Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods...

50
matériaux avancés pour la catalyse et la santé F. Di Renzo 1 *, A. Galarneau 1 , F. Quignard 1 , S. Valange 2 , Z. Gabelica 3 , J.-P. Bellat 4 [email protected] 1 Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Matériaux Avancés pour la Catalyse et la Santé, ENSCM, 8 rue Ecole Normale, 34296 Montpellier, France 2 Laboratoire de Catalyse en Chimie Organique, Université de Poitiers, Poitiers, France 3 LPI-GSEC, ENSCMu, Université de Haute Alsace, Mulhouse, France 4 Institut Carnot de Bourgogne, UFR ST, Université de Bourgogne, Dijon, France Adsorption and Intrusion Methods for the Characterization of Mesoporous Materials

Transcript of Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods...

Page 1: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

matériaux avancés pour

la catalyse et la santé

F. Di Renzo1*, A. Galarneau1, F. Quignard1,

S. Valange2, Z. Gabelica3, J.-P. Bellat4

[email protected]

1Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Matériaux Avancés pour la Catalyse et la Santé,

ENSCM, 8 rue Ecole Normale, 34296 Montpellier, France

2Laboratoire de Catalyse en Chimie Organique, Université de Poitiers, Poitiers, France

3LPI-GSEC, ENSCMu, Université de Haute Alsace, Mulhouse, France

4Institut Carnot de Bourgogne, UFR ST, Université de Bourgogne, Dijon, France

Adsorption and Intrusion Methods for the

Characterization of Mesoporous Materials

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Page 2: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

matériaux avancés pour

la catalyse et la santé

Adsorption and Intrusion Methods for the

Characterization of Mesoporous Materials

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

Nitrogen adsorption and mercury intrusion in

mesoporous silicas with different pore connectivities

A. Galarneau1, B. Lefèvre1, H. Cambon1,

S. Valange2, Z. Gabelica3, J.P. Bellat4,

F. Di Renzo1

1Laboratoire de Matér iaux Catalytiques et Catalyse en Chimie Organique,

UMR 5618 ENSCM-CNRS-UM1 Institut Gerhardt FR 1878

ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

[email protected] de Catalyse en Chimie Organique, Universit é de Poitiers, France3Université de Haute Alsace, Mulhouse, France4Laboratoire de Recherches sur la Réactivité des Solides, Université de Bourgogne, Dijon, France

● an inventory of superposed phenomena

● surface tension, liquid-solid interfaces and capillarity

● new standard materials allow a new look at old models

● shape effects and the limits of capillarity

● non-wetting fluids and still more shape effects

Page 3: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

N2 adsorption-desorption isotherms at 77 K for

mesoporous silicas prepared by different methods

MCM-41 structured by CTMA swollen by TMB

SBA-15 structured by PEO-PPO-PEO triblock copolymer

Sylopol commercial precipitated silica

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 g

-1 S

TP

the relative pressure of the

capillary condensation step

indicates the pore size

9.5

nm10.3

nm

21

nm

2 cm3 g-1

1.5 cm3 g-1

1.2 cm3 g-1

ad

so

rbe

d g

as v

olu

me

280 m2 g-1490 m2 g-1

840 m2 g-1

the amount adsorbed at

the top of the first

adsorption step indicates

the surface area

the amount of nitrogen

adsorbed at the top of

the condensation step

indicates the pore

volume

N2 inside the pores is a

dense phase and presents

nearly the density of liquid N2

for N2, ρliq/ρgas = 647

Page 4: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Isotherm interpretation : separation of superposed phenomena

(which, happily, do not depend on pressure in the same way)

Contributions of capillary condensation and multilayer adsorption can be easily

separated if mesopores present a narrow pore size distribution

Layer adsorption : spread over the whole pressure field according to a known law

p

pc

p

p

p

pc

n

n

m )1(11

BET equation

(multilayer Langmuir)n adsorbed amount

nm monolayer capacity

p/p° relative pressurec parameter related to the difference of

adsorption heat between monolayer and

following layers

Condensation : occurs at pressure values which depend on the pore size

RTr

V

p

p m2ln

0

Kelvin equationγ surface tension R gas constant T temperature

Vm molar volume r mesopore core radius

Page 5: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

an isotherm of mesoporous solid and its comparison plot

N2 adsorption at 77 K on Lichrosphere 60

chromatographic silica comparison plots are useful to

evidence different mechanisms in

the adsorption isotherm

Page 6: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

in a comparison plot, for each pressure

value the adsorbed amount on the

examined sample is compared with the

adsorbed amount on the reference sample

reference adsorbent SBET 187 m2 g-1

slope of the comparison plot 3.9

Scomparison plot = 187 x 3.9 = 730 m2 g-1

in good agreement with SBET 740 m2 g-1

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

experimental

isotherm

P

Y

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

reference

isotherm

aerosil 200

fumed silica

PX

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

0

100

200

300

400

500

600

0 50 100 150 200 250

cm3 (STP) g

-1 (aerosil reference)

cm

3 (

ST

P)

g-1

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

monolayer

adsorption

multilayer

adsorptionmesopore

filling

multilayer

mesopore

emptying

slope proportional to

the total surface area

slope proportional to

the outer surface area

comparison

plotY

X

Page 7: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

t-plot and αS-plot: two types of comparison plots

0

100

200

300

400

500

600

0 1 2 3 4

alpha S (aerosil reference)cm

3 (

ST

P)

g-1

slope proportional to

the total surface area

slope proportional to

the outer surface area

0

100

200

300

400

500

600

0 5 10 15 20

t / Å (aerosil reference)

cm

3 (

ST

P)

g-1

slope proportional to

the outer surface area

slope proportional to

the total surface area

0

100

200

300

400

500

600

0 1 2 3 4

alpha S (aerosil reference)cm

3 (

ST

P)

g-1

slope proportional to

the total surface area

slope proportional to

the outer surface area

0

100

200

300

400

500

600

0 5 10 15 20

t / Å (aerosil reference)

cm

3 (

ST

P)

g-1

slope proportional to

the outer surface area

slope proportional to

the total surface area

a positive deviation of the comparison plot indicates that a more effective

mechanism of adsorption is superposed to the growth of the adsorbed layer

t-plot: reference adsorbed amount expressed as average thickness of the monolayer

(assumption of constant density of the condensed phase)

thickness t = 1Å = 0.345 µmol m-2

= 15.4 cm3

(STP) m-2

αS-plot: the unit of the abscissae is the reference adsorbed amount at p/p° 0.4, an isotherm

region expected to be often rid of condensation phenomena

Page 8: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous
Page 9: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

http://citt.ufl.edu/Marcela/Sepulveda/html

If cohesive forces of the liquid

are stronger than the adhesive

forces at the interface, the sum

of forces at the surface is

directed towards the interior of

the liquid.

This induces a pressure rise

inside the liquid. The force

balance inside a liquid droplet

allows to correlate this pressure

to the droplet size through the

surface tension.

0

0.01

0.02

0.03

0 0.5 1 1.5 2

droplet size (mm)

pre

ssu

re (

atm

)

water surface tension at 20 °C = 0.0728 N m-1

Young-Laplace law

Page 10: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Өcontact

angle

in the presence of a solid, the contact angle depends

on the sum of the surface tensions at the triple point

σvapour-liquid cos Ө + σliquid-solid = σvapour-solid

wetting non-wetting

liquid solid contact

angle

water

glass 0°

silver 90°

wax 107°

mercury glass 135°

Page 11: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

2σcos(Ө)

capillary rise

Surface tension around the

perimeter of the tube results in a

force with a vertical component

that drives water upwards.

The movement continues until the

force due to surface tension

equals the weight of the water

column. h capillary rise

σ surface tension

Ө contact angle

r capillary radius

ρ liquid density

g gravity acceleration

Page 12: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

mechanical equilibrium

(Young-Laplace)

dpliq-dpvap = d(2σ/rm)

physicochemical equilibrium

(Gibbs-Duhem at constant T)

dμliq = dμvap

Vliqdpliq = Vvapdpvap

d(2σ/rm) = dpvap (Vliq-Vvap) / Vliq

Vliq negligible compared to Vvap

vapour as perfect gas

d(2σ/rm) = - RTdpvap / (Vliq Pvap)

integrating between (rm, p) and (∞, p°)

ln (p/p°) = - 2σVliq / (RT rm)

Kelvin equation

Page 13: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

the driving force of capillary

condensation and drop coalescence

is the decrease of the liquid-vapour

interface area

William ThomsonLord Kelvin (1824-1907)

Kelvin equation

surface = high energy state

RTr

V

p

p m2ln

0

2σVm

Page 14: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Schematic representation of adsorbed layer and capillary meniscus in

cylindrical (lefthand) and slit-shaped (rigthhand) pores

ln (p/p°) = - 2 σ VL / (R T rm)

rp = rm + t

Kelvin equation

the correlation between curvature of the meniscus

and pore size depends on the shape of the pore

wp = rm + 2t

Page 15: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Did the availability of new reference

materials modify our understanding of the

adsorption phenomena?

MCM-41, J.S. Beck et al., JACS 114 (1992) 10834

MCM-48

V. Alfredsson and M.W. Anderson,

Chem. Mater. 8 (1996) 1141

SBA-15, Z. Liu et al., ChemPhysChem (2001) 229

Page 16: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

t

t

t = 0.5 nm

t = 1.0 nm

t = 2.0 nm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

a ( nm)

Sg (

m2.g

-1)

t = 0.5 nm

t = 1.0 nm

t = 2.0 nm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

a ( nm)

Sg (

m2.g

-1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

a (nm)

vf (c

m3.g

-1)

t = 2.0 nm

t = 1.0 nm

t = 0.5 nm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

a (nm)

vf (c

m3.g

-1)

t = 2.0 nm

t = 1.0 nm

t = 0.5 nm

Correlations between cell size, pore size,

wall thickness, surface area and

mesoporous volume for MCM-41-like silicas

r = (a - t)/2

Deq = 1.05 (a - t)

radius of inscribed circle

diameter of circle with the

same area as the hexagon

A. Galarneau et al., Micropor. Mesopor. Mater., 27 (1999) 297; Stud. Surface Sci. Catal., 142 (2002) 1057.

Page 17: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Correlations between cell size, pore size,

wall thickness, surface area and

mesoporous volume for MCM-48 silicas

B. Coasne et al., Langmuir, 22 (2006) 11097

A. Galarneau et al.,

Microp. Mesop. Mater.,

83 (2005) 172

Page 18: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous
Page 19: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

L. Jelinek, E.s. Kovats, Langmuir 10 (1994) 4225

Cross-sectional areas of nitrogen molecule:

16.2 Å2

over silylated silica (value usually used in syrface area calculations)

13.5 Å2

over rehydroxylated silica

Page 20: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous
Page 21: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous
Page 22: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

0

100

200

300

0 1 2 3

alpha S (aerosil reference)

cm

3 (

ST

P)

g-1

Reference isotherm of N2 adsorption at

77 K on Aerosil fumed silica

some mesoporosity in a reference

solid assumed as non-porous

αS-plot for a Ca-alginate aerogel

negative deviation

of the αS-plot of a

solid with less

mesopores than

the reference

Ca-alginate aerogelF. Quignard, M. Robitzer, F. Di Renzo

New J. Chem. 32 (2008) 1300

Page 23: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

p/p°

cm

3 (

ST

P)

g-1

0

200

400

600

800

0 1 2 3

alpha S (aerosil reference)

cm

3 (

ST

P)

g-1

N2 adsorption-desorption isotherms at 77 K (lefthand) and corresponding

αS-plot (righthand) for a non-microporous SBA-15 silica (filled symbols)

and a sample functionalized with C16 hydrocarbon chains (void symbols)

effect of the nature of the surface on the comparison plots

Page 24: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

20

40

60

80

100

120

140

160

180

200

0.0 0.2 0.4 0.6 0.8 1.0

alpha-S (Aerosil)

cm

3 (

ST

P)

g-1

0

20

40

60

80

100

120

140

160

180

200

0.0 0.2 0.4 0.6 0.8 1.0

alpha-S (Aerosil)

cm

3 (

ST

P)

g-1

Comparison plots of the adsorption of N2 at 77 K

on (filled triangles) chitosan and (void triangles)

chitin aerogels. The lines represent best-fit linear

correlations extrapolated to αS = 0.

Comparison plots of the adsorption of N2 at 77 K

on (filled circles) ionotropic alginate, (void circles)

alginic acid, and (void squares) carrageenan

aerogels. The lines represent best-fit linear

correlations extrapolated to αS = 0.

t-plots for the adsorption of N2 at 77 K

on polysaccharide aerogels

Page 25: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

20

40

60

80

100

120

140

-10 -5 0 5 10 15 20

intercept at αS = 0 (cm3 STP g

-1)

C (

BE

T)

Correlation between the energetical parameter C of the BET equation and the intercept of the αS

plots of polysaccharide aerogels with different surface groups: acetylated amines (chitin, void

triangles), amines (chitosan, filled triangles), hydroxyls (agar, void lozenges), sulphates

(carrageenan, void squares), carboxylic groups (alginic acid, void circles), and salified carboxylates

(alginate, filled circles). St. Andrews cross for the Aerosil fumed silica used as reference isotherm.

chitin

chitosan

agarose κ-carrageenan

alginic acid

energetical

parameters of the

adsorption of N2

at 77 K on

polysaccharide

aerogels

Page 26: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

1

2

3

4

0 0.5 1 1.5 2

monolayer fraction V/Vm

kJ m

ol-1

Net molar energy of adsorption of argon on (filled circles) Ca-alginate and

(void triangles) chitin aerogels and (St. Andrews' crosses) fumed silica.

isosteric heats of adsorption of Ar

on polysaccharide aerogels

alginic acid

chitin

Page 27: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

am

ou

nt

ad

so

rbe

d,

n

= H1 = H3 = H2

am

ou

nt

ad

so

rbe

d,

n

= H1 = H3 = H2

am

ou

nt

ad

so

rbe

d,

n

= H1 = H3 = H2

Different shapes of hysteresis of type IV isotherms

H4

H1 narrow mesopore size distribution

H2 ink-bottle pores

H3 broad pore size distribution with smaller

pores accessible through the larger ones

H4 similar to H3 in the presence of

microporosity

Page 28: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Schematic representation of the N2 adsorption-desorption isotherms at 77 K

and corresponding pore size distributions for materials with 10 nm cavities and

entrance sizes between 2 and 10 nm

lower limit of the hysteresis loop: catastrophic desorption

Page 29: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

adsorption isotherms of N2 at 77 K on (a) SBA-15,

(b) TMB-swollen MCM-41, and (c) MCM-41 silicas

limit of reversible pore filling

Page 30: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

-12

-10

-8

-6

-4

-2

0

1 1.5 2 2.5Tc/Trpf

ln(p

rpf/p

c)

reduced temperature and pressure of the limits of reversible pore filling for N2

(void squares), Ar (filled squares), Xe (filled triangles), O2 (void lozenges), CO2

(void triangles), cyclopentane (void circles), benzene (St. Andrews crosses), 2,2-

dimethylbutane (crosses). Tc and pc are the critical conditions.

D. Maldonado et al.

J. Porous Mater. 14

(2007) 279

corresponding state graph for the limit of reversible pore filling

Page 31: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

suction head

delivery head

piping head

the suction head of a

pump is limited by the

evaporation of the liquid

TemperatureVapor

Pressure

Maximal

elevation

(oC) (oF) (kN/m2) (m)

0 32 0.6 10.3

10 50 1.2 10.2

20 68 2.3 10.1

30 86 4.3 9.9

40 104 7.7 9.5

50 122 12.5 9.1

60 140 20 8.3

70 158 32.1 7.1

80 176 47.5 5.5

90 194 70 3.2

100 212 101.33 0.0

Suction Head as Affected by Temperature

He = (Patm - Pv) / γ

maximum suction head

Page 32: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Clausius-Clapeyron calculations of

the enthalpies of evaporation at

the limit of reversible pore filling

P. Trens et al., Langmuir 21 (2005) 8560

Page 33: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous
Page 34: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Adsorption/desorption isotherms of nitrogen at 77 K

MCM-41 3 nm (synthesis with CTAB)

▲ MCM-41 4 nm (synthesis with CTAB, swelled with trimethylbenzene)

MCM-41 5.5 nm (synthesis with CTAB, swelled with dodecylamine)

MCM-41 10 nm (synthesis with CTAB, swelled with trimethylbenzene)

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

p/p°

Ad

so

rbe

d a

mo

un

t / cm

3.g

-1 (

ST

P)

The pore size can

be tuned by the

synthesis method

Page 35: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Enthalpies of adsorption of n-hexane as a function of coverage as calculated from

(left hand) the adsorption data and (right hand) the desorption data on () MCM-

41 3 nm, (▲) MCM-41 4 nm, (■) MCM-41 5.5 nm, (O) SBA-15 10 nm. Dashed line:

condensation heat of hexane.

-40

-35

-30

0 0.5 1

Fraction of pore filling

Ad

so

rptio

n e

nth

alp

y / k

J m

ol-1

-40

-35

-30

0 0.5 1

Fraction of pore filling

Adsorp

tion e

nth

alp

y /

kJ m

ol-1

D. Maldonado et al.

J. Porous Mater. 14

(2007) 279

Page 36: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

30

32

34

36

38

40

42

0 2 4 6 8 10

D (nm)

-ΔH

(k

J m

ol-1

)

Condensation enthalpies of n-hexane as a function of the pore size.

Isosteric data from adsorption () and desorption () results.

Continuous line: calculated condensation enthalpy.

Dotted line: condensation enthalpy on a flat liquid surface.

Page 37: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

inti h

N

Nhh

cc

ntcondcc

When the meniscus advances,

the interface between adsorbed

layer and vapour disappears

In small mesopores, the energetical

contribution of the interface affects

the enthalpy of capillary condensation

pore surface

adsorbed layer

core filled by

capillary

condensation

p

ccm

N

NNN int

In the hypothesis of constant density of the

adsorbed phase, the fraction of interface

molecules can be evaluated from the

adsorption isotherm

Nm = monolayer amount by BET equation

Page 38: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

capillary rise and capillary depression

wetting fluid

Ө < 90°

non-wetting fluid

Ө > 90°

2σcos(Ө)

h capillary rise

σ surface tension

Ө contact angle

r capillary radius

ρ liquid density

g gravity acceleration

Page 39: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

ΔP = (2γ/R) cosθ

Washburn-Laplace law for cylindrical pores

corelation pressure-pore size

depending on contact angle

γ(Hg) 0.485 N m-1

if θ = 140°

R = -743/ΔPR = nm ΔP = MPa

180°

130°

110°

1.8

2

2.2

2.4

2.6

1.5 1.7 1.9 2.1 2.3

Log D (Angstrom)

Lo

g P

(M

Pa)

180°

130°

110°

1.8

2

2.2

2.4

2.6

1.5 1.7 1.9 2.1 2.3

Log D (Angstrom)

Lo

g P

(M

Pa)

rm

θrp

Hgrm

θrp

HgHg

Page 40: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

intergranular

porosity

grain

packing

structural

porosity

Mercury porosimetry on SBA-15 sample prepared at 130°C

0.7 µ 7.5 nm20 nm

1.0 ml/g

2.2 ml/g

Pore size calculated for θ = 140°

50 nm 3 nm

field of superposition with the

data from nitrogen adsorption

0

1

2

3

4

5

6

7

0.0010.010.11101001000

Diameter (µm)

cu

mu

lati

ve v

olu

me (

ml/

g)

Page 41: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Porosity of SBA-15s from nitrogen adsorption at 77 K

pore size calculated by the method of Broekhoff and de Boer

# T (°C)

synthèse

D (Å)

adsorption

D (Å)

désorption

3439 60 45 48

3440 100 73 75

3806 130 90 96

3441 130 100 105

pore size increases with the

temperature of the second

step of the synthesis

0

100

200

300

400

500

600

700

800

900

0 0.2 0.4 0.6 0.8 1

P/P°

N2

ml/g

ST

P

3439C

3440C

3441C

3806C

A. Galarneau et al., Langmuir 17 (2001) 8328

Page 42: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

structural porosity of SBA-15s from mercury intrusion

pore size calculated for contact angle θ = 140°

# T (°C)

synthèse

D (Å)

intrusion

D (Å)

extrusion

3439 60 42 60

3440 100 52 100

3806 130 62 140

3441 130 76 200

hysteresis loop is wider

for larger pores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06

diameter (micron)

vo

lum

e (

mL

/g)

3439C 3441C 3440C 3806SC

Page 43: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

-0,8 -0,4 0,0 0,4 0,8 1,2 1,6-4

-2

0

2

4

6

Intrusion

n = -1

Patm

MTS 10

0C8

MTS 50

C8

MTS

18 C8

MTS

16 C8

ln P

ln RP

-0,8 -0,4 0,0 0,4 0,8 1,2 1,6-4

-2

0

2

4

6

Extrusion

Intrusion

ln Rc1

n ~ - 4

n = -1

Patm

MTS 10

0C8

MTS 50

C8

MTS

18 C8

MTS

16 C8

(•)

ln P

ln RP

Pint RP-1

Pext RP-4

Retraction Propagation

Intrusion of water in MCM-41 grafted with octyldimethylsilane

Intrusion = Propagation

Extrusion depends on cavitation

(nucleation of the vapour phase)

B. Lefèvre et al., J. Colloid Surface A 2004, 241, 265.

p

471.122p4673.9168.366r

empyrical Kloubek-Rigby-Edler

correlation for mercury retraction

Rigby and Edler, J. Colloid Interf. Sci. 2002, 250, 175

Page 44: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

0

5

10

15

0 5 10 15

D(BdB) nm

D(W

ash

bu

rn)

nm

comparison of the pore size measured by mercury intrusion

and N2 adsorption for MCM-41 (squares), SBA-15 (triangles)

and porous glass (circles) samples.

mercury porosimetry underevaluates the

pore size for interconnected pore systems

Page 45: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Carbon replica of SBA-15 prepared at 100°C

Liu, Terasaki, Ohsuna, Hiraga, Shin, Ryoo, ChemPhysChem (2001) 229

The carbon rods formed inside the mesopores do not fall apart

when the silica template is dissolved in HF

Page 46: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Carbon replica of SBA-15 prepared at 100°C

Liu, Terasaki, Ohsuna, Hiraga, Shin, Ryoo, ChemPhysChem (2001) 229

Disordered bridges

connecting ordered

parallel mesopores

Page 47: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Connections between pores depend on

the conditions of synthesis

Galarneau, Cambon, Di Renzo, Ryoo, Choi, Fajula, New J. Chem. 27 (2003) 73

SBA-15 prepared at 60 °C

The platinum rods of the

replica do fall apart

(same effect for MCM-41)

SBA-15 prepared at 100 °C

Interconnected pores:

the platinum replica does

not fall apart

50 nmPt-3532CPt-3522C

Page 48: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Pression of intrusion and retraction of mercury

as a function of pore size from nitrogen adsorption

physical impossibility: contact angle higher than 180°

1.8

2

2.2

2.4

2.6

1.5 1.7 1.9 2.1 2.3

Log D(BDB) Angstrom

Lo

g P

/MP

a

intrusion

extrusion 110° 130°

180°

solids with pore

interconnections

Page 49: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Evolution of the contact angle and the radius of the meniscus when mercury

advances in a cylindrical pore with increasing diameter

Kloubek, Powder Technol. 1981, 29, 63; Galarneau et al., J. Phys. Chem. C 2008, 112,12921

Wenzel, J. Phys. Colloid Chem. 1949, 53, 1466

cos θrough = R* cos θflat

a higher pressure is needed to overcome the rim of a pore widening

surface roughness corresponds to an increase of contact angle

R* = ratio of the rough surface area to

its projection on the average plane

Page 50: Adsorption and Intrusion Methods for the Characterization of ......Adsorption and Intrusion Methods for the Nitrogen adsorption and mercury intrusion in Characterization of Mesoporous

Academic Press, 1982 Academic Press, 1999