2nde FICHE n°8 Sens de variation d’une fonctionSens de...

4

Click here to load reader

Transcript of 2nde FICHE n°8 Sens de variation d’une fonctionSens de...

Page 1: 2nde FICHE n°8 Sens de variation d’une fonctionSens de ...prof.launay.free.fr/cours/2nde_cours_08_variations_fonction.pdf · EXERCICE TYPE 2 Comprendre un tableau de variation

2nde FICHE n°8

Sens de variation d’une fonctionSens de variation d’une fonctionSens de variation d’une fonctionSens de variation d’une fonction et extremumet extremumet extremumet extremum I. Observer graphiquement le sens de variations d’une fonction Exemple On considère une fonction f définie sur [−3 ; +∞[ dont on donne la représentation graphique

suivante : Définition Etudier le sens des variation d’une fonction, c’est indiquer si elle est strictement croissante ou strictement décroissante ou constante avec les intervalles correspondants. Chercher un extremum, c’est chercher un minimum et/ou un maximum sur l’intervalle donné. On résume souvent toutes ces informations à l’aide d’un tableau de variation. EXERCICE TYPE 1 Dresser un tableau de variation à partir de lectures graphiques

Dresser le tableau de variation de la fonction f ci-dessus représentée.

Solution

x −−−−3 −−−−1 2 +∞

f (x) 3 1 −−−−2 ?

x

y

-4 -3 -2 -1 0 1 2 3 4 5 6

-6

-5

-4

-3

-2

-1

1

2

3

4

5

A

B

C

D

La fonction f est strictement décroissante sur l’intervalle [−3 ; −1].

La fonction f est strictement croissante sur l’intervalle [−1 ; 2].

La fonction f est strictement décroissante sur l’intervalle [2 ; +∞[.

Sur [−3 ; +∞[, la fonction f atteint le maximum 3 ,

atteint en x = −−−−3. 1 est un maximum de la fonction f sur [−1 ; 5]. Il est atteint en x = 2.

la fonction f l’intervalle

−−−−2 est un minimum de la fonction f sur [−3 ; 2]. Il est atteint en x = −−−−1.

Remarque : la fonction f ne semble pas admettre de minimum sur son ensemble de définition [−3 ; +∞[.

antécédents « abscisses »

images « ordonnées »

Page 2: 2nde FICHE n°8 Sens de variation d’une fonctionSens de ...prof.launay.free.fr/cours/2nde_cours_08_variations_fonction.pdf · EXERCICE TYPE 2 Comprendre un tableau de variation

EXERCICE TYPE 2 Comprendre un tableau de variation On considère une fonction g définie sur [−4 ; 6] dont le tableau de variations est donné ci-dessous.

1. Tracer une courbe susceptible de représenter g dans un repère. 2. Pour chacun des intervalles, donner le minimum et le maximum de la fonction g et préciser pour quelles valeurs de x ils sont atteints. a. sur [−2 ; 3] b. sur le domaine de définition [−4 ; 6]

Solution

1. 2. a. Sur l’intervalle [−2 ; 3] :

� la fonction g admet un minimum −−−−4 atteint en x = 2 � et la fonction g admet un maximum 2 atteint en x = 0

b. Sur le domaine de définition [−4 ; 6] : � la fonction g admet un minimum −−−−4 atteint en x = 2 � et la fonction g admet un maximum 4 atteint en x = 6

x −−−−4 0 2 6

g(x) 2 4 1 −−−−4

x

y

-4 -3 -2 -1 0 1 2 3 4 5 6

-6

-5

-4

-3

-2

-1

1

2

3

4

5

A

B

C

D

Page 3: 2nde FICHE n°8 Sens de variation d’une fonctionSens de ...prof.launay.free.fr/cours/2nde_cours_08_variations_fonction.pdf · EXERCICE TYPE 2 Comprendre un tableau de variation

II. Aspect algébrique des variations d’une fonction fonction croissante fonction décroissante Définition On dit qu’une fonction f est strictement croissante sur un intervalle I si pour tout nombre a et b de

cet intervalle I tel que a < b , on a : f (a) < f (b)

On dit qu’une fonction f est strictement décroissante sur un intervalle I si pour tout nombre a et b

de cet intervalle I tel que a < b , on a : f (a) > f (b) Remarque Autrement dit, une fonction strictement croissante conserve l’ordre, tandis qu’une fonction

décroissante inverse l’ordre… EXERCICE TYPE 3 Comparer des nombres à l’aide des fonctions usuelles Pour cet exercice, il peut être nécessaire de revoir les propriétés de certaines fonctions usuelles, notamment la fonction « carré » et la fonction « inverse » de la fiche « Exemples d’étude de fonctions ».

Dans chaque cas, comparer les deux nombres suivants :

a. (3,1)2 et (3,0999)2 ; b. (−2, 1)2 et (−1,9)2 c. 13

et 1π ;

Solution On utilise les propriétés des fonctions usuelles :

a. Les nombres 3,1 et 3,0999 sont positifs et la fonction x ïïïï x2 est strictement croissante sur [0 ; +∞[. Comme 3,1 > 3,0999, alors on a : (3,1)2 > (3,0999)2

b. Les nombres (−2, 1) et (−1,9) sont négatifs et la fonction x ïïïï x2 est strictement décroissante sur l’intervalle [0 ; +∞[.

Comme (−2, 1) < (−1,9), alors on a : (−2, 1)2 > (−1,9)2

c. Les nombres 13 et

1π sont positifs et la fonction x ïïïï

1x est strictement décroissante sur [0 ; +∞[.

Comme 3 < π, alors on a : 13

> 1π

a b

a < b

f (b)

f (a) f (a) < f (b)

a b

a < b

f (b)

f (a)

f (a) > f (b)

Page 4: 2nde FICHE n°8 Sens de variation d’une fonctionSens de ...prof.launay.free.fr/cours/2nde_cours_08_variations_fonction.pdf · EXERCICE TYPE 2 Comprendre un tableau de variation

III. Aspect algébrique d’un extremum d’une fonction Définition On dit qu’une fonction f admet un maximum M sur un intervalle I si :

- Il existe un réel x0 dans l’intervalle I tel que M = f (x0) ;

- pour tout nombre x de cet intervalle I , on a : f (x) < M Définition On dit qu’une fonction f admet un minimum m sur un intervalle I si :

- Il existe un réel x0 dans l’intervalle I tel que m = f (x0) ;

- pour tout nombre x de cet intervalle I , on a : f (x) > m

x0

f (x)

M = f (x0)

f (x) < f (x0)

x

x0

m = f (x0)

f (x)

f (x) > f (x0)

x