Active matrix back planes for the control of large area X-ray ......Active matrix flat panel X-ray...

54
D. Pribat IWORID ’05. 4-7 July 2005. ESRF Grenoble Active matrix back planes for the control of large area X-ray imagers D. Pribat and C. Cojocaru Laboratoire de Physique des Interfaces et des Couches Minces Ecole Polytechnique 91128, Palaiseau, France

Transcript of Active matrix back planes for the control of large area X-ray ......Active matrix flat panel X-ray...

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Active matrix back planes for the control of large area X-ray imagers

    D. Pribat and C. CojocaruLaboratoire de Physique des Interfaces et des Couches

    MincesEcole Polytechnique

    91128, Palaiseau, France

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Outlook

    • Introduction / General considerations• Amorphous silicon flat panel imaging

    technology• Need for pixel electronics. Limitations of a-Si• Alternative large areas technologies

    – Polysilicon– Nanowires

    • Summary and conclusion

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Solid state X-ray imagers

    • c-Si based detectors– Linear arrays

    • Diodes• Microstrips

    – Two dimensional detectors• CCD: max surface ~ 8x10 cm2 (eg., CCD595, Fairchild Imaging)• CMOS: max surface ~ 17x22 cm2 (C7830-01, Hamamatsu)

    • a-Si:H based detectors

    Wafer Scale Integration ⇒ Yield?

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Active matrix flat panel X-ray imaging system

    Electronic storageCompactnessNo chemical waste/photo

    Immediate viewingDigital processingImage enhancement

    From L. Antonuk

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Indirect detection:p-i-n photodiode

    Direct detection:photoconductor

    The two detection schemes

    X-rays ⇒ e-h pairs ⇒ q

    From L. Antonuk

    X-rays ⇒ photons ⇒ e-h pairs ⇒ q

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Indirect detection

    From L. Antonuk

    Direct detection

    Top view micrographs of individual pixels

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Imaging array

    Pixel

    VB (Bias line)

    CST

    READ CFB

    Column Charge

    Amplifier

    Data line

    Gate line

    Pixell

    General organisation of an active matrix detector

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Why a-Si:H?

    • a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad hard

    • a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Advanced TFT process: down to 4 masks

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Why a-Si:H?

    • a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad. hard

    • a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Evolution of PECVD systems (TFT stack deposition)

    From AKT

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Recent evolution of LCD panel prices

    From Display Search

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Street price of 15” TFT-LCD displays

    From Display Search

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Why a-Si:H?

    • a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad. hard

    • a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    0.0001 – 0.010.6 – 2400.03 – 3Exposure range (mR)

    8030120X-ray spectrum (kVp)

    33 ms/frame< 5 < 5Image readout time (s)

    1000 x 10003600 x 48001750 x 2150Pixel count

    250 x 25050 x 50150 x 150Pixel area (µm2)

    25 x 2518 x 24 35 x 43Imager size (cm)

    FluoroscopyMammographyRadiography

    Some requirements for medical imaging

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Charge must be transferred through long data line: ⇒ Column capacitance limits noise performance of charge amplifiers⇒ Coupling introduces pick-up noiseThermal noise in the pixel TFT:⇒ (kTCST)1/2 noise ~ 500 e-rms

    Pixel

    VB (Bias line)

    CST

    READ CFB

    Column Charge

    Amplifier

    Data line

    Gate line

    Pixel

    VB (Bias line)

    CST

    READ CFB

    Column Charge

    Amplifier

    Data line

    Gate line

    Some limitations of active matrix imagers

    Increase SNR:- High pixel fill factor- Pixel amplification

    Challenge for fluoroscopy(~ 1000 electrons for a-Se photocond)

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Pixel amplification

    AMPLIFIER

    CFB ++

    __

    AMP

    READ

    RST

    VG

    QOUTVDD

    vO

    TRESET TINT TREAD

    RST

    RD

    K.S. Karim, ITC ‘05

    Source follower circuit

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Charge gain for pixel amplification (a-Si:H TFTs)

    0 1 2 30 1 2 3

    CPIX = 1 pF

    CPIX = 2 pF

    CPIX = 4 pFCPIX = 10 pF

    Gi = 13.3

    Gi = 6.7

    Gi = 3.3Gi = 1.3

    QP (fC)

    0

    10

    20

    30

    QO

    UT

    (fC)

    10 pF++

    __

    hν+ +– –

    QOUT

    VDD

    CPIXQP

    60/25150/25

    150/25

    OK for fluoroscopybut signal saturationfor radiography!!

    K.S. Karim, ITC ‘05

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    High dynamic range pixels

    VRESETV READ2

    VREAD1

    VG

    VDD

    VO

    UT1

    VA

    MP_R

    ESET1

    VO

    UT2

    VA

    MP_R

    ESET2

    VRESETV READ2

    VREAD1

    VG

    VDDVRESET

    V READ2

    VREAD1

    VG

    VDD

    VO

    UT1

    VA

    MP_R

    ESET1

    VO

    UT2

    VA

    MP_R

    ESET2V

    AM

    P_RESET2

    K.S. Karim, ITC ‘05

    Conclusion:Need for pixel circuitry!!

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    a-Si drawbacks for circuits

    Metastability

    Poor transport properties⇒ large TFTs⇒ parasitic effects⇒ Small fill factor. Need for stacked sensor structure

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    a-Si:H drawbacks for circuits

    OK if low duty cycle

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    a-Si drawbacks for circuits

    Metastability

    Poor transport properties⇒ Large TFTs⇒ Parasitic effects ⇒ Noise increase⇒ Small fill factor. Need for stacked sensor structure

    Alternative technologies→ Poly-Si→ Si Nanowires

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    The various crystallisation processes for Si on glassThe various crystallisation processes for Si on glass

    CRYSTALLISATION

    Liquid Phase(Laser) Solid Phase

    Furnace, RTA, CW Laser… Metal Induced

    MILC

    FE-MIC/MILC

    MICC

    Pulsed Laser CW Laser

    “Full Sheet”

    ELC

    SLS

    Phase Shift Mask

    Patterned/Localised

    SPC: high noise level TFTsdue to carrier number fluctuations.Corradetti, APL, 67, 1730 (1995)

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Crystallisation of a-Si: pulsed laser system with line beam optics

    XeClXeCl, 308 nm, 50Hz, 308 nm, 50Hz

    y

    x

    El

    TopTop--hat energy profilehat energy profile

    Largest line beam (Microlas):350 mm X 250 µm

    L = (Dτ)1/2

    D = κ/ρCp

    L ~100 nm in SiO2, for τ ~25 ns

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Why pulsed laser?

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Poly-Si pros and cons

    • High mobility TFTs (µn ~ 350 cm2/Vs. µp ~ 150 cm2/Vs)• Low noise level TFTs (Carluccio, APL 71, 578,1997)• Low Vth• Self-aligned TFTs

    • BUT:– Complex, small process window for high quality TFTs– Vth dispersion (grain size uniformity)– Surface roughness (reliability)– Non stabilised technology– Niche applications in displays so far, although studied for 2

    decades

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Grain size as a function of laser energy density (1)

    E = 360 mJ/cm2 E = 400 mJ/cm2

    E = 430 mJ/cm2 E = 470 mJ/cm2

    500 nm

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    cc(( µµ

    m)

    m)

    Laser energy density (a.u.)Laser energy density (a.u.)

    Grain size as a function of laser energy density (2)

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Poly-Si pros and cons

    • High mobility TFTs (µn ~ 350 cm2/Vs. µp ~ 150 cm2/Vs)• Low noise level TFTs (Carluccio, APL 71, 578,1997)• Low Vth

    • BUT:– Complex, small process window– Vth dispersion (grain size uniformity)– Surface roughness (reliability)– Non stabilised technology– Niche applications in displays so far, although studied for 2

    decades

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Semiconductor nanowires

    • Si nanowires studied for CMOS replacement.

    • However:– They can be grown at low to moderate T,– No need for refractory substrate,– No need for monocrystalline substrate.

    Interest for displays and imagers!!

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Vapor:SiH4,

    or SiH4 + PH3 or B2H6Au-SiLiquid alloy

    substrate

    SingleCrystal

    SiWhisker

    vapor

    Principle of the VLSGrowth method:

    Synthesis of NWs

    T ~ 400°C

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    VLS growth of Si µ-wire arrays

    Si Substrate

    Gold

    SiO2

    T ~ 550°CSiH4 + H2

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Si NanoWire FET

    µ ~ 1350 cm2/VsLieber, Nano Lett., 2003

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Challenges with nanowires

    • How to manipulate NWs?• How to organise them?• Controlled doping

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    500 nm500 nm

    nanotubes de carbone par CVD dans les membranes d’Aluminium anodisées

    Al 2O 3

    Anodisation de Aluminium

    SO42-

    Ni

    Electrodeposition du catalyseur

    2

    V

    4

    Al 2O 3

    MWNT

    Ni

    Al

    CVD

    Al

    1

    MWNT

    3

    Membrane Al 2 O 3

    0.5 cm

    polycarbonate 106 pores

    Co 2+

    Cu 2+

    Electrodeposition

    Template synthesis

    Magnetic nanostructure

    100 nm

    Co

    Cu

    6000 nm

    80 nm

    Cu

    V

    Track-etched membrane template

    Membrane

    Single contact

    Template synthesis and structuring of nanomaterials(NWs and CNTs)

    Hexagonal self-ordering

    Al203 membrane

    Polycarbonatemembrane(random order)

    Wade & Wegrowe, Europ. Phys. J. Appl. Phys. 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    1µm1µm

    200 nm

    Anodic alumina membranes: self-organisation at nanometric scale

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Au-SiLiquid alloyAl

    alumina membrane

    Siliconcrystal

    vapor

    alumina membrane

    Al

    Template growth ofSi NWs

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

    6 0 5 cm -14 1 3 .5 cm-1

    5 1 7 .3 cm -1

    inte

    nsity

    (a.u

    .)R A M A N s h ift (c m -1)

    2 92 cm -1

    Si NWs in porous Al2O3

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    1µm

    Template-grown nanostructures:OK for two-terminal devices

    Ex : GMR measurements on a Co/Cu nw

    Wade & Wegrowe, Europ. Phys. J. Appl. Phys. 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Non-conducting substrate

    Al thin film0.1-1µm

    Non-conducting substrateAl

    Metal electrode

    Capping layer (SiO2, resin…)

    Al Porous aluminum oxide & electrodeposited catalyst

    Dissolution of aluminum and growth of CNTsor nanowires

    Gate

    MetalCNTs, NWsContacts Source/Drain

    Gatedielectric

    Template growth in lateral porous anodic Al2O3 films

    Nano Lett., Vol. 5, No. 4, 2005CNRS patent FR 03 11959

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Template growth in lateral porous anodic Al2O3 films

    Nano Lett., Vol. 5, No. 4, 2005CNRS patent FR 03 11959

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    a) b)

    c) d)

    SEM characterisations of lateral Al2O3 membranes

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    TEM characterisations of lateral Al2O3 membranes (1)

    The red bars represent 3.5 nm

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    TEM characterisations of lateral membranes (2)

    5 nm, MEHR

    Pores filled with Te

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    AlAl stripe

    electrodeposited Au nanoparticles

    porous alumina

    insulating layer

    Modulation doped SiNWs growth

    SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

    RIE removal of the capping insulating layer, wet etch removal of the Al stripe

    masking the composite SiNWs in porous alumina

    RIE etch of unprotected SiNWs

    wet etch removal of the alumina membrane contacting the SiNWs Gate insulator and Gate deposition

    Si Si

    Si Si

    S D

    Si

    S D

    gate

    Si

    Al

    1

    2 3 4

    5 6 7

    8 9 10

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    AlAl stripe

    electrodeposited Au nanoparticles

    porous alumina

    Si

    Al

    Si

    AlAl stripe

    electrodeposited Au nanoparticles

    porous alumina

    insulating layer

    Modulation doped SiNWs growth

    SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

    RIE removal of the capping insulating layer, wet etch removal of the Al stripe

    masking the composite SiNWs in porous alumina

    RIE etch of unprotected SiNWs

    wet etch removal of the alumina membrane contacting the SiNWs Gate insulator and Gate deposition

    SiSiSiSi SiSiSiSiSi

    SiSiSi Si

    S D

    Si

    S D

    SiSiSi

    S D

    Si

    S D

    gate

    Si

    S D

    gate

    SiSiSi

    S D

    gate

    Si

    Al

    Si

    Al

    Si

    Al

    Si

    Al

    1

    2 3 4

    5 6 7

    8 9 10

    Transistor fabrication with sequential doping

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    substrate

    Al

    Al

    Al

    Al

    substrate

    Al

    Al

    Al

    Al

    substrate

    AlAl

    Al

    Al

    Al

    Al

    Al

    Al

    Mask # 1Al etching

    Array with a 5-mask process (1)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    Al

    SiO2Porous alumina

    Al

    SiO2

    Al

    Al

    Al

    Al

    AlAl

    SiO2Porous aluminaPorous alumina

    AlAl

    SiO2

    Al

    SiO2 deposition+

    Mask # 2+

    Anodic oxidation+

    Catalyst electrodep.

    Array with a 5-mask process (2)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    Al Al

    SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

    Al

    Al

    Al

    Al

    Al Al

    SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

    Al

    TFT realisationin one pump down

    Array with a 5-mask process (3)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    VDD

    +++

    VO

    RESET READ

    - - -

    Mask # 3: Gate and S/D metal

    Array with a 5-mask process (4)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    VDD

    +++

    VO

    RESET READ

    - - -

    SiO2 deposition + mask 4

    Array with a 5-mask process (5)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    VDD

    +++

    VO

    RESET READ

    - - -

    Metal 2 deposition (lower capacitance electrode)+ etching (mask # 5)

    Array with a 5-mask process (6)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Al

    Al

    Al

    VDD

    +++

    VO

    RESET READ

    - - -

    p-i-n stack deposition + ITO (upper capacitance electrode)

    Array with a 5-mask process (7)

    CNRS patent 2005

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble

    Conclusions

    • a-Si:H-based imagers present a number of advantages– Large size, high resolution, high image quality– Electronic picture handling– Compactness– Synergy with AMLCD industry (equipment, technologies…)– ….

    • Need for added pixel complexity– a-Si:H limitations

    • Alternative technologies– Poly-Si: complex (laser), not mature. Niche applications in

    displays– Si NWs: simple, only CVD. Currently being developed

  • D. Pribat

    IWORID ’05. 4-7 July 2005. ESRF Grenoble