2015 11 03 soutenance these v4 -...

51
Méthodes pour la planification pluriannuelle des réseaux de distribution. Application à l’analyse technico-économique des solutions d’intégration des énergies renouvelables intermittentes. Héloïse DUTRIEUX PhD defense 03/11/15 Doctoral advisors Bruno François (L2EP EC Lille) Gauthier Delille (EDF R&D) Julien Bect (L2S CentraleSupélec) Project ANR APOTEOSE (Analyse Probabiliste et nouveaux Optimums Technico-EcOnomiques des Systèmes Electriques en présence de taux de pénétration élevés d’énergies intermittentes) 2 1. Scope and motivation 2. Novel framework for the study of RES-integration solutions in multi-year distribution planning 3. Approximation methods for computing the multi-year electrical network state 4. Case studies 5. Conclusion and further work 1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Transcript of 2015 11 03 soutenance these v4 -...

Page 1: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

Méthodes pour la planification pluriannuelle des réseaux de distribution. Application à l’analyse technico-économique des solutions d’intégration

des énergies renouvelables intermittentes.

Héloïse DUTRIEUX

PhD defense

03/11/15

• Doctoral advisors• Bruno François (L2EP EC Lille)

• Gauthier Delille (EDF R&D)

• Julien Bect (L2S CentraleSupélec)

• Project ANR APOTEOSE (Analyse Probabiliste et nouveaux Optimums Technico-EcOnomiques des SystèmesElectriques en présence de taux de pénétration élevés d’énergies intermittentes)

2�� � ��� ��

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 2: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

3�� � ��� ��

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

4���� ���� � � ������� �

HTB2 HTB3

HTB1

HTA (MV)

BT(LV)

HV/MV substation

MV/LV substation

Transmission network

Distribution network

Scope of the work

(HV)

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 3: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

5���� ���� � � ������� �

Historically, electricity was mainly produced by central plants connected to the transmission network.

Consumption

Generation

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

6���� ���� � � ������� �

Consumption

Generation

Since the 2000s, more and more Renewable Energy Sources (RES) have been connected to the distribution networks.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 4: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

7���� ���� � � ������� �

Consumption

Generation

RES

RES

RES

RESRES

In the near future, a massive integration of RES is expected in the distribution networks.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

8���� ���� � � ������� �

Risk of voltage/current constraints

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 5: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

9���� ���� � � ������� �

+ !!!

Network investments to connect 25 GW by 2030: 300 k€/MW of photovoltaic generation100 k€/MW of wind generation

Network reinforcement

Risk of voltage/current constraints

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

10

• Advanced reactive power control of generators• Generation curtailment• Real-time voltage control in the substations• Energy storage• …

���� ���� � � ������� �

Alternatives to reinforcement

Pg ↓

Qg ~

P, Q~

Uref ~

?Network reinforcement

Risk of voltage/current constraints

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 6: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

11

• Real-time voltage control in the HV/MV substations• Advanced reactive power control of generators

• Generation curtailment• Energy storage• …

���� ���� � � ������� �

Alternatives to reinforcement

Pg ↓

Qg ~

P, Q~

Uref ~

?Network reinforcement

Risk of voltage/current constraints

Which are the best solutions to reduce costs of integrating RES in the medium/long termat an acceptable level of risk and quality?

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

12

Current planning Requirements with RES

RES-integrationsolutions

Operatinglimits?

No Yes, in energy and/or duration

Operating costs?

Power lossesEnergy not supplied

+ Non-negligible costs depending on the constraints

Network planning methods

Studied scenarios

« Worst case »Multi-year profiles of

generation/consumption

Constraint indicators

Boolean (yes or no)

Statistical(frequency, severity, duration)

ObjectivePrevent 100 % of the networks constraints

Reach a tradeoff between costs and quality of supply

���� ���� � � ������� �

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 7: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

13

Current planning Requirements with RES

RES-integrationsolutions

Operatinglimits?

No Yes, in energy and/or duration

Operating costs?

Power lossesEnergy not supplied

+ Non-negligible costs depending on the constraints

Network planning methods

Studied scenarios

« Worst case »Multi-year profiles of

generation/consumption

Constraint indicators

Boolean (yes or no)

Statistical(frequency, severity, duration)

ObjectivePrevent 100 % of the networks constraints

Reach a tradeoff between costs and quality of supply

���� ���� � � ������� �

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

14

Current planning Requirements with RES

RES-integrationsolutions

Operatinglimits?

No Yes, in energy and/or duration

Operating costs?

Power lossesEnergy not supplied

+ Non-negligible costs depending on the constraints

Network planning methods

Studied scenarios

« Worst case »Multi-year profiles of

generation/consumption

Constraint indicators

Boolean (yes or no)

Statistical(frequency, severity, duration)

ObjectivePrevent 100 % of the networks constraints

Reach a tradeoff between costs and quality of supply

���� ���� � � ������� �

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 8: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

15���� ���� � � ������� �

Need to modify the current planning methods to assess the techno-economic impacts of the RES-integration solutions

Extensive literature review on the planning approaches taking into account RES-integration solutions

Main limits of the existing planning approaches:

• Inappropriate time sampling: too small time period and/or time step

• Future events sometimes assumed to be perfectly known

• Interactions between MV and LV networks generally neglected

• Economic analysis sometimes incomplete or missing

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

16���� ���� � � ������� �

Need to modify the current planning methods to assess the techno-economic impacts of the RES-integration solutions

Extensive literature review on the planning approaches taking into account RES-integration solutions

Main limits of the existing planning approaches:

• Inappropriate time sampling: too small time period and/or time step

• Future events sometimes assumed to be perfectly known

• Interactions between MV and LV networks generally neglected

• Economic analysis sometimes incomplete or missing

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

The limits of the existing planning approaches can distort the assessment of the techno-economic

impacts of the RES-integration solutions.

Page 9: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

17

• Methods for medium-term distribution network planning (10 years)

• Network constraints: slow voltage/current variations (10 minutes)

• Quality of supply: voltage limits and weakly-supplied LV consumers

• Network and communication facilities assumed reliable

• Provide a suitable framework for the study of RES-integration solutions in the medium/long run

• Address the main limits of the existing planning approaches:‒ Distribution System Operator (DSO)’s behavior‒ Uncertainty on the arrivals of new RES‒ Interactions between MV and LV networks

���� ���� � � ������� �

OBJECTIVES

SCOPE

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

18

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 10: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

19

Question

How can we address the main limits of the existing approaches?

�� � ������� �� � ��

Initial state Final state

?

Interactions between

MV and LV networks

DSO’s behavior

Uncertainty on the arrivals of

new RES

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

20�� � ������� �� � ��

Initial state Final state

?

Interactions between

MV and LV networks

Define multi-variable planning strategies

including RES-integration solutions

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

Question

Proposed approach

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 11: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

21�� � ������� �� � ��

Proposed tool

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Simulate DSO’s analyses / actions+ Compute the network state

Define the DSO’s decision tree / strategy

Compute the total costs of the strategy over the given scenario

Consider stochastic arrivals of RES + load and generation uncertainties

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

22�� � ������� �� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 12: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

23�� � ������� �� � ��

Scenario builder

Generate multi-year scenarios:

• Features of new RES producers

• 10-minute profiles of generation, consumption and voltage reference

∆Uref

Pc

Pw

Ppv

RE

S p

ower

to b

e ac

com

mod

ated

1 2 3 4 5 6 7 8 9 100

48

12

Scé

nario

1P

[M

W/a

]

0

102030

Pto

t [M

W]

1 2 3 4 5 6 7 8 9 100

48

12

Scé

nario

2P

[M

W/a

]

0

102030

Pto

t [M

W]

1 2 3 4 5 6 7 8 9 10048

12

Scé

nario

3P

[M

W/a

]

0102030

Pto

t [M

W]

1 2 3 4 5 6 7 8 9 100

48

12

Scé

nario

4P

[M

W/a

]

0

102030

Pto

t [M

W]

1 2 3 4 5 6 7 8 9 100

48

12

Scé

nario

5P

[M

W/a

]

Année

0

102030

Pto

t [M

W]

PBT

PHTA

Ptot

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/12-0.02

0

0.02

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

11.2

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

24�� � ������� �� � ��

Planning strategy

Model the Distribution System Operator (DSO)’s behavior.

Planning strategy the sequence of the decision analyses made by the DSO in everyday life,

as well as the associated decisions, when the DSO notices an eventthat may require some adaptations of the existing network.

Examples of event connection of a new user, too many weakly-supplied consumers,

constraint limit violations, expected load growth in the coming years, etc.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 13: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

25�� � ������� �� � ��

Planning strategy

Model the Distribution System Operator (DSO)’s behavior. • Each planning strategy is a sequence of rules.

• Each rule describes the RES-integration solutions to remove constraints.

Example of the current French strategy:If the connection of a new MV producer to a feeder supplying loads may cause overvoltages, then it is necessary to:

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, with tan(φ) ≥ tan(φ)min,DSO.

R3: decrease the fixed voltage reference of the on-load tap changer of the HV/MV transformer UOLTC, with UOLTC ≥ UOLTC,min.

R4: reinforce the MV network.

minmin,min ,)tan(,)tan( OLTCDSO U

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

26�� � ������� �� � ��

Planning strategy

Model the Distribution System Operator (DSO)’s behavior. • Each planning strategy is a sequence of rules.

• Each rule describes the RES-integration solutions to remove constraints.

Example of a new strategy including generation curtailment:If the connection of a new MV producer to a feeder supplying loads may cause overvoltages, then it is necessary to:

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, with tan(φ) ≥ tan(φ)min,DSO.

R3: decrease the fixed voltage reference of the on-load tap changer of the HV/MV transformer UOLTC, with UOLTC ≥ UOLTC,min.

R5: limit the active power of the MV producers considering a maximal curtailment rate τcurt ≤ τcurt,max.

R4: reinforce the MV network. max,minmin,min ,,)tan(,)tan( curtOLTCDSO U

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 14: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

27�� � ������� �� � ��

Network + DSO simulator

Simulate the network evolutions on a year-by-year basis:

1. Apply the planning strategy at the beginning of the year to remove limit violations and accommodate all LV and MV producers.

2. Estimate the network state over the whole year on the basis of 10-minute generation/consumption profiles.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

28�� � ������� �� � ��

Network + DSO simulator

Simulate the network evolutions on a year-by-year basis:

1. Apply the planning strategy at the beginning of the year to remove limit violations and accommodate all LV and MV producers.

2. Estimate the network state over the whole year on the basis of 10-minute generation/consumption profiles. a. MV network state: voltages, currents, losses and total apparent power

b. LV network state: extreme voltages and number of weakly-supplied LV consumers

Approximation method

n (fast) approximateload-flows

)( mnX )(~

lnY

n* (slow) exact load-flows

Sampling method

)*(* mnX )*(* lnY

n* << n

PART 3

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 15: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

29�� � ������� �� � ��

Economic analysis

Compute the investments and operating costs over the studied period.

Stake-holders

Investment and operating costs

DSO

Upgraded and new MV lines Upgraded HV/MV transformersUpgraded MV/LV transformersMV line losses

MV producers

Upgraded and new MV linesUpgraded HV/MV transformersPower Conversion System (PCS) oversizing PCS maintenance

LV producers

Only if connected to dedicated feeders:Upgraded MV/LV transformers New LV dedicated feeders(New MV lines)

T

kT

kk

kk

k

i

V

i

C

i

INPC

111 111

Gross Present Cost

Net Present Cost

T

kk

kk

k

i

C

i

IGPC

111 11

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

30�� � ������� �� � ��

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 16: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

31

S

Example of application: the current French planning strategy

�� � ������� �� � ��

Year 10

Load: +2 %/y

Gen.: 20 MW

Year 0

Load: 11 MVA

Generation: 0

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

32�� � ������� �� � ��

Example of application: the current French planning strategy

Studied scenario

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/12-0.02

0

0.02

Ure

f [pu

]

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

11.2

Pc [

pu]

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

Pw [

pu]

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

Pp

v [pu

]

Features of the new producers10-minute profiles of generation,

consumption and voltage reference

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 17: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

33

S

Upgraded lineUpgraded transformer

�� � ������� �� � ��

Year 0

1 2 3 4 5 6 7 8 9 100

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

New lineNew MV producer

Example of application: the current French planning strategy

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

34

S

�� � ������� �� � ��

Year 1

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 18: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

35

S

�� � ������� �� � ��

Year 2

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

36

S

�� � ������� �� � ��

Year 3

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 19: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

37

S

�� � ������� �� � ��

Year 4

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

38

S

�� � ������� �� � ��

Year 5

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 20: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

39

S

�� � ������� �� � ��

Year 6

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

40

S

�� � ������� �� � ��

Year 7

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 21: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

41

S

�� � ������� �� � ��

Year 8

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

42

S

�� � ������� �� � ��

Year 9

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 22: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

43

S

�� � ������� �� � ��

Year 10

Upgraded lineUpgraded transformer

New lineNew MV producer

Example of application: the current French planning strategy1 2 3 4 5 6 7 8 9 10

0

4

8

12

Scé

nario

1P

[M

W/a

]

0

10

20

30

Pto

t [M

W]

12 30

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

44

Example of application: the current French planning strategy

Technical results

1 2 3 4 5 6 7 8 9 10048

12

P [

MW

/a]

PLV

PMV

1 2 3 4 5 6 7 8 9 100

250

500

750

1000

1250

1500

1750

Year

Cos

ts [

k€/a

]

IMVDSO

IMVMP

ILVDSO

ILVLP

ClossDSO

IPCSMP

CPCSMP

�� � ������� �� � ��

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Total

Length of upgraded/new

MV lines [km]0 1,2 0 0 1,9 1,2 4,3 15 3,3 2 28,9

Number of upgraded/new

MV/LV transformers9 0 2 2 1 9 4 0 0 1 28

Power losses [MWh] 308 331 353 352 340 352 293 596 528 549 4001

Level of weakly-supplied

LV consumers [%]0,73 0,41 1,05 0,63 0,63 1,81 0,03 0,10 0,19 1,01 –

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 23: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

45

1 2 3 4 5 6 7 8 9 10048

12

P [

MW

/a]

PLV

PMV

1 2 3 4 5 6 7 8 9 100

250

500

750

1000

1250

1500

1750

Year

Cos

ts [

k€/a

]

IMVDSO

IMVMP

ILVDSO

ILVLP

ClossDSO

IPCSMP

CPCSMP

�� � ������� �� � ��

MV network investments

Power losses

Power conversion supply of MV

producers

LV network investments

Example of application: the current French planning strategy

Economic results

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

46

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

�� � ������� �� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

New opportunities to study RES-integration solutions

Compare different strategies

Multi-year scenario builder

Take into account the scenario uncertainty

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

Net Present Cost NPC [pu]

Em

piric

al p

roba

bilm

ity d

ensi

ty

MeanMedian10 % quantile90 % quantile

Optimize a strategy

Multi-variable planning strategy

Multi-year scenario builder

Multi-year scenario builder

Multi-variable planning strategy

Multi-variable planning strategy

Statistical results

Page 24: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

47�� � ������� �� � ��

In a nutshell

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Define multi-variable planning strategies

including RES-integration solutions

Use stochastic scenarios of RES

arrivals

Use a LV network model

Uncertainty on the arrivals of

new RESInteractions

between MV and LV networks

DSO’s behavior

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

48

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Interactions between

MV and LV networks

�� � ������� �� � ��

Define multi-variable planning strategies

including RES-integration solutions

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

In a nutshell

?Computation

time

Page 25: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

49

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

50������ ��� ���� � � ��� � �

Problem of the computation time in network planning

Which time step size for studying RES-integration solutions?

The smallest as possible because:

• network constraints are defined over 10 minutes

• RES power can vary in a few seconds/minutes

Time step size considered here: ΔT = 10 minutes

Load-flow process f

)( mnX )( lnY

m = number of input variablesl = number of output variablesn = number of time steps = number of load-flows

n = 52560 load-flows per year

tcomput ≈ 3 minutesper year

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 26: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

51������ ��� ���� � � ��� � �

Problem of the computation time in network planning

tcomput ≈ 3 minutesper year

Study a strategy over a 10-year scenario ≈ 30 minutes

Study a strategy over 200 10-year scenarios ≈ 4 days

Optimize a multi-variable strategy with 50 candidate points ≈ 6 months

Compare 10 optimized strategies ≈ 5 years

Load-flow process f

)( mnX )( lnY

m = number of input variablesl = number of output variablesn = number of time steps = number of load-flows

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

52������ ��� ���� � � ��� � �

Problem of the computation time in network planning

tcomput ≈ 3 minutesper year

Study a strategy over a 10-year scenario ≈ 30 minutes

Study a strategy over 200 10-year scenarios ≈ 4 days

Optimize a multi-variable strategy with 50 candidate points ≈ 6 months

Compare 10 optimized strategies ≈ 5 years

Load-flow process f

)( mnX )( lnY

m = number of input variablesl = number of output variablesn = number of time steps = number of load-flows

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Performing exact load-flows is not suitable.It is necessary to reduce computation time while

providing accurate results.

Page 27: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

53������ ��� ���� � � ��� � �

Options to reduce computation time in network planning

Option 1: increase the time step size.

• Commonly used to study RES-integration solutions with ΔT = 30 min or 1 hour.

• Easy to be implemented.

• High loss of accuracy compared with the time saving.

n exactload-flows

)( mnX )( lnY

n* exactload-flows

)*( mnX )*( lnY

n* factor of n

Subsampling

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

54������ ��� ���� � � ��� � �

Options to reduce computation time in network planning

Option 2: simplify the load-flow equations using hypotheses and/or intrusive approximation techniques.

• Often used to study network stability and the statistical impacts of input variables.

• Efficiency depending on:– the hypotheses,

– the intrusive approximation techniques.

n exactload-flows

)( mnX )( lnY

n simplifiedload-flows

)( mnX )(~

lnY n* exactload-flows

)*( mnX )*( lnY

n* factor of n

Intrusive approximationSubsampling

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 28: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

55

Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process using non-intrusive approximation techniques.

• Often used in application domains when the observed phenomenon is not explicit,but rarely used in network studies.

• Efficiency depending on:‒ the sampling method used to select the points where the exact model has be evaluated,

‒ the approximation method used to build the surrogate model based on the evaluation points.

������ ��� ���� � � ��� � �

Approximation method

n exactload-flows

)( mnX )( lnY

n approximateload-flows

)( mnX )(~

lnY

n* exact load-flows

Sampling method

)*(* mnX )*(* lnY

n* << n

n simplifiedload-flows

)( mnX )(~

lnY n* exactload-flows

)*( mnX )*( lnY

n* factor of n

Non-intrusive approximation

Intrusive approximationSubsampling

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

56

Subsampling Intrusive approximation

Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process using non-intrusive approximation techniques.

• Often used in application domains when the observed phenomenon is not explicit,but rarely used in network studies.

• Efficiency depending on:‒ the sampling method used to select the points where the exact model has be evaluated,

‒ the approximation method used to build the surrogate model based on the evaluation points.

������ ��� ���� � � ��� � �

Approximation method

n exactload-flows

)( mnX )( lnY

n approximateload-flows

)( mnX )(~

lnY

n* exact load-flows

Sampling method

)*(* mnX )*(* lnY

n* << n

n simplifiedload-flows

)( mnX )(~

lnY n* exactload-flows

)*( mnX )*( lnY

n* factor of n

Non-intrusive approximation

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 29: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

57

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

Select a samplingmethod and an approximation

method

STEP 1

) (~

lnY ) ( mnX

?

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

58

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) (~

lnY ) ( mnX

Build an experimental

design using the sampling method

STEP 2

Select a samplingmethod and an approximation

method

STEP 1

?

with n* << n

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 30: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

59

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) (~

lnY ) ( mnX

Build an experimental

design using the sampling method

STEP 2

Select a samplingmethod and an approximation

method

STEP 1

?

)*(* lnY STEP 3 Perform n* exact

calculations

f

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

60

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) (~

lnY ) ( mnX

Build an experimental

design using the sampling method

STEP 2

Select a samplingmethod and an approximation

method

STEP 1

?

)*(* lnY STEP 3 Perform n* exact

calculations

f

Estimate the parameters of the surrogate model usingthe approximation method

STEP 4

*f

) *(* mnX ) *(* lnY

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 31: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

61

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) (~

lnY ) ( mnX

Build an experimental

design using the sampling method

STEP 2

Select a samplingmethod and an approximation

method

STEP 1

)*(* lnY STEP 3 Perform n* exact

calculations

f

Estimate the parameters of the surrogate model usingthe approximation method

) *(* mnX ) *(* lnY

STEP 4

) ( mnX Perform napproximatecalculations

STEP 5

*f

*f

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

62

General procedure to estimate a scalar variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX )*(* lnY

) ( mnX ) (~

lnY ) ( mnX

STEP 3

Estimate the parameters of the surrogate model usingthe approximation method

Perform napproximatecalculations

STEP 4

STEP 5

Build an experimental

design using the sampling method

STEP 2 Perform n* exact calculations

*f

Select a samplingmethod and an approximation

method

STEP 1

f

*f

) *(* mnX ) *(* lnY

Problem: in our work, y is 2(b+1)-

dimensional where bis the number of

buses in the network.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 32: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

63

General procedure to estimate a vector variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) *(* qnZ

) ( mnX ) (~

lnY ) ( mnX

STEP 3

Order

Compute the parameters

W

q

Do PCA

Perform n approximatecalculations

STEP 5

STEP 6

Build an experimental

design using the sampling method

STEP 2 Perform n* exact calculations

Select a samplingmethod and an approximation

method

STEP 1Find the principal

componentsWYYZ ).*(* 1

f

2

*

2

* %9,99 YZ

) *(* mnX

STEP 4

)*(* lnY

Estimate the parameters of the surrogate model usingthe approximation method

Perform napproximatecalculations

*f

*f

Principal Component Analysis (PCA) to reduce the

number of variables to be estimated:

q << l

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

64

General procedure to estimate a vector variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX

) *(* qnZ

) ( mnX ) (~

lnY ) ( mnX

STEP 3

Order

Compute the parameters

W

q

Do PCA

Do reverse PCA

STEP 5

STEP 6

Build an experimental

design using the sampling method

STEP 2 Perform n* exact calculations

*...,*,*,...,1 qk fff

STEP 7

Select a samplingmethod and an approximation

method

STEP 1Find the principal

componentsWYYZ ).*(* 1

f

2

*

2

* %9,99 YZ

TWZYY .~

.~ 1

) *(* mnX

Perform n approximatecalculations

*...,*,*,...,1 qk fff

Reverse PCA to compute the final

variable y based on its first principal

components z.

STEP 4

)*(* lnY

Principal Component Analysis (PCA) to reduce the

number of variables to be estimated:

q << l

Estimate the parameters of the surrogate model usingthe approximation method

) (~

qnZ

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 33: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

65

General procedure to estimate a vector variable y = f(x)

������ ��� ���� � � ��� � �

) *(* mnX )*(* lnY

) *(* qnZ

) ( mnX ) (~

lnY ) ( mnX

STEP 3

Order

Compute the parameters

W

q

Do PCA

Do reverse PCA

STEP 4

STEP 5

STEP 6

Build an experimental

design using the sampling method

STEP 2 Perform n* exact calculations

*...,*,*,...,1 qk fff

STEP 7

Select a samplingmethod and an approximation

method

STEP 1Find the principal

componentsWYYZ ).*(* 1

f

2

*

2

* %9,99 YZ

TWZYY .~

.~ 1

) *(* mnX

Perform n × q approximatecalculations

*...,*,*,...,1 qk fff

Estimate the parameters of the q surrogate models using

the approximation method

) (~

qnZ

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

66

General procedure to estimate a vector variable y = f(x)

������ ��� ���� � � ��� � �

Approximation method

(Fast) approximateload-flow process)( mnX )(

~lnY

(Slow) exact load-flow process

Samplingmethod

)*(* mnX )*(* lnY

n* << n

• Nearest-Neighbor Interpolation (NNI)• Polynomial Regression (PR)• Kriging (K)

• Pruned Factorial Designs (PFD)• Mean factorial-based designs (MFD)• Latin Hypercube Samples (LHS)

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 34: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

67

The most efficient techniques

������ ��� ���� � � ��� � �

Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based designPolynomial Regression + Latin Hypercube SampleKriging + Latin Hypercube Sample

Case 1Case 2Case 3

Approximation error

Computation time

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

68������ ��� ���� � � ��� � �

Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based designPolynomial Regression + Latin Hypercube SampleKriging + Latin Hypercube Sample

Case 1Case 2Case 3

10-3

10-2

10-1

10010

-2

100

102

Tr

err Q

95(U

) [V

]

Voltage

10-3

10-2

10-1

10010

-2

100

102

Tr

err Q

95(I

) [A

]

Current

10-3

10-2

10-1

100

10-2

100

102

104

Tr

err Q

95(S

0) [k

VA

]

Total apparent power

10-3

10-2

10-1

100

10-2

100

102

Tr

err Q

95(P

loss

) [k

W]

Power losses

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 35: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

69������ ��� ���� � � ��� � �

Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based designPolynomial Regression + Latin Hypercube SampleKriging + Latin Hypercube Sample

Case 1Case 2Case 3

10-3

10-2

10-1

10010

-2

100

102

Tr

err Q

95(U

) [V

]

Voltage

10-3

10-2

10-1

10010

-2

100

102

Tr

err Q

95(I

) [A

]

Current

10-3

10-2

10-1

100

10-2

100

102

104

Tr

err Q

95(S

0) [k

VA

]

Total apparent power

10-3

10-2

10-1

100

10-2

100

102

Tr

err Q

95(P

loss

) [k

W]

Power losses

In this case study, very satisfactory results are obtained by Polynomial Regression and Kriging when combined with Latin Hypercube Samples.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

70

Final procedure to estimate the network state over one year

������ ��� ���� � � ��� � �

Surrogate load-flow process

)( mnX )(~

lnY

+ validation on a 200-point sample

= 400 exact load-flows

+ validation on the same sample

= 200 exact load-flows = 52 560 exact load-flows

1st trial 2nd trial Exact calculations

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 36: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

71������ ��� ���� � � ��� � �

General performances of the proposed procedure

Proposed procedure To be compared with:

Error

Voltage < 150 V Un = 20 kV

Current < 5 A 185 A < In < 615 A

Power losses < 1 % Eloss ≈ 200-600 MWh

Total apparent power < 200 kVA 20 MVA < Sn < 72 MVA

Time saving 8 to 35! 3 or 6 with time subsampling

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

72

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Interactions between

MV and LV networks

������ ��� ���� � � ��� � �

Define multi-variable planning strategies

including RES-integration solutions

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

In a nutshell

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Use approximation methods to obtain fast and accurate load-flows

Computation time

Page 37: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

73

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Interactions between

MV and LV networks

Computation time

������ ��� ���� � � ��� � �

Define multi-variable planning strategies

including RES-integration solutions

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

In a nutshell

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Use approximation methods to get fast and

accurate load-flows

For a given computation time, about 20 times more scenarios can be studied

with a very limited loss of accuracy.

74

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 38: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

75

Considered studies

1. Impact of the minimal tangent phi of the MV producers

2. Impact of the “Last In First Out” generation curtailment

3. Optimization of the current French planning strategy

�������� ���

Year 10

Load: +2 %/y

Gen.: 20-22 MW

Simulations over200 scenarios

Use of an optimization

algorithm

Year 0

Load: 11 MVA

Generation: 0

S

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

76

Study 1: impact of the minimal tangent phi of the MV producers

Variables: θ = tan(φ)min = tan(φ)min,DSO

Possible impacts

Less network reinforcement

More MV producers connected to feeders supplying loads

More or less power losses

Bigger power conversion chain for all the MV producers

�������� ���

Fixed strategy

θ

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, with tan(φ) ≥ tan(φ)min,DSO.

Current planning strategy

tan(φ)min Which impact on the Net Present Cost?

T

kT

kk

kk

k

i

V

i

C

i

INPC

111 111

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 39: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

77

-0.6 -0.5 -0.4 -0.3 -0.25 -0.2 -0.1 00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tan(phi)minR

[pu

, ba

se N

PC

m(-

0.25

)]

RRm

Rq25

Rq75

Rm*

Rq25*

Rq75*

Study 1: impact of the minimal tangent phi of the MV producers

�������� ���

-0.6 -0.5 -0.4 -0.3 -0.25 -0.2 -0.1 0

0.5

1

1.5

2

2.5

tan(phi)min

NP

C [

pu,

base

NP

Cm

(-0.

25)]

NPCNPCm

NPCq25

NPCq75

NPCm*

),(min),(),( SNPCSNPCSR Θ

High dispersion of the scenario costscompared with the average cost: impossible

to say which value of tan(φ)min is optimal.

The values of tan(φ)min between –0.2 and 0 have a similar average impact on the costs.

),( SNPC

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

78

-0.6 -0.5 -0.4 -0.3 -0.25 -0.2 -0.1 0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tan(phi)min

NP

Cm

[pu

]

ICDSO

ICMP

ILP

Study 1: impact of the minimal tangent phi of the MV producers

�������� ���

Average allocation of the costs

-0.6 -0.5 -0.4 -0.3 -0.25 -0.2 -0.1 00

0.2

0.4

0.6

0.8

1

1.2

1.4

tan(phi)min

NP

Cm

[pu

]

IMVDSO

IMVMP

ILVDSO

ILVLP

ClossDSO

IPCSMP

CPCSMP

-0.6 -0.5 -0.4 -0.3 -0.25 -0.2 -0.1 0 0

0.1

0.2

0.3

0.4

0.5

tan(phi)min

NP

Cm

[pu

]

IMV

ILV

Closs

ICPCS

Average cost per category Average cost per stakeholder

Current value

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 40: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

79

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

curt,max

[%]

NP

Cm

[pu

]

ICDSO

ICMP

IPB

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

curt,max

[%]

NP

Cm

[pu

]

IMV

ILV

Closs

ICPCS

Ccurt

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

curt,max

[%]

NP

Cm

[pu

]

IMVDSO

IMVMP

ILVDSO

ILVLP

ClossDSO

IPCSMP

CPCSMP

CcurtMP

CcurtDSO

Study 2: impact of the “Last In First Out” generation curtailment

�������� ���

Average allocation of the costs

Average cost per category Average cost per stakeholder

Current value

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

80

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

curt,max

[%]

NP

Cm

[pu

]

ICDSO

ICMP

IPB

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

curt,max

[%]

NP

Cm

[pu

]

IMV

ILV

Closs

ICPCS

Ccurt

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

curt,max

[%]

NP

Cm

[pu

]

IMVDSO

IMVMP

ILVDSO

ILVLP

ClossDSO

IPCSMP

CPCSMP

CcurtMP

CcurtDSO

Study 2: impact of the “Last In First Out” generation curtailment

�������� ���

Average allocation of the costs

Average cost per category Average cost per stakeholder

Current value

The proposed planning approach makes it possible to assess the techno-economic impacts of the

RES-integration solutions.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 41: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

81�������� ���

Study 3: optimization of the current planning strategy

Why should we use an optimization process?

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.5

1

1.5

2

2.5

tan(phi)min

NP

C [pu

, ba

se N

PC

m(-

0.25

)]

NPCNPC

m

NPCm*

N = 200 scenarios per candidate point

tcomput ≈ 4 hours per candidate point

Accuracy on the average cost: δ = 2 %

Considering 10 candidate values for each decision variable:

• Optimize a 1-variable strategy ≈ 40 hours

• Optimize a 2-variable strategy ≈ 16 days

• Optimize a 3-variable strategy ≈ 5 months

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

82�������� ���

Study 3: optimization of the current planning strategy

General problem

Studied problem

Objective f• Economic: Net Present Cost, Regret...

• Quality: Number of weakly-supplied consumers...

• Scenario uncertainty: Mean, Quantile…

Constraints g• Finite space of the decision variables,

• Quality on the network…

Decision variables θ• Number of variables

• Continuous or discrete

)(min f

0)(s.t. g

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Page 42: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

83�������� ���

Study 3: optimization of the current planning strategy

General problem

Studied problem

Objective f• Economic: Net Present Cost, Regret...

• Quality: Number of weakly-supplied consumers...

• Scenario uncertainty: Mean, Quantile…

Constraints g• Finite space of the decision variables,

• Quality on the network…

Decision variables θ• Number of variables: 1

• Continuous or discrete

)(min f

0)(s.t. g

0;6.0)tan( min

),()( SNPCEf S S

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

84�������� ���

Study 3: optimization of the current planning strategy

Studied problem

Problem particularities?

• No explicit formulation of f

• Noisy evaluation results

• Expensive-to-evaluate model

Optimization algorithm used:

Informational Approach to Global Optimization (IAGO)

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

),()( SNPCEf S S

min)tan( )(min fΘ

0;6.0Θ

Page 43: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

85

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*70

= 0.96 pu

*70

= -0.40

f ( )

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*70

= 0.96 pu

*70

= -0.40

f ( )

Study 3: optimization of the current planning strategy

After 70 evaluations:

�������� ���

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n ob

s

10 evaluations per point

86

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n obs

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*200

= 0.98 pu

*200

= -0.42

f ( )

�������� ���

Study 3: optimization of the current planning strategy

After 200 evaluations:

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

Page 44: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

87

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n ob

s

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*500

= 0.93 pu

*500

= -0.28

f ( )

�������� ���

Study 3: optimization of the current planning strategy

After 500 evaluations:

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

88

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n obs

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*500

= 0.93 pu

*500

= -0.28

f ( )

�������� ���

Study 3: optimization of the current planning strategy

After 1 000 evaluations:

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*1000

= 0.93 pu

*1000

= -0.27

f ( )

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

Page 45: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

89

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n ob

s

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*1000

= 0.93 pu

*1000

= -0.27

f ( )

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*5000

= 0.97 pu

*5000

= -0.25

f ( )

�������� ���

Study 3: optimization of the current planning strategy

After 5 000 evaluations:

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

83 scenarios per candidate point without optimization

90

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

200

400

600

800

1000

1200

n obs

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*1000

= 0.93 pu

*1000

= -0.27

f ( )

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*5000

= 0.97 pu

*5000

= -0.25

f ( )

�������� ���

Study 3: optimization of the current planning strategy

After 5 000 evaluations:

Mean of the evaluationsMean of the kriging model95% CI of the kriging model

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Estimation of the objective function Allocation of the evaluations

83 scenarios per candidate point without optimization

Algorithms such as IAGO are suitable for the optimization of expensive-to-evaluate functions

in presence of noisy evaluations.

Page 46: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

91

1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in multi-year distribution planning

3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

92

Need to modify the distribution planning methods to assess the techno-economic impacts

of RES-integration solutions.

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Page 47: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

93

Points often neglected in the existing planning approaches

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Interactions between

MV and LV networks

DSO’s behavior

Uncertainty on the arrivals of

new RES

94

Proposed planning approach

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Interactions between

MV and LV networks

Define multi-variable planning

strategies

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

Page 48: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

95

Proposed planning approach

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Interactions between

MV and LV networks

Define multi-variable planning

strategies

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

Computation time

96

Proposed planning approach

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Interactions between

MV and LV networks

Define multi-variable planning

strategies

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

Computation time

Use approximation methods to obtainfast and accurate

load-flows

Page 49: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

97

Proposed planning approach

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Interactions between

MV and LV networks

Define multi-variable planning

strategies

Use stochastic scenarios of RES

arrivals

Use a LV network model

DSO’s behavior

Uncertainty on the arrivals of

new RES

Computation time

Use approximation methods to obtainfast and accurate

load-flows

98

Proposed simulation tool

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Page 50: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

99

Possible case studies

-0.6 -0.5 -0.4 -0.3-0.25 -0.2 -0.1 0

0.5

1

1.5

2

2.5

tan(phi)min

NP

C [

pu,

base

NP

Cm

(-0.

25)]

NPCNPCm

NPCq25

NPCq75

NPCm*

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Network reinforcement = Reinforcement + alternatives = ?

TODAY TOMORROW

S

1 2 3 4 5 6 7 8 9 10048

12

P [

MW

/a]

PLV

PMV

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00.6

0.8

1

1.2

1.4

f*5000 = 0.97 pu

*5000 = -0.25

f ( )

Compare different strategies

Study parameter impacts Optimize a strategyStudy one RES scenario

0 10

0.2

0.4

0.6

0.8

1

NP

Cm

[pu

]

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

100

Adapt the proposed methods for an industrial application by the DSOs

Further work

Improve the procedure used to create profiles of consumption/generation

��� � ��� ��� � �� �� ��� ��� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

11.2

Pc [

pu]

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

Pw [

pu]

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 31/120

0.20.40.60.8

1

Pp

v [pu

]

Take into account novel RES-integration solutions

Tackle complex optimization problems

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

?

?

?

)(min f

0)(s.t. g

?

? ?

Network + DSO simulator

DSO’s decision analysis

MV and LV network state

Initial network

Variables

Scenario

Costs

Scenario parameters

Fixed planning strategy

ConstraintsActions

Technical outputs

Multi-variable planning strategy

Economic analysis

Multi-year scenario builder

Page 51: 2015 11 03 soutenance these v4 - univ-lille.frl2ep.univ-lille1.fr/pagesperso/francois/theses/Heloise_Dutrieux_PhD... · 3 1. Scope and motivation 2. Novel framework for the study

101�� �������� � �

• H. Dutrieux, G. Delille et B. François, “An innovative method to assess solutions for integrating renewable generation into distribution networks over multi-year horizons”, Proc. 23rd International Conference on Electricity Distribution (CIRED), article 1103, juin2015.

• H. Dutrieux, I. Aleksovska, J. Bect, E. Vazquez, G. Delille et B. François, “The Informational Approach to Global Optimization in presence of very noisy evaluation results. Application to the optimization of renewable energy integration strategies”, Proc. 47èmes Journées de Statistique de la SFdS (JDS), article 199, juin 2015.

• H. Dutrieux, G. Delille, B. François et G. Malarange, “Assessing the Impacts of Distribution Grid Planning Rules on the Integration of Renewable Energy Sources”, Proc. IEEE PowerTech, article 464270, juillet 2015.

��� ! "#$ %#&"#$& �''( ')#