathematical Modeling of the Argon-Oxygen Decarburization .. . 5

    I q 290

    ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t ° - -

    1., 326 -1

    D l =

    D =8

    (a)

    ~ _ 4

    Fig 2

    (b) (c)

    Structu re (a) and cross-sections with dimensions of straight tube tuyere (b ) and (main tu yere ) spiral-flat tuy ere (c)

    used for the model of 18-t AOD vessel

    A n a n n u l a r s p i r a l - f l a t t u y e r e o f i n s e r t i n g a s p i r a l

    f l a t i n to t h e c e n t r a l t u b e ( t h e m a i n t u y e r e ) w a s e m -

    p l o y e d t o o b t a in a r o t a t i n g g a s j e t . A c r o s s - s e c t i o n

    w i t h d i m e n s i o n s o f t h e s p i r a l t u y e r e u s e d i s s h o w n i n

    F i g . 2 ( c ) ; t h e r e l e v a n t p i tc h w a s 4 6 . 5 7 m m . I t h a s a

    b e t t e r g a s b l o w i n g p e r f o r m a n c e [ 3z ' 33l

    T h e m i x i n g t i m e i n t h e b a th ( r m ) , w h i c h w a s d e -

    f i n e d a s r 0 . 9 5 , w a s m e a s u r e d b y t h e e l e c t r i c a l c o n d u c -

    t i v i t y m e t h o d . A s a t u r a t e d K C1 s o l u t i o n w a s a d d e d t o

    t h e l i q u i d s u r f a c e n e a r t h e w a l l a b o v e t h e s e c t o r z o n e

    b e t w e e n t h e t w o t u y e r e s . F o r e a c h e x p e r i m e n t a l p o in t

    a t e ac h o p e r at i n g m o d e , t h e m e a s u r e m e n t w a s r e p e a t -

    e d a t le a s t 5 - 6 t i m e s , a n d t h e n a n a r i t h m e t i c a l m e a n

    v a l u e o f t h e r e s u l t s o b t a in e d w a s t a k e n . P o l y s t y r e n e

    p a r t i c le s o f 1 m m d i a m e t e r a n d 0 . 9 7 g c m - 3 d e n s i t y

    w e r e u s e d as a t r a c e r ; a n S L V - 2 0 a d j u s ta b l e la s e r

    g e n e r a t o r w i t h f r e q u e n c y s c a n n i n g p r o v i d e d a l as e r

    s l i t l i g h t so u r c e .

    T h e b a c k - a t ta c k f r e q u e n c y a n d i n t e n s i t y o f a g a s j e t

    w e r e c o n t i n u o u s l y d e t e c t e d a n d m o n i t o r e d u s i n g a n

    a n t i - w a t e r p r e s s u r e s e n s o r m a d e s p e c ia l ly . T h e s i te o f

    m e a s u r i n g t h e p r e s s u r e w a s l o c a te d at t h e o v e r z o n e

    j u s t c l o se t o t h e t u y e r e o u t l e t ( F i g . l a ) . T h e r e f r a c -

    t o r y l in i n g w a s m o d e l e d w i t h b o r i c ac i d c a s t - p l a t e o f

    1 0 0 x 1 0 0 × 1 0 m m f o r t h e e x p e r i m e n t o f t h e r e f r a c -

    t o r y l i n i n g e r o s i o n a n d w e a r .

    T h e i n f l u e n c e s o f th e g a s b l ow i n g r a t e , t h e a n g u l a r

    s e p a r a t i o n o f th e t w o t u y e r e s a n d t h e t y p e o f t u y e r e

    o n t h e s t i r r in g a n d f lo w c o n d i t io n s , t h e m i x i n g t i m e ,

    t h e s ta b i l i t y o f t h e b l o w i n g p r o c e s s , t h e b a c k - a t t a c k

    a c t i o n a n d t h e e r o s i o n a n d w e a r o f t h e l i n i n g w e r e e x -

    a m i n e d . F o r c o m p a r i s o n w i t h t h e p r a c ti c a l p r o c e s s a n d

    t h e r e a l t u y e r e u s e d , t h e v a l u es o f Qm f o r t h r e e o t h e r

    c a s e s w e r e a l so d e t e r m i n e d . T h e s e w e r e a s s u m e d t o

    c o r r e s p o n d r e s p e c t i v e l y t o a d i a b a t i c f r i c t i o n f l o w o f

    t h e g a s i n t h e t u y e r e , t o a d i a b a t ic f r i c t i o n f l o w o f t h e

    g a s i n t h e t u y e r e w i t h g a s h e a t i n g e x p a n s i o n , a n d t o

    a d i a b a t ic f r i c t i o n f lo w o f t h e g a s in t h e t u y e r e w i t h g a s

    h e a t i n g e x p a n s i o n a n d t h e f o r m a t i o n o f C O . T h e o p e r -

    a t i n g m o d e s u s e d a r e s h o w n i n T a b l e 2 .

  • 8/18/2019 Aod Modelling

    6/23

      Journal of Shanghai University

    Table 2 All operat ing modes examin ed

    Assumed condition of gas s tream in AOD tuyere ~'~

    Total gas blowing rate for two tuyere s. Nm3 h -t

    Q.,l(formain tuyeres)

    Q.~2(for su btuyer es)

    I II III IV V

    1 1+3 1+3+ 4 2 2+3

    12.94 20.12 25.34 15.82 22.64

    3.97 6.026 6.026 6.53 6.53

    Blowing pressur e of main tuye re/ subt uyere + A B C D E

    (gauge value), MPa 0.066/0.07 0.135/0.125 0.185/0.125 0.09/0.137 0.16/0.137

    No. 1 2 3 4+ 5+ 6+ 7 8 9

    Angle included between the two tuy ere s, 0, °( ') 0 20 40 60 80 100 115 130 150

    1-adiabatic friction flow; 2- heating friction flow; 3-considering gas heating expansion; 4- considering formation of CO.

    ~ 0 ° corresponds to single tuyere blowing.

    + for rotating gas jet and study of back-attack action

    Corresponding to the blowing pressures of A- E in

    Table 2, the gas blowing rates of the spiral-flat type

    tuyer e were , respec tively, the values of I - V. For

    the erosion and wear experiments of the refractory

    lining, the pressures used for the two types of tuyer es

    were all taken to be the value of E. In this case, the

    gas blowing rate of the main-tuyere of the straight-

    tube type tuyere was relevantly 27.58 Nm~ h-1

    2 . 3 h e f e a t u r e s o f gas st irring a n d l i q u i d flow

    i n t h e b a t h

    It can be seen from the experimental process that

    the gas blown horizontally into the bath through an

    annular tube type tuyere from the side wall near the

    bottom of the vessel , was in the form of a jet and

    formed a few very large bubbles near the tuyere out-

    let. Under the combined action of the inertial force

    and the buoyancy, the gas jet gradually acquired an

    upward motion after penetrating a certain distance a-

    long the horizontal direction in the bath liquid. At the

    same time, the liquid around it was continuously

    sucked in, a gas-liquid two-phase flow was formed,

    and a great quantity of small bubbles was generated.

    Also, the cross-sectional area of the two-phase stream

    was gradually enlarged . At the liquid surface of the

    bath, the gas inside the two-phase str eam escaped into

    the gaseous phase. Simultaneously, the kinetic ener-

    gy of the liquid was changed into potential energy,

    thus leading to the liquid surface level at the center of

    the two-phase zone being higher than the surface level

    around the zone. This pa rt of the liquid had downward

    motion owing to the force of gravity and flowed to-

    wards the peripheral wall of the vessel along the radial

    direction. This brought about fluctuating motion of

    the entire liquid surface of the bath and formed a sta-

    tionary wave under the obstruction of the wall. The n,

    this part of the liquid had downward motion along the

    side wall. During this process , it was again drawn in-

    to the two-phase stre am, forming vortexes and eddies

    of varyi ng sizes. In the process of gas escape, a con-

    siderable part of the gas was also drawn into the bath

    by the falling liquid and again turned into small bub-

    bles by interaction of the gas jet with the liquid

    stream. These bubbles flowed with the liquid stream

    and floated up and escaped again during circulatory

    motion. From beginning to end, the liquid of the bath

    underwent very active stirring and circulatory motion

    during blowing. Th er e was no obvious dead zone any-

    wher e in the bath. An increase in the gas flow rate in-

    tensified the gas agitation, but did not alter these

    kinds of feat ures of the liquid flow in the bath. Corre-

    spondingly, the fluctuation and wave motion of the

    bath surface were aggravated and its stability was re-

    duced.

    The influence of the angle included between the

    two tuyeres on features of gas stirring and liquid flow

    in the bath was very marked and may even govern the

    stability of blowing refining, particularly with a larger

    gas flow rate. When the angular separation between

    the two t uye res was below 40 °, the two gas streams

    inters ected and merge d, with their interacti on in-

    creasing as they rose in the bath. This made the bath

    liquid surface more dynamic. The smaller the angular

    separation, the more serious this situation became.

    When the angle included between the two tuyeres was

    beyond 115 ° , the two gas str eams even tual ly collided

  • 8/18/2019 Aod Modelling

    7/23

    Vol. 6 No. 1 Mar. 2002 WEI J. H. • Physical and Mathematical Modeling of the Argon-Oxygen Decarburization .. . 7

    h e a d o n w i t h i n c r e a s e i n t h e a n g l e . T h i s a ls o r e s u l t s

    i n l o w e r s t a b i l i ty o f t h e b a t h l i q u i d s u r f a c e . W i t h a g a s

    b l o w in g r a t e c o r r e s p o n d i n g t o I I I in T a b l e 2 , a t a n g u -

    l a r s e p a r a ti o n s o f 2 0 ° an d ~ 1 3 0 ° t h e r e w e r e v i o l e n t

    o sc i l l a t i o n a n d sp l a sh i n g o f t h e l i q u i d a t t h e b a t h su r -

    f a c e. T h i s n o t o n l y m a k e s t h e b l o w i n g p r o c e s s d i f fi -

    c u l t t o s t a b i l i z e b u t a l s o g r e a t l y i n t e n s i f i e s e r o s i o n o f

    t h e r e f r a c t o r y w a l l b y t h e f l u i d s . W i t h a l l th e g a s

    b l o w i n g r a t e s u s e d , a t a n g u l a r s e p a r a t i o n s o f 6 0 ° -

    1 0 0 ° , t h e l iq u i d s u r f a c e s o f t h e b a t h r e m a i n e d r e l a -

    t i v e l y s m o o t h a n d s t e a d y . A s f a r a s t h e s t a b i l i t y o f t h e

    b l o w i n g p r o c e s s i s c o n c e r n e d , i t i s i n e x p e d i e n t f o r t h e

    a n g l e i n c lu d e d b e t w e e n t h e t w o t u y e r e s t o b e e x c e s -

    s i v e l y l a r g e o r s m a l l .

    W h e n a s p i r al a n n u l a r t u b e t u y e r e w a s u s e d , t h e

    g a s j e t w a s o b v i o u s l y r o t a t i n g n e a r t h e t u y e r e o u t l e t.

    T h e d i s c h a r g e a n g l e o f t h e j e t a t t h e t u y e r e o u t l e t d id

    n o t n o t i c e a b l y e n l a r g e . I t s r o ta t i n g v e l o c i t y d e c r e a s e d

    c o n s i d e r a b l y w i th d i s t a n c e f r o m t h e t u y e r e o u t l e t .

    H o w e v e r , b e c a u s e o f i n e r ti a l f o r c e , t h e a s ce n d i n g

    g a s - l iq u i d t w o - p h a s e f l o w a n d t h e l i q u id a r o u n d i t c o n -

    t i n u e d t h e r o t a t i n g m o t i o n a s th e v e l o c i t y d e c r e a s e d .

    T h e c r o s s - s e c t i o n a l a r e a o f t h e t w o - p h a s e f l o w w a s

    s l i g h t l y l a r g e r t h a n w h e n t h e s t r a i g h t - t u b e t u y e r e w a s

    u s e d . A s g a s f l o w r a t e w a s i n c r e a s e d , t h e r o t a t i n g

    m o t i o n b e c a m e m o r e i n t e n s e , a n d t h e s iz e o f t h e t w o -

    p h a s e f lo w r e g i o n b e c a m e l a r g e r . M a n y s m a l l b u b b l e s

    w e r e f o r m e d n e a r t h e t u y e r e o u t l e t in t h e r o t a t i n g

    m o t i o n o f t h e g a s j e t . L a r g e b u b b l e s , w h i c h f r e q u e n t -

    l y a p p e a r w h e n a n o n - r o t a t i n g j e t i s u s e d , s e l d o m o c -

    c u r r e d e v e n a t t h e h i g h e s t g a s f lo w r a t e . A t a g i v e n

    g a s fl o w r a t e , t h e d is t a n c e p e n e t r a t e d b y t h e r o t a t in g

    j e t a l o n g t h e h o r i z o n t a l d i r e c t i o n i n t h e b a t h w a s

    s l i g h tl y l e s s t h a n th a t o f a n o n - r o t a t in g j e t . H o w e v e r ,

    t h e c i r c u l a t o r y m o t i o n v e l o c i t y o f t h e l i q u id a n d t h e

    r e l a t e d i n t e n s i t y o f t h e v o r t e x e s a n d e d d i e s w e r e l a rg -

    e r , r e s u l t i n g i n t h e l i q u id s u r f a c e o f th e b a t h b e i n g

    m o r e a c t i v e i n t h a t t h e s u r f a c e w a s m o r e a g i t a t e d .

    T h e p o s i t i o n t h e i n c l u d e d a n g l e ) o f t h e tw o t u y -

    e r e s a l s o s t r o n g l y a f f e c t e d t h e g a s a g i t a t i o n a n d l i q u i d

    f l o w i n t h e b a t h w h e n r o t a t i n g g a s j e t s a r e u s e d . T h e

    e f f e c t s o f t h is p a r a m e t e r w e r e m o r e s e n s i t iv e t h a n

    w h e n n o n - r o t a t i n g g a s j e t w e r e u s e d a n d w e r e m o r e

    r e l a t e d t o t h e s t a b i l i t y o f t h e b l o w i n g p r o c e s s , p a r t i c -

    u l a r l y a t t h e h i g h e r g a s f l o w r a t e s . A t t h e g i v e n g a s

    f l o w r a t e s t e s t e d , t h e l i qu i d o n t h e b a t h s u r f a c e w a s

    r e l a t iv e l y b o t h a c t iv e a n d s t e a d y w h e n t h e a n g u l a r

    s e p a r a t i o n b e t w e e n t h e t w o s p i r a l - f l a t t u y e r e s w a s

    8 0 ° ; a s t a t i o n a r y w a v e w i t h a s h o r t e r w a v e l e n g t h w a s

    o n t h e s u rf a c e . H o w e v e r , t h e b lo w i n g p r o c e s s w a s

    f a i r ly s m o o t h a n d s t e a d y , w i t h n o v i o l e n t s p la s h i n g o f

    t h e l iq u id o n t h e b a t h s u r f a c e , e v e n a t t h e m a x i m u m

    g a s fl o w r a t e u s e d I I I in T a b l e 2 ) . W h e n t h e a n g u l a r

    s e p a r a t i o n s o f 6 0 ° a n d 1 0 0 ° w e r e u s e d , o s c i l l a ti o n s a n d

    f l u c t u a ti o n s o f l ar g e a m p l i t u d e w e r e o f t e n f o r m e d o n

    t h e b a t h s u r f a c e a c c o m p a n i e d b y v i o l e n t s p l a s h i n g .

    W i t h r e s p e c t t o t h e s t a b i l i t y o f t h e b l o w i n g p r o c e s s ,

    t h e u s a b l e r a n g e o f t h e i n c l u d e d a n g l e b e t w e e n t h e

    t w o t u y e r e s , w h e n u s i n g t h e r o t a t in g g a s j e t s , w a s

    n a r r o w e r t h a n w h e n u s i n g t h e n o n - r o t a t i n g j et s .

    T h e d i f f e r e n t b a c k - at t a ck p h e n o m e n a o f t h e t w o

    k i n d s o f g a s s t r e a m s w e r e c l e a r l y o b s e r v e d d u r i n g t h e

    e x p e r i m e n t s , a n d w i ll b e d e s c r i b e d l a te r .

    2 4 M i x i n g t im e in b a t h a n d e f f e c t s o f an g u la r

    separat ion be tween two tuyeres and gas f low rate

    F i g s . 3 a n d 4 s h o w t h e r e s u l t s o f t h e m i x i n g t i m e

    m e a s u r e d e x p e r i m e n t a l l y in t h e A O D m o d e l b a th w i t h

    n o n - r o t a t i n g a n d r o t a t i n g g a s j e t s. H e r e , F i g . 3 p r e -

    s e n t s t h e r e s u l t s o f m i x i n g t i m e a s a f u n c t i o n o f t h e

    a n g l e in c l u d ed b e t w e e n t w o t u y e r e s a t t h e g i v e n g a s

    f l o w r a t e s , a n d F i g . 4 s h o w s t h e r e s u l t s o f th e m i x i n g

    t i m e a s a f u n c t i o n o f g a s f l o w r a t e a t t h e g i v e n a n g u l a r

    s e p a r a t i o n s . I t is v e r y c l e a r th a t t h e A O D p r o c e s s u n -

    d e r t h e o p e r a t i v e c o n d i t i o n s w i t h n o n - r o t a t i n g a n d r o -

    t a t i n g g a s j e t s h a s e x c e l l e n t m i x i n g e f f i c i e n c y .

    I t c an b e s e e n f r o m F i g . 3 t h a t w i t h n o n - r o t a t i n g

    g a s j e t , r,~ w a s s h o r t e s t i n t h e a n g u l a r r a n g e o f 60 ° -

    1 0 0 ° r e d u c i n g t o a m i n i m u m v a l u e a t 8 0 ° ) . F i g . 4 i l-

    l u s t r a t e s t h a t , w i t h a g a s f l ow r a t e r a n g e c o r r e s p o n d -

    i n g to I I , I V a n d V i n T a b l e 2 , t h e r e w a s a n i n t e r v a l

    w i t h th e s h o r t e s t m i x i n g t i m e . T h e c h a n g e s i n r m

    w i t h 0 a n d Q m a l l s h o w e d a p a r a b o l ic f e a t u r e .

    T h e r e l a t i o n s h i p s b e t w e e n t h e m i x i n g t i m e i n t h e

    A 0 D b a t h , t h e an g l e i n cl u d e d b e t w e e n t h e t w o t u y -

    e r e s , a n d t h e g i v e n g a s f l o w r a t e s c o m p l e t e l y c o r r e -

    s p o n d t o t h e s t i r r i n g a n d f l o w c o n d i t i o n s i n t h e b a t h .

    Q u a l i t a t iv e l y , a t a g i v e n g a s f lo w r a t e , a n e x c e s s i v e l y

    l a r g e o r s m a l l a n g l e i n c l u d e d b e t w e e n t h e t w o t u y e r e s

    w i ll i n c r e a s e t h e e n e r g y c o n s u m p t i o n a n d r e d u c e t h e

    e f f e c t i v e s t i r r i n g p o w e r , t h u s l e a d i n g to a d e c r e a s e i n

    m i x i n g e f f i c ie n c y . T h e a u t h o r h o p e s t o d e v e l o p te c h -

    n o l o g y t h a t w i ll e n s u r e b o t h a s h o r t e r m i x i n g t i m e a n d

    a n a c t i v e a n d s t a b l e b a t h . F o r t h e p r a c t i c a l p r o c e s s ,

    t h e s p e c i f i c g a s f l o w r a t e i s n o t d e t e r m i n e d b y t h e

  • 8/18/2019 Aod Modelling

    8/23

    Journal o f Shanghai Univers i t y

    .9

    20

    5

    20

    20

    lO

    10

    F i g . 3

    5

    . ..~ £ 8 o 8 £ _ ~

    O ~ ~

    • ' O i , o

    o

    a

    i | t

    b

    i i i e e i

    , , , ~ ,-~ 0 ~ ° ,~ O

    c

    I I I I I I I

    ¢

    I i I I I I I

    20 40 60 80 100 120 140 160

    A n g l e b e t w e e n t u y e r e s ( ° )

    d

    i | i i i

    20 40 60 80 100 120 140 160

    A n g l e b e t w e e n t u y er e s ( ° )

    G a s f l o w r a t e ( N m 3 / h ) :

    a - 1 6 .9 1 b - 2 2 . 3 5 c - 2 6 . 1 5

    d - 2 9 . 1 7 e - 3 1 . 3 7

    • - - S p i r a l - f i a t t u y e r e

    o - - S t r a i g h t - t u b e t u y e r e

    M i x i n g t i m e s i n t h e A O D m o d e l b a t h a s a f u n c t i o n o f t h e i n c l u d e d a n g l e

    b e t w e e n t w o t u y e r e s a t t h e g i v e n g a s f lo w r a t e s u s i n g n o n - r o t a t i n g a n d

    r o t a t i n g g a s j e t s

    ..x

    Angle:60*

    16

    R

    ~ 14 ~ Angle :100° o

    E 12

    = ~ ....

    A

    e~ l0 ..................

    . 9 A

    .~ 8

    6

    18 20 22 24 26 28 3*0 32

    Q ( N m V h )

    O Angle:8ff

    o

    16 1 8 2 ~ 2 *2 2 4 26 2*8 3(~ 32

    Q ( N m 3 / h )

    * - - S p i r a l - fl a t t u f y e r e

    o - - S t r a i g h t - t u b e t u y e r e

    F i g . 4 M i x i n g t i m e s i n t h e A O D m o d e l b a t h a s a f u n c t i o n o f g a s fl o w r a t e a t t h e

    g i v e n i n c l ud e d t u y e r e a n g l e s u s i n g n o n - r o t a t i n g a n d r o t a t i n g g a s j e t s

  • 8/18/2019 Aod Modelling

    9/23

    Vol. 6 No. 1 Mar.

    2002

    WEI J. H. : Physical and Mathematical Modeling of the Argon-Oxygen Decarburization .. . 9

    m i x i n g t im e b u t a c c o r d i n g t o th e a c t u a l r e q u i r e m e n t o f

    t h e r e f in i n g r e a c t i o n s , i t s a d j u s t a b i l i t y a n d f l e x i b i li t y

    a r e n o t so go o d . T h e r e f o r e , t h e i n f l u e n c e o f t h e a n g u -

    l a r s e p a r a t i o n i s m o r e s i g n i f i c a n t a n d m a y b e t a k e n a s

    a b a s i s f o r s e l e c t i n g a n e f f i c i e n t t u y e r e a r r a n g e m e n t .

    I t w a s p r e s u m e d t h a t t h e s i t u a t i o n w i t h t h e g a s f l o w

    r a t e c o r re s p o n d i n g t o V in T a b l e 2 m i g h t p e r h a p s b e

    c l o s e r t o p r a c t i c e . A t th i s g as b l o w i n g r a t e , t h e a n g u -

    l a r r a n g e o f 6 0 ° - 1 0 0 ° o f f e r s m o r e e f f i c i e n t t u y e r e p o -

    s i t i o n . O b s e r v a t i o n s a n d e x p e r i m e n t a l r e s u l t s a l l i n d i -

    c a t e d t h a t , i n t h i s c a s e , n o t o n l y t h e m i x i n g e f f e c t i v e -

    n e s s w a s b e t t e r b u t al s o th e b l o w i n g p r o c e s s w a s

    s m o o t h e r a n d s t e a d i e r. T h i s r e c o m m e n d e d r a n g e o f

    a n g u l a r s e p a r at i o n o f th e t w o s t r a i g h t - t u b e t u y e r e s is

    l a r g e r t h a n t h e v a l u e ( 5 4 ° ) o b t a i n e d b y L e a c h

    et

    al.

    [13 f r o m t h e r e s u l t s o f w a t e r m o d e l i n g f o r a 1 6 t

    A O D v e s s e l , w h i c h m a y p r o b a b l y b e r e l a t e d t o t h e u s e

    o f si n g le t u b e t y p e t u y e r e s i n t h e i r e x p e r i m e n t s .

    T h e m i x i n g t i m e s i n t h e b a t h w i t h r o t a t i n g g a s j e t s

    w e r e s im i l a r t o th o s e f o r u s in g t h e s t r a i g h t - t u b e t u y -

    e r e s . I n t h e o p t i m a l o p e r a t i n g r a n g e o f 6 0 ° - 1 0 0 ° f o r

    t h e s t r a i g h t - t u b e t u y e r e s , t h e a n g u l ar s e p a r a t io n w a s

    l e s s s e n s i t i v e f o r t h e tw o s p i r a l - f la t t u y e r e s . C o m p a r -

    a t i v e l y , t h e m i x i n g e f f i c i e n c y a t 8 0 ° w o u l d b e b e s t . A t

    g i v e n a n g u l a r s e p a r a t io n s b e t w e e n t h e t u y e r e s a n d g a s

    f l o w r a t e s , t h e m i x i n g t i m e s u s i n g t h e s p i r a l - fl a t tu y -

    e r e s w e r e s l i g h t l y s h o r t e r t h a n t h a t w i t h t h e s t r a i g h t -

    t u b e tu y e r e s . T h e r e f o r e , u s i n g t h e s p ir a l -f l a t t u y e r e s

    w i ll r e s u l t i n a h i g h e r m i x i n g e f f i c i e n c y . C o n s i d e r i n g

    t h e o v e r a l l e f f e c t s o n t h e s t a b i l i t y o f th e b l o w i n g p r o -

    c e s s ( t h e s u r f a c e e f f e c t s ) a n d t h e m i x i n g e f f i c i e n c y i n

    t h e b a t h , t h e a n g u l a r s e p a r a t i o n o f 8 0 ° w a s t h e o p t i -

    m a l p o s i t i o n f o r t h e t w o s p i r a l - f l a t t u y e r e s .

    T a k i n g c o m p r e h e n s i v e l y a c c o u n t o f th e e f f e c t s o f

    t h e g a s b l o w i n g r a t e a n d t h e a n g u l a r s e p a r a t i o n f o r t h e

    t w o tu y e r e s , t h e f o ll o w i n g r e l a ti o n s h i p s w e r e o b -

    t a i n e d f r o m t h e e x p e r i m e n t a l d a t a :

    f o r n o n - r o t a t i n g g a s j e t s ,

    t tq ) -0 . 3 4 5 S / S 0 )0.075

    22 • 04 ( Qm a ) - o. 072 ( ,~m2

    2 0 ° _ 8 0 o )

    r m = 3 0 1 7 ( ,~ . ~1

    Qm2

    S/ So ) 0 484 ,

    n ) 0 . 0 4 2 -o22o

    (80 ° - 150 o)

    3 )

    f o r r o t a t i n g g a s j e t s ,

    1 4 . 6 1 ( Q m l ) -0.142 Qm2) 0 .1 39 ( S / S o ) -0.21,

    (60 - 80 ° )

    r m = 2 9 . 6 7 ( Q , , 1 ) - o . 1 5 o ( Q , , 2 ) - 0. 09 9 ( S / S o ) O . 2 9 ,

    (80 ° - 100 ° )

    ( 4 )

    w h e r e S a n d S o a r e , r e s p e c t i v e l y , t h e a r e a o f t h e

    s e c t o r s e c t i o n i n c l u d e d b e t w e e n t h e a x e s o f t h e t w o

    t u y e r e s a n d t h e c r o s s - s e c t i o n a l a r e a o f t h e b a t h , m z .

    I t c a n b e s e e n t h a t i n t h e A 0 D p r o c e s s u s i n g t w o

    t u y e r e b l o w i n g w i t h a n n u l a r s t r a i g h t - tu b e t y p e

    t u y e r e , t h e m i x i n g t i m e i n t h e b a t h i s n o t s o s i m p l y

    p r o p o r t i o n a l t o Q a ( a < 0 ) a s i n th e c a s e o f g a s b l o w -

    i n g i n a l a d l e u s i n g a s i n g l e t u b e t u y e r e . T h e g a s

    s t r e a m o f th e s u b t u y e r e w o u l d b e a b le t o p r o v i d e a

    m a r k e d s h i e l d i n g e f f e c t t o t h e g a s s t r e a m o f t h e m a i n

    t u y e r e F8] . W i t h r e s p e c t t o m i x i n g , s u i t a b l e i n c r e a s e i n

    t h e g a s b l o w i n g r a t e o f t h e s u b t u y e r e w o u l d a l s o b e

    a d v a n t a g e o u s •

    T h e r e la t i o n s h ip s s h o w n b y E q u a t i o n ( 4 ) a r e

    s l i g h t l y d i f f e r e n t f r o m t h o s e w h e n u t i l iz i n g t h e

    s t r a i g h t - t u b e t u y e r e s . T h e e x p o n e n t s o f Q ,, a a n d

    Qm2

    a r e b o th n e g a t i v e v a l u e s. T h i s w o u l d b e c o n c e r n e d

    w i t h t h e r a n g e o f t h e a n g u l a r s e p a r a t i o n u s e d . I n a d -

    d i t i o n , t h e n o n - r o t a t i n g j e t s f r o m t h e s u b t u y e r e a l s o

    h a s a p h y s i c a l s h i e l d in g e f f e c t o n t h e r o t a t i n g g a s j e t s

    o f t h e m a i n t u y e r e s , b u t c o m p a r e d t o t h a t o n a n o n -

    r o t a t i n g j e t , t h e a ct io n i s e v i d e n t l y w e a k e n e d o w i n g

    t o t h e r o t a t i n g m o t i o n o f th e m a i n t u y e r e j e t .

    2 . 5 T h e g a s s t i r r in g e n e r g y a n d i ts r e l a t i o n s h i p

    w i t h m i x i n g t i m e

    R e g a r d i n g t h e g a s s t i r r i n g e n e r g y i n a g a s a g i t a t i o n

    l a d le s y s t e m , t h e r e a r e d i f f e r e n t c a l c u l a t io n e q u a t i o n s

    i n t h e l i t er a t u r e • T h e d i v e r g e n c e s o f t h e s e e q u a t io n s

    a r e b a s i c a l l y d u e t o d i f f e r e n t c o n s i d e r a t i o n s f o r b u o y -

    a n c y p o w e r a n d e x p a n s i o n w o r k d u r i n g f l o a ti n g u p o f

    t h e b u b b l e s• A c t u a l l y , d u r i n g f l o a t i n g u p , e v e r y b u b -

    b l e u n d e r g o e s t h e a c t io n o f b u o y a n c y , a n d i t s v o l u m e

    g r a d u a l l y in c r e a s e s w i t h d e c r e a s e i n th e s t a t i c p r e s -

    s u r e ; t h e b u o y a n c y s u f f e r e d i n c re a s e s c o r r e s p o n d -

    i n g l y . O n t h e o t h e r h a n d , t h e b u b b l e it s e l f w o u l d a ls o

    d o w o r k t o t h e l i q u i d w i t h i t s v o l u m e i n c r e a s i n g . T h a t

    i s t o s a y , a s a b u b b l e f l o a t s u p w a r d , t h e r e a l b u o y a n -

    c y p o w e r s h o u l d i n c l u d e t w o p a r t s , o n e o w i n g t o t h e

    p u r e b u o y a n c y a n d t h e o t h e r t o e x p a n s i o n . T h e f o r -

    m e r w o u l d b e c a u s e d p u r e l y b y b u o y a n c y a n d t h e l a t -

    t e r w o u l d r e s u l t f r o m a d e c r e a s e i n s t a t i c p r e s s u r e ;

  • 8/18/2019 Aod Modelling

    10/23

    10 J o u r n a l o f S h a n g h a i U n i v e r s i t y

    they would not be equal [42]. In addition, the tempera-

    ture of the gas stream after en try into the bath, Tg,

    must be lower than the molten steel temperature, be-

    cause it is impossible that the heat transfer rate be-

    tween the gas stream and the bath is high enough to

    allow equilibrium to occur in gas blowing process-

    es [4345]. Moreover, the theoret ical calculations[36a9]

    indicated that, under the experimental conditions, the

    gas will discharge at subsonic velocity, the outlet

    pressure being equal to the back pressure. However ,

    the stream can still have a considerable velocity (for

    instance, see Table 1) and a substantial kinetic ener-

    gy. Therefore, it is inappropriate to neglect the effect

    of the kinetic energy of the stream, although the re-

    lated agitation efficiency is low [46]. Fur ther more,

    isothermal expansion of the gas near the outlet does

    not take place in a water modeling process.

    Based upon the considerations above, the densities

    of the gas agitation energy for the main tuyere and

    subtuyere, era1 and e~2(W t- 1) were respectively es-

    timated using the following equation:

    8 m = £ b + 7 ] l ~T + 7 1 2 ~k

    O. 1031

    p l g H1 p ~ q H1

    = M? m T ~ {[ 2 1 n ( l + - ~ - o

    ) - p o + p L g H l l +

    r ] l ( 1 - 1 2 ) +

    1

    T2

    Tg 7/2 ( ~ - ~ p g u g ) } (5)

    where eb is the real buoyancy power , eT is the ex-

    pansion power of the gas at a constant pressure near

    the tuyere outl et, ek is the kinetic energy , P0 is the

    atmosphere pressure. The various Tg were estimated

    according to the method described in Ref. [47]; 7/1

    and r/2 were taken to be 0.06 and 0.02 , respectively.

    It is reasonable to believe that the above analysis and

    Equation (5) are applicable both to a non-rotating gas

    jet and to a rotating one. However, it is necessary to

    determine the values of the related parameters for a

    rotating gas jet, which were performed using a rea-

    sonable and reliable appropriation methodE32'33] .

    Not considering the energy loss as a result of the

    interaction between the non-rotating streams of the

    two straight-tube tuyeres, the total density of gas

    stirring energy was appropriately 150 - 320 W t-~,

    and 155 - 330 W t- 1 for the two rotat ing s treams of

    the two spiral-flat tuyeres. These values are much

    higher than those (4 . 5 - 8. 0 W ' t- ~ ) obtained by

    Figueira and Szekely 3] in terms of two times of the

    buoyancy power , and equivalent to the intensity of

    induction agitation in a 50 t ASEA-SKF furnace as pre-

    dicted by Nakanishi e t a l . ~ 48 3 As pointed out by

    Figueira and Szekely 3], the k inematic simil arity of

    the model to its prototype in their modeling experi-

    ment was very poor. Their results do not necessarily

    reflect the practical situation. The relationships be-

    tween the mixing time and the densities of gas stirring

    energy, obtained from the experimental data and the

    calculated results, were as follows:

    for non-rotating gas jets,

    46.82(eml ) - °'°6° (era2) -0.320(S/So) -0.075,

    (20 ° - 80 o)

    rm =

    4 3 . 9 1 ( e m l ) o . o a a ( e m 2 ) _ o . 2 1 o ( S / S o ) O . 4 S 4

    (6)

    (80 ° - 150 °)

    for rotating gas jets,

    {23.15(e~1) - 0 . 1 1 3 / x - 0 1 3 5/ - 0 . 2 1

    ~ m 2 J t S / S o ) ,

    6 o ° _ 8 0 ° )

    Vr~ = 4 4 . 0 4 ( e m l ) _ o . 1 2 O ( e m 2 ) _ o . o 9 8 ( S / S o ) O . 2 9 ,

    (7)

    ( 8 0 1 0 0 )

    These equations are in an identical form to Equations

    (3) and (4).

    2 6 D i m e n s i o n l e s s c o r r e l a ti o n o f m i x i n g t i m e

    The dimensional analysis indicated that, for mixing

    in the bath during the AOD process with two tuyere

    blowing using an annular tube tuyere , the following

    equation is valid:

    2 2

    U~ll Cm •g2 r m Dgl U (11 P g2 U g2 H e e

    f ( d l d 2 p l g d l p ~q d2 D e d l d 2 p l

    - ~ , ~ ) = 0 8 )

    P~

    where the subscripts 1 and 2 denote, respectively,

    the appropriate parameters of the main tuyere and

    subtuyere, and De is the equivalent diameter of the

    bath. Taken u = u g l [ Q ~ l / ( Q ~ l + Qm2)] + ug2[ Q m 2 /

    (Q,~I + Qm2)] and all, d2, d to be respectively the

    equivalent diameters of the main tuyere and subtuyere

    and the total of the two tuyeres combined into one

    (the effective cross-sectional areas are accordingly

    equal ), the corresponding dimensionless relationships

    of the mixing time were obtained:

    for non-rotating gas jets,

  • 8/18/2019 Aod Modelling

    11/23

    Vol.6 No. 1 M ar, 2 0 0 2 WEI J.H . • Physical and Mathematical Modeling of the Argon-Oxygen Decarburization .. . 11

    2 6 2 1 2 . 0 1 ( F r l )0 .3 9 0 F r 2 - ) - o 1 11 S ~ S o ) - 0 .0 7 5

    u r , , ( 2 0 ° - 8 0 ° )

    d 3 0 5 8 8 . 9 2 ( F r l ) o . 4 5 1 ( F r 2 ) - ° . ° S T ( S / S o ) ° .4 84 ,

    80 o -

    150 ° )

    ( 9 )

    f o r r o t a t i n g g a s j e t s ,

    -urm _

    t 3 0 7 8 7 4 9 ( F r l ) ° ' 3 3 7 ( F r 2 ) - ° ' ° ° 5 ( S / S ° ) - ° 2 1 , ( 6 0

    - 80 ° )

    - ~ 6 0 9 5 0 . 0 7 ( F r l . ) o . 3 3 1 ( F r 2 . ) - o . o 1 6 ( S / S o ) O . Z 9 ,

    8 0 ° - l o o o )

    ( 1 0 )

    E q u a t i o n s ( 9 ) a n d ( 1 0 ) d e m o n s t r a t e c l e a r ly t h a t

    t h e g a s j e t f r o m t h e m a i n t u y e r e s t il l h a s a g o v e r n i n g

    i n f l u e n c e o n t h e f l u id f lo w a n d m i x i n g i n t h e b a t h , a l -

    t h o u g h t h e g a s j e t f r o m t h e s u b t u y e r e h a s a p h y s i c a l

    s h i e l d i n g e f f e c t o n i t. C o m p a r a t i v e l y , t h e r o t a t i n g g a s

    j e t o f t h e m a i n t u y e r e h a s a g r e a t e r e f f e c t t h a n t h e

    n o n - r o t a t i n g g a s j e t . I t m a y b e r e a s o n a b l y a s s e r t e d

    t h a t t h e r e s u l t s o b t a i n e d r e f l e c t f a i r l y f u l l y t h e f l o w

    a n d m i x i n g c h a r a c t e r i s t i c s o f t h e f l u i d s i n t h e p r o t o -

    t y p e o n a c c o u n t o f t h e s u f f i c i e n t l y h i g h k i n e m a t i c s i m -

    i l a r i ty o f t h e m o d e l t o i ts p r o t o t y p e u n d e r t h e e x p e r i -

    m e n t a l c o n d i t i o n s . T h i s h a s b e e n c o n f i r m e d in p r a c -

    t i c e d u r i n g t h e p r o d u c t i o n o f s ta i n l e s s s t e e l i n a n 1 8 t

    A O D v e s s e l .

    2 . 7 B a c k - a t ta c k p h e n o m e n a o f g a s j e ts w i t h

    s u b m e r g e d h o r i z o n t a l l y b l o w i n g

    T h e b a c k - a t t a c k p h e n o m e n a o f t h e g a s j e t s w e r e

    c l e ar l y o b s e r v e d d u r in g t h e e x p e r i m e n t s , n o m a t t e r

    w h a t t h e s t r a i g h t - t u b e o r s p i ra l - fl a t t y p e t u y e r e w a s

    u s e d . I n t h e c a s e o f t h e s t r a i g h t - t u b e t u y e r e u s e d ,

    l a r g e b u b b l e s f o r m e d a t t h e n o t t o o f a r p o s i t i o n f r o m

    t h e t u y e r e o u t l e t w e r e s t r i k i n g b a c k w a r d t h e si d e w a l l

    o v e r t h e t u y e r e o u t l e t u n d e r t h e o p p r e s s i o n o f t h e l i q -

    u i d i n m o t i o n , a n d b r o k e n i n t o s m a l l b u b b l e s . A t t h e

    m o m e n t o f l a r g e b u b b l e d e t a c h e d , t h e g a s j e t w a s s i-

    m u l t a n e o u s l y c o n t r a c t i n g t o w a r d t h e t u y e r e o u t l e t d i-

    r e c t i o n , a t t a c k i n g t h e f r o n t s u r f a ce o f t h e t u y e r e o u t -

    l e t a n d t h e s i d e w a l l a r o u n d i t , t h u s c a u s i n g o n e b a c k -

    a t ta c k . T h e n , t h e j e t w a s s t r e tc h i n g f o r w a r d u n d e r

    t h e a c ti o n o f t h e s u c c e e d i n g f o l l o w - u p g a s , a n d c a r r y -

    i n g w i t h i n i t s e lf t h e n e x t b a c k - a t t a c k . T h i s p r o c e s s

    w a s r e p e a t e d l y c o n d u c t i n g i n th i s w a y .

    T h e b a c k - a tt a c k p h e n o m e n o n o f a r o t a t i n g g a s j e t

    d e m o n s t r a t e d i t s g e n e r a l f e a t u r e s d i f f e r e n t f r o m t h a t

    o f a n o n - r o t a t i n g . A s m e n t i o n e d a b o v e , l a r g e b u b b l es

    s e l d o m o c c u r r e d . M a n y s m a ll b u b b le s f o r m e d a t t h e

    p l a c e n o t b e i n g f a r f r o m t h e t u y e r e o u t l e t w e r e s i m u l -

    t a n e o u s l y s t r i k i n g t h e s i d e w a l l ; t h e r e s i d u a l g a s o f

    t h e j e t w a s i n s w i r l in g c o n t r a c t i n g b a c k w a r d a n d a t -

    t a c k i n g th e s u r f a c e o f t h e t u y e r e o u t l e t a n d t h e s i d e

    w a l l a r o u n d i t. O b v i o u s l y , t h e b a c k -a t t ac k p h e n o m e n a

    o f th e t w o k i n d s o f g a s j e t s h a v e r e s p e c t i v e l y t h e d i f -

    f e r e n t c h a r a c t e r i s t ic s f r o m t h a t o f a b o t t o m - b l o w i n g

    j e t .

    T h e b a c k - a t t a c k p h e n o m e n o n o f a h o ri z o n t al g a s

    j e t , i n a b r o a d s e n s e , s h o u l d i n c l u d e t h r e e p a r t s . O n e

    i s t h e b a c k - a t t a c k a c t i o n o f t h e r e s i d u a l b u l k o f th e g a s

    j e t a t t h e t u y e r e o u t l e t , w h i c h i s t h e b a c k - a t t a c k i n a

    n a r r o w s e n s e . T h e s e c o n d is th e c o u n t e r a c t i o n o f t h e

    j e t [ 14 1. T h e t h i r d i s t h e s t r i k i n g a c t i o n o f t h e b u b b l e s

    d e t a c h e d f r o m t h e j e t b u l k a g a i n s t t h e s i d e w a l l u n d e r

    t h e r e p r e s s i o n o f t h e l iq u i d i n m o t i o n . I n a d d i t i o n , t h e

    b a c k - a t t a c k a c t i o n o f a g a s j e t w o u l d b e c l o s e l y r e l a t e d

    t o t h e c i r c u l a t o r y m o t i o n o f t h e l i q u id i n t h e b a t h .

    T h i s w o u l d b e t r u e a t l e a s t w i t h a h o r i z o n t a l g a s j e t .

    I n t h e c a s e o f b o t t o m b l o w i n g , t h e a p p r o p r i a t e b a c k -

    a t t a c k p h e n o m e n o n i s m a i n l y c o m p o s e d o f t h e f o r m e r

    t w o a c t i o n s .

    2 . 8 B a c k - a t t a c k fr e q u e n c i e s a n d p r e s su r e s o f

    g a s j e t s w i t h s u b m e r g e d h o r i z o n t a l l y b l o w i n g

    T h e d e t e r m i n e d r e s u l t s o n t h e b a c k - a t t a c k f r e q u e n -

    c i e s o f t h e r o t a t i n g a n d n o n - r o t a t i n g j e t s w i t h t h e t w o

    t u y e r e b l o w in g t h r o u g h t h e a n n u l a r t u b e t u y e r e a t t h e

    g i v e n g as b l o w i n g r a t e s a n d b l o w i n g p r e s s u r e s a r e

    s h o w n i n T a b l e s 3 a nd 4 , r e s p e c t i v e l y . T h e b a c k - a t-

    t a ck f r e q u e n c i e s o f t h e r o t a t i n g a n d n o n - r o t a t i n g j e t s

    a ll s h o w e d a r a is i n g t e n d e n c y w i t h a n i n c r e a s e i n g a s

    b l o w i n g r a t e o r b l o w i n g p r e s s u r e o f t h e m a i n t u y e r e .

    T h e i n f l u e n c e s o f th e a n g l e i n cl u d e d b e t w e e n t h e t w o

    t u y e r e s o n t h e b a c k - a t ta c k f r e q u e n c y f o r t h e t w o k i n d s

    o f g a s j e ts w e r e a l l n o t t o o l a rg e u n d e r t h e e x p e r i m e n -

    t a l c o n d i t i o n s , o n l y t h e s i t u a t i o n a t t h e s m a l l g a s

    b l o w i n g r a t e s w a s s e e m i n g l y e x c e p t io n a l . T h e d a t a in

    T a b l e 3 a ls o in d i c a t e d t h a t t h e b a c k - a t t a c k f r e q u e n c y

    o f a r o t a t i n g j e t w a s s l i g h t l y h i g h e r a t a s a m e g a s o u t -

    l e t f l o w r a t e .

    T h e d i f f e r e n c e o f o p e r a t i n g m o d e s s p e c i f ie d i n T a -

    b l e s 3 a n d 4 i s th a t t h e r e w a s a h i g h e r g a s f l o w r a t e o f

    t h e m a i n t u y e r e f o r th e s t r a i g h t - t u b e t y p e t u y e r e . A p -

    p r o p r i a t e l y , t h e b a c k -a t t a ck f r e q u e n c y o f t h e r o t a t in g

    g a s j e t w a s e v i d e n t l y d e c r e a s e d .

  • 8/18/2019 Aod Modelling

    12/23

    12 Journal of Shanghai University

    Table 3 Determined re sults on back-attack frequencies of rotatin g and non-rotating gas jets with two tuye re blowing through annular-

    tube tuyere a t the given gas blowing ra tes and angle included between the two tuyeres (Hz)

    Gas blowing rate , Nma. h- 1

    12 .94(main tuyeres ) 15 .82(main tuyeres ) 20 .12(m ain tuyeres ) 22 .64(m ain tuyeres ) 25 .34(m ain tuyeres )

    4- 4-

    3 .97(sub tuyeres ) 6 .53(sub tuyeres ) 6 . 026(sub tuyeres ) 6 .53(sub tuy eres ) 6 . 026(sub tuyeres )

    Rotating Non-rota- Rotating Non-rota- Rotating Non-rota- Rotating Non-rota- Rotating Non-rota-

    jet r ing jet je t r ing jet je t r ing jet je t r ing jet je t r ing jet

    Angle included 60 ° (6) (3) (4) (2) (9) (10) (12) (8) (12) (12)

    between the two 80* (6) (5) (5) (3) (9) (8) (9) (9) (11) (11)

    tuyeres , O 100 ° (7 ) (8 ) (7 ) (3 ) (9 ) (9 ) (11) (9 ) (11) (13)

    Table 4 Dete rmin ed resul ts on back-attack frequencies of rotati ng and non-rotating gas jets with two tuyere blowing through annular-

    tube tuyere a t the given gas blowing pressures and angle included between the two tuyeres (Hz)

    Gas blowing pressure

    (gauge va lue ) , MPa

    0 .066(m ain tuyeres ) 0 .09(m ain tuyeres ) 0 . 135(main tuyeres ) 0 .16(m ain tuyeres ) 0 . 185(main tuyeres )

    ÷ 4-

    0.07 (sub tuye res) 0 . 137(subtuyeres) 0 .125 (subtu yeres ) 0 .13 7(su btuy eres) 0 . 125(subtuyeres)

    Rotating Non-rota- Rotating Non-rota- Rotating Non-rota- Rotating Non-rota- Rotating Non-rota-

    jet r ing jet je t r ing jet je t r ing jet je t r ing jet je t r ing jet

    Angle included 60* (6) (8) (4) (6) (9) (12) (12) (15) (12) (17)

    between the two 80° (6 ) (9 ) (5 ) (9 ) (9 ) (13) (9 ) (14) (11) (17)

    tuyere s, t9 100 ° (7) (8) (7) (9) (9) (13) (11) (15) (11) (17)

    Table 5 Determined resu lts on back-attack frequencies of rotatin g gas jet with single tuyere blowing throu gh single tube tuye re at the

    given gas blowing pressures (f low rates)

    Blowing p ressu re (gauge va lu e ) , MPa

    Gas blowing rate , Nm3 h - 1

    Back-attack frequency, Hz

    0 . 0 6 6 0 . 0 9 0 . 1 3 5 0 . 1 6 0 . 1 8 5

    6 .47 7 .91 10 .06 11 .32 12 .67

    8 10 13 13 15

    I t c a n a ls o b e c l e a r l y s e e n f r o m t h e d a t a i n T a b l e s 3

    a n d 4 t h a t r e l a t i v e l y t o t h e g a s s t r e a m o f t h e s u b -

    t u y e r e , t h e g a s s t r e a m f r o m t h e m a i n t u y e r e h a s a d e -

    c i s iv e i n f l u e n c e o n th e b a c k - a t t a c k p h e n o m e n o n .

    H o w e v e r , a t a s a m e g a s b l o w i n g p r e s s u r e , t h e b ac k -

    a t t a c k f r e q u e n c y o f th e r o t a t i n g g a s j e t w i t h t h e s i n g l e

    t u y e r e b l o w i n g t h r o u g h t h e s i n g l e t u b e t u y e r e

    m a r k e d l y i n c r e as e d ( T a b l e 4 a n d 5 ) . T h e r e w a s a

    s i m i l a r p a t t e r n f o r t h e n o n - r o t a t i n g j e t . T h a t a p p e a r s

    t o s h o w t h a t t h e g a s s t r e a m o f t h e s u b t u y e r e m a y a l le -

    v i a t e t h e b a c k - a t t a c k p h e n o m e n o n t o a c o n s id e r a b l e

    e x t e n t . T h e g a s s t r e a m o f t h e s u b t u y e r e a l s o h a s a n

    e v i d e n t s h i e l d i n g e f f e c t o n t h e b a c k - a t t a c k a c t i o n

    b e s i d e s t h e c o o l i n g a n d p h y s i c a l s h i e l d i n g e f f e c t s t o

    t h e f l o w o f m a i n t u y e r e g a s [3 1-3 3] . A d d i t i o n a l l y , t h i s

    e f f e c t i s e n h a n c e d w i t h a n i n c r e a s e i n i t s r e l a t i v e f l o w

    r a t e t o t h a t o f t h e m a i n t u y e r e , w h i c h i s i n a g r e e m e n t

    w i t h t h e r e s u l t s o b t a i n e d b y C h o

    et al

    [131

    I t s h o u l d b e p o i n t e d o u t t h a t t h e r e w o u l d a ll b e th e

    m u l t i p l e a c t io n p o i n t s w h e n l a r g e b u b b l e s a n d a g r o u p

    o f s m a l l b u b b l e s s t r i k e t h e s i d e w a l l d u r i n g b a c k - a t -

    t a c k i n g . A s a r e s u l t o f t h i s k i n d o f c h a r a c t e r i s t i c f o r a

    h o r i z o n t a l g a s j e t , i t s e a c h b a c k - a t t a c k , i n f a c t , w i l l

    a ll i n v o l v e t h e a c t i o n o f a g r o u p o f b u b b l e s i n c l u d i n g

    t h e re s i d u a l b u l k o f t h e j e t . T h i s w a s f u l ly c o n f i r m e d

    b y t h e o b t a i n e d b a c k - a t t a c k w a v e s s h o w n i n F ig . 5 . I t

    c a n b e s e e n f r o m F i g . 5 t h a t t h e r e w a s c o r r e s p o n d -

    i n g l y a g r o u p o f p o s i t i v e a n d n e g a t i v e p u l s e s f o r e a c h

    b a c k - a t t a c k , a n d t h e p u l s e n u m b e r s i n c l u d e d i n e a c h

    b a c k - a t t a c k w e r e r o u g h l y c l o se t o e a c h o t h e r a t t h e

    g i v e n b l o w i n g p a r a m e t e r s .

  • 8/18/2019 Aod Modelling

    13/23

    Vol. 6 No. 1 Mar. 2002 WE I J. H. : Physical and Mathematical Modeling of the Argon-Oxygen Decarburization . • • 13

    k P a

    +l .0

    0.0:

    -1.0)

    I _ 0 , s -

    onc back-attack

    Rotating gas e t

    k P a

    +1.0

    0.0

    -1.0

    i

    I0 " ~ -~ l one ba ck-at ta ck

    Non-rotatinggas e t

    ( a ) B lowing p re s s u re s o f the m a in tuye re a nd s ub tuye re ( ga uge va lue s ) : 0 .1 6 MPa a nd 0 . 137 MPa , 0 = 80 °

    kPa

    +1.0

    0.0

    -1,0

    i o . z . . i

    o n back-attack

    Rotating gas je t

    k a i

    1.0

    -1.0

    I I

    ~ O. I s ~ one back-attack

    Non-rotating gas jet

    b) Blowing pressures of the main tuyere and subtuyere gauge values ): 0. 066 MPa and 0.07 MPa, 0 = 80*

    Fig.5 Back-attack waves of gas jets for a part of operating modes during the AOD water modeling blowing

    2 9 R a t e a n d a p p e a r a n c e o f e r o s io n a n d w e a r

    o f r e f r a c t o r y l i n i n g w i t h h o r i z o n t a l l y s id e

    b l o w -

    i n g

    T h e c h a n g e s i n t h e a v e r a g e r a t e o f e ro s i o n a n d

    w e a r f o r t h e b o r i c a c id p l a t e w i t h t h e a n g l e i n c lu d e d

    b e t w e e n t h e t w o t u y e r e s d u r i n g t h e w a t e r m o d e l i n g of

    t h e A O D p r o c e s s u s i n g t h e d i f f e r e n t t y p e s o f t u y e r e

    w e r e o b t a i n e d . I n t h e c a se o f t h e g a s b lo w i n g p r o c e s s

    w i t h t h e s tr a i g h t - tu b e t y p e t u y e r e , t h e a v e r a g e e r o -

    s i o n a n d w e a r r a t e s o f t h e b o r i c a c i d p l a t e s d u r i n g t h e

    t r e a t m e n t o f 1 0 m i n w e r e 0 . 0 3 0 1 5 , 0 . 0 2 7 5 6 , 0 .

    0 3 2 19 g ' s - 1 , r e s p e c t i v e l y fo r th e a n g u l a r s e p a ra t i o n s

    b e t w e e n t h e t w o t u y e r e s o f 6 0 ° , 8 0 ° a n d 1 0 0 ° . T h e

    e r o s i o n a n d w e a r r a t e o f th e l i n i n g w a s t h e l o w e s t a t

    t h e a n g l e i n c l u d e d b e t w e e n t h e t w o t u y e r e s o f 80 ° .

    W h e n t h e s p i r a l -f l a t t u y e r e w a s u s e d , t h e a v e r a g e

    r a t e s w e r e e s s e n t i a l l y n o t r e l a t e d t o t h e a n g u l a r s e p a -

    r a t io n b e t w e e n t h e t w o t u y e r e s , c o r r e sP o n d i n g l y ,

    w e r e a ll 0 . 0 1 7 3 3 g s - ~ . C o m p a r i n g w i t h t h a t o f t h e

    s t r a i g h t - t u b e t y p e t u y e r e , i t d e c r e a s e d b y 3 7 % -

    4 6 % .

    A f t e r t h e t r e a t m e n t o f 1 0 m i n , t h e b o r ic ac i d p l a t e s

    w e r e m a r k e d l y c h a n g e d i n t o t h i n n e r , e s p e c i a l l y a t t h e

    p e r i p h e r y t i g h t l y c lo s e to t h e t u y e r e o u t l e t . A s e r i e s

    o f c o n c a v e p i t s a n d p o c k e d m a r k s w e r e f o r m e d i n a

    r a t h e r l a r g e r a n g e n e a r a n d o v e r t h e t u y e r e o u t l e t . I t

    i s e v i d e n t t h a t f o r t h e b o r i c a c id p l a t e s , t h e e r o s i o n o f

    t h e l iq u i d a n d t h e s o l u t i o n o f t h e b o r i c a c i d w o u l d

    c a u s e t h e m c h a n g i n g m o r e u n i f o r m l y i n t o t h i n n e r .

    T h e fo r m a t i o n o f t h e c o n c a v e p i t s a n d p o c k e d m a r k s

  • 8/18/2019 Aod Modelling

    14/23

    14 Journal o f Shanghai University

    would be the resu lts of striking repeatedly by the bub-

    bles with the back attacking of jet. Under the condi-

    tions of the rotating gas jets, relativ ely, the pits and

    marks formed were fewer, shallower and more uni-

    form, and their distribution area was smaller. The re

    were also some curved stripes. The kinds of appear-

    ance characteristics of the treated boric-acid plates

    like that are completel y corresponding to the observed

    back-attack features of the gas jets, and reflect gener-

    ally the actual situation about the damage of the re-

    fractor y lining in the AOD process. In the practical

    AOD process, the buoyancy stood by the bubbles

    would be much larger, approximately over 7 times of

    that for water modeling, and the zone formed the con-

    cave pits and pockmarks will be farther from the

    tuyere outlet.

    2 . 1 0 U s i n g e f f e c t iv e n e s s a n d p r a c t i c a l s u i t a b i l-

    i t y o f th e a n n u l a r m a i n t u y e r e ) s p i r a l - f l a t t y p e

    tuyere

    The results of the water modeling experiments in-

    dicated that relatively to the annular straight-tube

    tuye re, the annular spiral-flat type tuyere used is able

    to become the gas stream of the main tuyere into be-

    ing the rotating motion with a suitable intensity. That

    can make the bath attain a better agitation, thus

    reaching a better mixing efficiency. Furthermore, it

    can decrease and even eliminate large bubbles, and

    bring about a great number of small bubbles forming.

    That will alleviate quite effectively the back-attack of

    gas jet, decrease the non-uni formity and rate of the

    erosion and wear of the refract ory lining, thus im-

    proving the life of the refractory lining for the hori-

    zontal side blowing processes including the AOD pro-

    cess. Also, the utilization ratio of the oxygen gas and

    the rates of the refining reactions will be enhanced

    owing to marked increase in the reaction interface. It

    should be said that this type of the tuyere possesses a

    good latent using power and composite effectiveness

    and well suites for industrial application.

    M a t h e m a t ic a l M o d e l in g o f t he A O D

    R e f i n i n g P r o c e s s o f S t a i n l e s s

    S t e e l [ 4 9 5 1]

    3 . 1 A n a l y s i s o f t h e A O D p r oc e ss

    It is well known that in AOD stainless steel mak-

    ing, the supplied oxygen is utilized to remove the car-

    bon in the molten steel. The argon or ni tro gen)

    blown simultaneously can decrease the partial pres-

    sure of the carbon monoxide and promote decarboriza-

    tion, thus achieving the eff ectiven ess and objective of

    removing carbon and reducing the loss of chromium.

    However, the silicon and manganese dissolved in the

    molten steel can also absorb the blown oxygen and re-

    strict the oxidation reactions of carbon and chromium.

    There exists throughout the competitive oxidation of

    the carbon, chromium, silicon, manganese, and other

    elements dissolved in the steel during the whole refin-

    ing process.

    Moreover, at high carbon concentrations, there

    would be insufficient oxygen to oxidize the carbon

    transferred to the reaction interface from the bulk of

    the molten steel. This means that at high carbon con-

    centrations, the rate of decarburization would be pri-

    marily related to the ra te of oxygen blow. When the

    carbon content in the steel is decreased to a certain

    low level, the rate of decarburization may change to

    being controlled by the mass transfer of carbon to the

    reaction interface from the liquid bulk. Correspond-

    ingly, there is a critical point or a critical state in the

    process like that in oxygen - converter steelmaking.

    The oxygen gas entering the bath would also con-

    tact the iron atoms as a matrix of stainless steel and

    form iron oxide, but most of the iron oxide formed

    would, subsequently, quickly be reduced by the car-

    bon, chromium, silicon, manganese and other ele-

    ments in the molten steel. This means that the iron

    oxide formed also would be an oxidant for them, and

    would be mainly an intermediate product of the gas

    blowing refining. In addition, their oxidation, to a

    certain extent, would be related to the supplied oxy-

    gen rate even at low carbon concentration levels.

    Furthermore, the bath always demonstrates an ob-

    vious non-isothermal characteristic during the refining

    process, which can directly and strongly influence the

    equilibrium and rates of the various refining reac-

    tions. Another featu re of the AOD process is that the

    bath is strongly agitated by the gas streams. This can

    very effectively promote and intensify the heat and

    mass transfer and is very advantageous in accelerating

    the refining reactions and improving the homogeneity

    of the bath composition and temperature, as pointed

    out previously.

  • 8/18/2019 Aod Modelling

    15/23

    Vol. 6 No. 1 Mar .2002 WEI J. H. • Physical and Mathematical Modeling of the Argon-OxygenDecarburization . . . 15

    3 . 2 M a t h e m a t i c a l m o d e l o f t h e p r o c e s s

    Based on the previous analysis, a new mathemati-

    cal model for the AOD refining process of stainless

    steel has been proposed and developed, in which the

    conditions and characteristics mentioned have all been

    considered and noted.

    3 . 2 . 1 B a s i c a s s u m p t i o n s o f t h e m a t h e m a t i c a l m o d e l

    The initial assumptions of the new mathematical

    model for the refining process were as follows:

    1. The oxygen blown into the molten steel simulta-

    neously oxidizes the carbon, chromi um, silicon, and

    manganese dissolved in the steel and the iron as a ma-

    trix; the iron oxide formed is also an oxidant for the

    other elements and is essentially an intermediate

    product of the refining process.

    2. All the possible oxidation-reduction reactions

    take place simultaneously and reach and establish a

    combined equilibrium in competition at the liquid/bub-

    ble in te rfaces [41' 52- 56]

    3. At high carbon contents, the oxidation rates of

    elements are primarily related to the supplied oxygen

    rate; at low carbon concentration levels, the rate of

    decarburization is mainly determined by the mass

    transfer of carbon in molten steel.

    4. The unabsorbed oxygen blown into the liquid

    steel will escape from the bath and form C02 with CO

    in the exhaust gas, rathe r than dissolving and accu-

    mulating in the steel.

    5. The bath composition and temperatu re are con-

    tinually changing and are uniformly distributed at any

    moment during the whole refining process.

    6. The oxidation of elements in the steel other than

    C, Cr, Si, and Mn is temporarily not taken into ac-

    count; i. e . , the oxygen consumed by the other ele-

    ments is ignored.

    3 . 2 . 2 R e f i n i n g r e a c ti o n s c h e m e s

    The oxidative reactions of the carbon, chromium,

    silicon, and manganese dissolved in the molten steel

    and the iron as a matrix of the steel by the blown oxy-

    gen can be written as

    1

    [C] + ~O z = ICOI (11)

    3

    2[Cr ] + ~-02 = (Cr203) (12)

    [Si] + 02 = (SiOz) (13 )

    1

    [Mn] + ~-O2 = (MnO) (14)

    1

    [Fe] + ~-O2 = (FeO) (15)

    The following independent reaction equilibria in this

    system can be produced from combinations of reaction

    (11) through (14), respectively, with reaction (15):

    [C] + (FeO) : {CO} + [F e] ,

    Pco

    A G c = A G ~ R T l n

    (16)

    a[¢] a FeO

    2[Cr] + 3(FeO) = (Cr203) + 3[ Fe ],

    a cr2o3

    ,AGcr = z~ G[=r R T ln z 3 (17)

    a [Cr] a (FeO)

    [Si] + 2(FeO) = (Si02) + 2[ Fe ],

    a (sio2)

    A G c = A G~ i R T l n 2 (18)

    a[si] a (FeO)

    [Mn] + (FeO) = (MnO) + [Fe],

    AGMn = AC~n+ R T l n a MnO) (19)

    a [Mn] a (~eO)

    where ai--the activity of i component; AGi and z3G7

    --the Gibbs free energy at the refining conditions and

    the Gibbs free energy at the standard state for oxida-

    tion reaction of i element, respectively, J. g- 1 ; R- -

    the gas constant, J tool-1. K-1; T- -t he bath temper-

    atur e, K. These all belong among the possible reac-

    tions which occur in the system. Thermodynami cally,

    the reaction schemes presented by reactions (11)

    through (15) and reactions (16) through (19) can all

    characterize the chemical-equilibrium feature of the

    refining system but, kinetically, they are differen t,

    the former being direct, and the latter being indirect.

    3 . 2 . 3 R a t e e q u a t i o n s o f t h e p r o c e s s

    At high carbon contents, the average loss rates of

    the carbon, chromium, silicon and manganese dis-

    solved in the steel in the competitive oxidation are,

    separately,

    Wm dE%C] _ 2 ~ o

    - 100Mc dt 22400 xc (20)

    Wm d [ % Cr ] _ 2T/Qo (21)

    - 1.5 100Mc------~ d ~ 22400 Xcr

    Wm d [ % S i ] _ 2r]Qo (22)

    2 100Msi dt

    2 2 4 0 0 x s i

    Wm d[%Mn]

    2 r l Q o

    100MMn d t - 2 2 4 0 0 X M n (23)

    At low carbon concentration levels, the average rate

    of decarburization can be expressed as

  • 8/18/2019 Aod Modelling

    16/23

    16 Journa l of Shanghai University

    - W m d [ C ] - A r e a P m k C ( [ C ] - [ C ] e )

    ( 2 4 )

    d t

    At t h i s t im e , t he f o l l owing r e a c t ion c a n a ppr opr i a t e ly

    be c ons ide r e d :

    ( Cr 203) + 3 [ C] = 2 [ C r ] + 3 I COI ( 25)

    Pa y ing a t t e n t io n to t he d i l u t i ng r o l e o f t he i ne r t ga s

    ( a r g o n o r n i t r o g e n ) a n d n o n - r e a c t in g o x y g e n , t h e fo l -

    l owing e xpr e ss ion c a n be de r ive d :

    d [ % C ] 1 2

    d t : 2 - ( - 8 1 - ~ ) ( 2 6 )

    w h e r e

    10 0M c Q o( 1 - r ]) + Q~ .b

    81 = -- Wm 22400 F

    A re a P m k c _ P t

    a [c r ] +

    [ % C ] ( 2 7 )

    Wm a CrxO Kcr _c

    r o O m C l O O ) Q o < l - + Q s .

    s

    = 4 Wm [ C 3 ~ ~ 6 ( 2 8 )

    a n d A r e a - - t h e to t al re a c t i o n i n t e r f a c e , c m 2 ; f c - - t h e

    He n r i a n a c t i v i t y c oe f f i c i e n t o f c a rbon in m ol t e n s t e e l ;

    k c - - t h e m a s s t r a n s f e r o f c a r b o n i n m o l t e n s t e e l , c m

    s - l ; K c r . c - - t h e e q u il ib r iu m c o n s t a n t o f [ C ] - ( C r 2 0 3 )

    r e a c ti o n ; M ~ - - t h e m o l e m a s s o f i s u b s t a n c e , g

    m o l e - l ; P t - - t h e t o ta l d i m e n s i o n l e s s p r e s s u r e in t h e

    A O D v e s s e l ; Q o - - t h e f lo w ra t e o f o x y g e n , N c m a

    s - l ; Q s u b - -t h e to t a l f lo w r a t e o f i n e r t g a s , N c m a

    s - 1 x i - - t h e d i s tr i b u t io n r a t io o f o x y g e n f o r / c o m p o -

    ne n t i n l iqu id s t e e l ; W m - - th e m a ss o f l iqu id s t e e l , g ;

    [ % / ] - - t h e m a s s p e r c e n t c o n ce n t ra t io n of i s o l u t e i n

    m o l t e n s t e e l , m a s s -% ; [ % C ] e - - t h e e q u i l i b ri u m c o n -

    c e n t r a t i o n o f c a r bon in m o l t e n s t e e l a t r e a c t ion in t e r -

    f a c e , m a ss -% ; r l - - t h e u t i l i z a t ion r a t i o o f ox yg e n ;

    -3

    p m - - t h e d e n s i t y o f m o l t e n s te e l , g - c m

    3 2 4 H e a t b a l a n c e o f t h e s y s t e m

    T he he a t ba l a nc e e qua t ion i s

    W m c p , m T + Q odt poCp .o Tg,o + QsubdtpsubCp,sub Tg,o +

    Wm d[ C]AI . .1 d[ C r] ~ ~,,.

    W ~ c p ,~ T + 1 - ~ ( ~ - ~ 'a i x C d - i £ M / C r - -

    d [

    % M n ] A u

    d [ % S i ]

    A H s i ) d t = W m [ 1

    +

    d t ~ - -M . d t

    [ d [ % C ] + d [ % C r ] + d [ % M n ] + d [ % S i ] / d t I

    \

    d t d t d t d t

    ] l O O J

    Cp,m( T +

    d T ) +

    Q o ( 1 - 7 ] ) d t p o % , o T g + Q ~u b

    W m d [ % C ] ) d t M c o

    dtp~.bC p.~.b Tg + ~ ( d t M----c

    Cp,co Tg

    W m d t ( d[ %C r ] M c r2°a d [ % M n]

    + Ws 100 d t 2M c r + d t

    MMnO + d % s i] M sG / ] cp,~( T + d T ) + ( qlos~ +

    MMn d t 2M si ]

    q 5 ) d t ( 2 9 )

    T h e a p p r o p r i a t e r i s i n g r a t e o f t h e b a t h t e m p e r a t u r e i s

    d T _ / ~ / M c @ ~ d [ % C r ] M M n o d [ % M n ] ~_

    d t c p , ~ l k ~ ~ + M Mn d t

    M s G d [ % S i ] d [ % C ] + d [ % C r ] +

    Msi dt ) - Cp'm T ( d t d t

    df M n3 +d[ Si3 / 100

    d t - - d t / -~ - m {Q O p o C p , o [( 1 - r ~ ) r g -

    M c o d [ % C ]

    T g , o l +

    qloss + qs} + Cp.CO Tg M c dt

    A H c d [ % C ] + A H c r d [ % C r ] + AH M n d[ % M n ]

    d t d t d t

    A H s i d [ S i ]

    a t ) 1 / ( l O O C p ' m + l O O c p ' s W s / W m )

    3 0 )

    w h e r e q l o s s q 1 q 2 q 3 q 4 q u ; t h e r e f r a c t o r y

    l i n i n g w i t h t h e s h e l l w a s r e f e r r e d t o a p p r o x i m a t e l y a s

    a m u l t i - l a y e r p l a t e ; q l , q 2 , q 3 a n d q 4 w e r e , r e s p e c -

    t i v e l y , d e t e r m i n e d i n t e r m s o f t h e o n e - d i m e n s i o n a l

    t r a n s i e n t h e a t - c o n d u c t i o n p r o b l e m s ; q 5 w a s t a k e n t o

    b e W l c p , j A T a n d q u = ( q l + c / 2 + q 3 + q 4 ) x 1 5 % ;

    q l - - t h e h e a t l o s s b y c o n d u c t i o n f r o m b o t t o m o f t h e

    v e s s e l , J s - i ; q 2 - - t h e h e a t l o s s b y c o n d u c t i o n f r o m

    t h e l o w e r o f t h e v e s s e l , J ' s - 1 ; q 3 - - t h e h e a t l o s s b y

    c o n d u c t i o n f r o m t h e u p p e r o f t h e v e s s e l , J ' s - 1 ; q 4 - -

    t h e h e a t l o s s b y c o n d u c t i o n f r o m t o p o f t h e v e s s e l , J

    s - 1 ; q 5 - - t h e h e a t l o s s a b s o r b e d b y r e f r a c t o r y l i n i n g o f

    t h e v e s s e l d u r i n g b a t h r i s i n g t e m p e r a t u r e , J s - l ;

    q u - - t h e u n c e r t a i n h e a t l o s s o f t h e s y s t e m , J s - l ;

    T g , T g o - - t h e t e m p e r a t u r e o f g a s a n d i t s i n i t i