Utilisation de la rhéologie pour controller les propriétés ...

Post on 03-Oct-2021

4 views 0 download

Transcript of Utilisation de la rhéologie pour controller les propriétés ...

Nicole R. Demarquette nicoler.demarquette@etsmtl.ca

École de Technologie Supérieure

Université du Québec Montréal (Québec), CANADA

Utilisation de la rhéologie pour controller les propriétés de mélanges et nanocomposites à base de

thermoplastiques

Le 18 septembre 2018

1

• Fondée en 1974 • Fait partie du réseau de l’UQ • École de Génie 11000

étudiants (3000 aux études supérieures)

• Génie de la contruction, électrique, production automatisée, mécanique, logiciel, opérations et de la la logistique, technologies de l’information

2 École de Technologie Supérieure

2

ÉTS située au cœur de Montréal

L’été à Montréal – “Joie de vivre”

5

6

Les Plastiques

Polyethylene

Polypropylene PVC

ABS

PET

ABS

Nylon

Polycarbonate OLEDS

Polymères Intelligents

Coût de la recherche : une quinzaine de millions de dollars jusqu’à l’usine pilote

Nouveau matériau polymérique avec de meilleures propriétés

Nouvelle molécule ??

Que faire?

Polymère A Polymère B

• Synergisme de propriétés • Coût de développement plus faible • Donne des alternatives pour le recyclage

Mélanges

10 mícrons

80/20 HDPE/PP blend

Composites Constitué de plus d’un type de matériau Matrice: Polymère Phase dispersée Conçu pour bénéficier des propriétés des deux matériaux

Traditional

Carbon fibers in thermoplastic matrix

Echelle micro

• Propriétés exceptionnelles • Matériaux légers

Antibacterial thermoplastics

Nanocomposites

Echelle Nano

Souza, AMC; Demarquette,NR POLYMER Volume: 43 Issue: 14 Pages: 3959-3967

• Marché des mélanges de 40 milliards de dollars qui croît à 4,4% par an

• Marché des nanocomposites croît à 20% par an

• Nombre d’articles scientifiques qui croît exponentiellement

Importance de ces matériaux

Que faire ?

Il faut domestiquer leur morphologie pour contrôler leurs propriétés fonctionnelles

12

Control Polymer Blends,

Nanocomposites, Block Copolymers

Morphology to Taylor their Engineering

Properties

Blend Compatibilization

Microsphere for Filtration Using Polymer Blends

Improvement of Mechanical Properties of PHA

Blends Fibers with Controlled Surface Properties

Coaxial Electrospinning of PNVCL\PCL: Thermo-responsive polymers

Blending to control drug delivery

Configuration of Coaxial E lectrospinning setup used for preparing Core-Shell fibers

SE M image of PNV CL /PCL and PE G/ Ketoprofene Core-Shell nanofibers

2

MarwaSta

100nm

5 mm

TuyauBlends of Thermosensitive

Polymers for Drug Delivery Applications

SEBS Block Copolymer with Clays for DC Cables

SpiderWeb

Piezoelectric Membranes of Copolymers for Sensors

Rubber Blend with Optimized

Mechanical Properties For Tires

Control Polymer Blends,

Nanocomposites, Block Copolymers

Morphology to Taylor their Engineering

Properties

3 mm

Helal, Demarquette et al, Polymer2016, 2017 Carastan, Demarquette et al: EPJ, 2013 Rezageibi, Demarquette et al: JAPS, Macromolecules, 2018 Kurusu, Demarquette: Langmuir 2015, 2016 Genoyer, Demarquette et al: JOR, 2017 Bizi, Demarquette, JAPS, 2008 Valera, Demarquette, EPJ, 2008

Graphene CNT Composites For EMI Shielding

Blends, Block Copolymers and Nanocomposites

7

13

[1] Eva Mårtensson, Modelling electrical properties of composite materials , Thesis submitted to Kungl Tekniska Högskolan Department of Electrical Engineering Division Electrotechnical Design Stockholm, Sweden, 2003.

http://www.magdahavas.com/microwave-radiation-affects-the-heart-are-the-results-real-or-are-they-due-to-interference/

http://www.spira-emi.com/theory.htm

http://sarveshie.blogspot.ca/2012_08_01_archive.html

Semi-conductive screen materials for power cables

Stress grading materials for HVDC applications

EMI shielding

Cable termination including a field grading material [1]

Conductive Composites

Conductive Nanocomposites: Graphene

14

• Single of few-layer Graphene sheet – Remarkable properties; – Difficult to produce in large-scale.

Source:https://www.sciencenews.org/article/%E2%80%98impermeable%E2%80%99-graphene-yields-protons

Source:http://www.mechscience.com/graphite-structure-crystallography/

graphene

graphite

• Graphene produced in large-scale – Mechanochemical exfoliation of graphite; – More layers (average thickness of 20

nm).

• Incorportation in polymers by melt mixing to obtain conductive composites

10

15

Helmut Münstedt, and Zdeněk Starý,.. Polymer, Volume 98, 19 August 2016, Pages 51-60

Percolation Threshold

Suitable morphology

Difficult by melt-mixing

16

Objective

Prepare conductive composites with the low percolation using a commercial

graphene grade and an industrial process.

17

Blending

• Mixing 2 polymers – Immiscible blends

Relative amount of polymer B in the immiscible blend

Polymer B

Polymer A

18

Materials

Commercial graphene grade (GN) heXo-G V20 (provided by NanoXplore) Average thickness: 20 nm. Average flake size: 50 µm. Ethyl vinyl acetate (EVA) Polar matrix. Better affinity to GN. Linear low density polyethylene (LLDPE) Low viscosity .

(Scale bar = 50 µm)

Selective location of GN in EVA/LLDPE blend

19

Based on surface energy, interfacial tension graphene (GN) has greater chemical affinity with EVA

PE EVA

GN

γ (mJ.m-2) γd (mJ.m-2) γp (mJ.m-2)

PE [3] 35.7 35.7 0

EVA [4] 27.4 20.8 6.6

Graphene [5, 6] 53 39.1 13.9

But processing sequence and kinetics can affect 15

Processing Twin screw extrusion ( 2 runs) Temperature: 160 °C Compression molding at 160 °C 50/50 blend

Order of processing

EVA master batch (EVAMB)

LLDPE master batch (LLDPEMB)

Polymer + + Graphene

PE EVA GN

PE EVA GN

16

21

Design of Blend Morphology

Condition for co-continuity: Φ1/ Φ2= η1/ η2

[ordhamo, G.M., Manson, J.A. and Sperling, L.H, Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks, Polym. Eng. Sci., 1986, 26, pp. 517-524.

SEM image of unfilled LLDPE/EVA blend (50wt%/50wt%)

(scale bar = 100 µm, EVA dissolved by toluene)

Co-continuous morphology expected

100 µm

Co-continuous morphology for all blends

Results – Electrical conductivity

22

Materials prepared from LLDPE

masterbatch feature the lowest

percolation: More GN particles

located at the interface

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 5 10 15 20 25

Con

duct

ivity

(S/m

)(σ'

at 1

0-2 H

z)

φ (%)

EVA/GN

LLDPE/GN

EVA/LLDPE/GN (EVA MB)

EVA/LLDPE/GN (LLDPE MB)

EVAMB

LLDPEMB

Results – Small Amplitude Oscillatory Shear

23

A plateau appears at 1.3 vol% GN and higher.

EVAMB

LLDPEMB

Is it the effect of formation of interfacial GN network or a change in blend’s morphology or both?

24

• From EVA masterbatch:

EVA/LLDPE EVA/LLDPE + 1.3 vol% GN

EVA/LLDPE + 2.2 vol% GN

EVA/LLDPE + 3.3 vol% GN

Results – Morphologies of blends

100 µm 100 µm

100 µm 100 µm

25

• From LLDPE masterbatch:

LLDPE/EVA LLDPE/EVA + 1.3 vol% GN

LLDPE/EVA + 2.2 vol% GN

LLDPE/EVA + 3.3 vol% GN

Results – Morphologies of blends

100 µm 100 µm

100 µm 100 µm

26

• Characteristic Domain Size ξ (ImageJ) – ξ = Total area / Interfacial length

Results – Morphologies of blends

100 µm 100 µm

27

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

Dom

ain

Siz

e ξ

(µm

)

φ % GN

EVA/LLDPE (EVA MB)EVA/LLDPE/GN (LLDPE MB)

Results – Morphologies of blends

8,6.10-6 S/m

1,2.10-4 S/m

EVA masterbatch

LLDPE masterbatch

28

• From LLDPE masterbatch:

10 µm 50 µm

10 µm

Results – Morphologies of blends

10 µm 50 µm

10 µm

29

• Electrical conductivity

Effect of Annealing at 160oC for 2 hours

30

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

100 µm

Effect of Annealing at 160oC for 2 hours • Morphology

31

• LLDPE/EVA/1.3GN (EVAMB) (EVA phase dissolved by toluene):

0 min 28 min

95 min 75 min

Effect of Annealing at 160oC

100 µm 100 µm

100 µm 100 µm

32

• LLDPE/EVA/1.3GN (LLDPEMB) (EVA phase dissolved by toluene):

0 min 28 min

95 min

Effect of Annealing at 160oC

100 µm 100 µm

1 µm 1 µm

75 min

Conclusions

• Conductive composites with low percolation have been prepared using commercial GN grade and an industrial process.

• LLDPE/EVA (50 /50) and LLDPE/EVA/GN composites feature a co-continuous morphology.

• The addition of graphene results in a finer morphology.

• The processing sequence affects the location of GN and the electrical conductivity. When GN is added to LLDPE it is located at the interface and results in a reduction of percolation threshold is reduced in the blends (1.3 vol% GN, 10-8 S/m)

• Annealing of the blends results in an increase of conductivity due to a coarsening of co-continuous morphology and migration of graphene to interface when graphene was incorporated in LLDPE

33

34

EMI Shielding Materials Charge Carriers Electric and/or Magnetic Dipoles

Metals are the most used materials for EMI shielding.

Metallic materials High Density Prone to Corrosion Shielding Mechanism only by Reflection

Disadvantages

. Lower Density Easier Processability Shielding Mechanism by Reflection and Absorption

Alternative:

Polymer-Carbon Composites

Advantages

Need to Tailor the Morphology ! 35

Nanocomposites for EMI shielding

35

Materials • Poly(styrene-b-(ethylene-co-butylene)-b-styrene)

• Styrene content = 30 wt%; cylindrical morphology; Melt flow index < 1g/10 min

• Expanded Graphite • Micrograf HC 30; Nacional de Grafite Ltda, Brazil • Surface area 26 m2.g-1; Bulk density 1.8 g.cm-3

• Carbon Black,

• Degussa Brazil • Surface area 1000 m2g-1,Bulk density 1.9 g cm-3

• Multiwalled Carbon Nanotube (MWCNT)

• Nanocyl NC 7000 • Surface area: 250-300 m2.g-1, Bulk density: 0.06 g.cm-3

• Carbon purity: 99.5%

• Graphene: • XG Science, • Surface area : 120-150 m2.g-1, Bulk density: 0.03-0.1 g.cm-3 • Carbon purity: 90%

Block Copolymers

Spherical Cylindrycal Lamellar

1. Amurin L.G, Carastan D.J, Demarquette N.R, Journal of Rheol ogy, 60(1), 175-189, 2016

Block Copolymers

Block A Block B

Thermoplastic Elastomers

36

Experimental Procedures

• Obtention of Composites by melt mixing

Post-Processing

Extrusion

Compression Molding

SEBS

Carastan D.J, Demarquette N.R et al: European Polymer Journal, 2014, Polymer 2017

37

SEBS/GP

(wt.%)

Low

frequency

slope of log

G’ vs. log ω

0 0.32

0.8 0.32

1 0.30

2 0.27

5 0.24 a

Similar behavior was obtained for the EG and CB composites

Kuester S.,et al, European Polymer Journal, 2016, 2017

Results – Small Amplitude Oscillatory Shear

SEBS/CNT

(wt.%)

Low

frequency

slope of

log G’ vs. log

ω

0 0.32

0.8 0.22

1 0.19

2 0.14

3 0.11

5 0.05

a

𝐺′𝛼 𝑚 −𝑚𝑐𝑡

G’: Storage modulus m: mass fraction of filler; mc: mass fraction at percolation threshold; t: critical exponent

Filler type mc (wt%)

CB 2.6

EG 7

GPn 7

CNT 0.8

Kuester S., Demarquette N.R. et al, European Polymer Journal, 2016, 2017 29

Results – Small Amplitude Oscillatory Shear

Carbon black

Graphene Carbon nanotube

1.2 wt. % CNT σ increase of 16 orders of magnitude

Expanded graphite

Kuester S., Demarquette N.R. et al, European Polymer Journal, 2016, 2017 36

Results – Electrical Conductivity

40

Filler type mc (wt%)

CB 2.6

EG 7

GPn 7

CNT 0.8

Filler type mc (wt%)

CB 5

EG 9

GPn 12

CNT 1.4

𝐺′𝛼 𝑚 −𝑚𝑐𝑡

G’: Storage modulus;

m: mass fraction of filler; mc: mass fraction at percolation threshold; t: critical exponent

𝜎 𝛼 𝑚 −𝑚𝑐𝑡

𝜎 : Electrical conductivity;

m: mass fraction of filler; mc: mass fraction at percolation threshold; t: critical exponent

Results – Percolation Threshold

𝐸𝑀𝐼 𝑆𝐸 = 𝑆𝐸𝑅 + 𝑆𝐸𝐴 (𝑑𝐵)

𝑆𝐸𝑅 = 10 𝑙𝑜𝑔𝐼

𝐼 − 𝑅

𝑆𝐸𝐴 = 10 𝑙𝑜𝑔𝐼 − 𝑅

𝑇 Expanded graphite Carbon black

0

5

10

15

20

25

30

0 5 10 15 20EG content (wt. %)

SEA (dB)SER (dB)

0

5

10

15

20

25

30

3 5 7 10 15

EMI S

E (d

B)

CB content (wt. %)

SEA (dB)

SER (dB)

Graphene Carbon nanotube

0

5

10

15

20

25

30

3 5 8 10 15

EMI S

E (d

B)

CNT content (wt. %)

SEA (dB)SER (dB)

0

5

10

15

20

25

30

2 5 7 10 15

Graphene Content (%wt)

SEA (dB)

SER (dB)

38

Results – EMI Shielding Efficiency

Hybrid composites

8/2 CNT/GR = 23.42 dB

10/5 CNT/GR = 36.47 dB 15 CNT = 30.07 dB

10 CNT = 20.78 dB

Same amount of single filler of higher efficiency

Kuester S., Demarquette N.R. et al, European Polymer Journal, 2016, 2017 39

Results – EMI Shielding Efficiency

43

Random

Oriented

0 1 2 3 4 5 6 7 8 91E-13

1E-11

1E-9

1E-7

1E-5

0.001

AC

ele

ctric

al c

ondu

ctiv

ity (S

.cm

-1)

CNT (wt%)

Compression SEBS/CNT Extrusion SEBS/CNT

Results – Results effect of post-processing

0 2 4 6 8

0

10

20

30

40

50

60

CNT (wt%)

EMI-S

E (d

B)

8

10

12

14

16

18

SEBS/CNT extrusion SEBS/CNT compression

Ten

sile

str

engt

h (M

Pa)

0

10

20

30

40

50

60

0 2 3 5 8

EMI S

E (d

B)

CNT content (wt. %)

SEA…SER…

0

10

20

30

40

50

60

0 2 3 5 8

EMI S

E (d

B)

CNT content (wt. %)

SE…SE…

44

Addition of CNT resulted in highest electrical conductivity, lower electrical percolation

threshold.

Addition of CNT resulted in the highest EMI shielding effectiveness

With CNT wt% > 5, absorption was the main shielding mechanism.

Hybrid composites of SEBS/CNT/GR presented synergistic effect on SE.

Nanocomposites prepared by compression presented higher AC electrical conductivity,

lower percolation threshold and slightly higher EMI-SE.

SEBS/CNT with 5 wt% of CNT prepared compression molding presented an excellent

balance of EMI-SE and mechanical properties.

Conclusions

• Rhéologie : Étude de l’écoulement de la matière

• Équations Constitutives Contrainte = f (Déformation, Interface, Fraction en

volume, Morphologie)

Déformation Contrainte

Études Théoriques : Comment la morphologie se forme ?

Études rhéologiques

Polymers are Viscoelastic

19/09/2018

t

g

t

s

t

s

t

s

Études Théoriques : Comment la morphologie se forme ?

Études rhéologiques

• Viscoélasticité linéaire – Petites déformations lentes – On peut l’utiliser pour caractériser la morphologie

• Viscoélasticité non linéaire

– Déformations larges et rapides – Utiles pour étudier l’évolution de la morphologie au cours de la mise en forme

Études théoriques : Comment la morphologie se forme ?

Études rhéologiques

Viscoélasticité linéaire : Petites déformations lentes

t

g

t

g

t

s Phase dispersée dans un mélange de polymères

Nanoparticules

dhg

0 G

d

d: diamètre des gouttes de la phase dispersée, η: viscosité; γ: vitesse de cisaillement; Γ: tension interfaciale

Déformation

Contrainte

)sin()( tt o gg

)cos()(' g

s

o

oG

)sin()(" g

s

o

oG

´G´´GTan

)sin( ss to

Viscoélasticité linéaire : Petites déformations lentes

50

Polymer A + Polymer B

≈1

≈2

ω (rad/s) t (s)

H(t

).t

(Pa.

s)

Small Angle Oscillatory Shear

Linear viscoelasticity

Constitutive equations Stress = f (Deformation, Interface, Volume Fraction, Morphology)

Viscoélasticité linéaire : Petites déformations lentes

0 5 10 15 200,0

0,1

0,4

0,5

Vol

ume

Ave

rage

Rad

ius

(mm

)

Compatibilizer (wt%)

Blend 90/10 Blend 80/20

PMMA+ PS + Random Copolymer

M. Yee, Calvao P. N.R. Demarquette, RA 2007. 50

Effect of Blend Concentration

0,01 0,1 1 10 1001

10

100

1000

10000

100000

Sto

rage

Mod

ulus

(Pa)

Frequency (rad/s)

PS PMMA PMMA/PS 70/30 PMMA/PS 80/20 PMMA/PS 90/10

P.S. Calvão, M. Yee, N.R. Demarquette, Polymer, 2005, 2610-2620

Effect of Blend Concentration

47

τf: Relaxation time of the dispersed phase; Γ: Interfacial Tension; K: Viscosity Ratio; Rv: Radius of dispersed phase;

)(Φ)(

))(Φ)(((

Γ 2521101321619

KK

KKKR mvη

1E-3 0,01 0,1 1 10 100

0

1000

2000

3000

4000

5000PMMA

PS

90/10 80/20

H (

). (

) (P

a.s)

Time (1) (s)

P.S. Calvão, M. Yee, N.R. Demarquette, Polymer, 2005, 2610-2620 48

Effect of Blend Concentration

Blend Composition

Rv (μm) Rheology

Rv (μm) Microscopy

90/10 0.12 0.13

85/15 0.23 0.24

80/20 0.33 0.35

75/25 1.1 1.0

70/30 1.5 1.6

P.S. Calvão, M. Yee, N.R. Demarquette, Polymer, 2005, 2610-2620 49

Effect of Blend Concentration

Polyamide: Nylon Polivynil butiral

0200400600800

1000120014001600

Poliamida:PA

PA + 20%PVB

PA + 40%PVBR

esis

tên

cia

ao Im

pac

to (

J/m

)

Valera T.S., Demarquette N. R“Polymer Toughening Using Residue of Recycled Windshields: PVB film as impact modifier”,, European Polymer Journal, 44, 3, pg 755-768, 2008

19/09/2018

Recycling

Polyvinyl butiral

Polyamide

All the blends presented a dispersed droplet type morphology 19/09/2018

Recycling

57

0.1

200

400

600

800

1000

1200

1400

1600Im

pa

ct S

tre

ng

th (

J/m

)

Interparticular distance (mm)

60/40 Blend

70/30 Blend

80/20 Blend

90/10 Blend

Valera T.S., Demarquette N. R“Polymer Toughening Using Residue of Recycled Windshields: PVB film as impact modifier”, Eurpean Polymer Journal, 44, 3, pg 755-768, 2008

Recycling

• Improvement of properties • Better distribution • Morphology more uniform • More stable morphology

8

10 mícrons

Block copolymer

Nanoparticles

42

Compatibilization of Polymer Blends

• Improvement of properties • Better distribution • Morphology more uniform • More stable morphology

8

10 mícrons

• Reduction of size of dispersed phase

• Improves adhesion between the phases

• Reduce interfacial tension • Prevents coalescence

– What are the phenomena?

HOW TO EVALUATE • Microscopy • Spectroscopy • Interfacial tension • Rheology

46

Compatibilization of Polymer Blends

60

Polymer A + Polymer B

≈1

≈2

ω (rad/s) t (s)

H(t

).t

(Pa.

s)

Small Angle Oscillatory Shear

Linear viscoelasticity

Constitutive equations Stress = f (Deformation, Interface, Volume Fraction, Morphology)

Blends Rheology

10-2 10-1 100 101 10210-2

10-1

100

101

102

103

104

105

106

10-2 10-1

10-1

100

101

102

103

Sto

rage

Mod

ulus

(Pa)

Frequency (rad/s)

PS PMMA 80/20 80/20/04 80/20/10

S

tora

ge M

odul

us (P

a)

Frequency (rad/s)

PS PMMA 80/20 80/20/04 80/20/10

M. Yee, P.S. Calvão, N.R. Demarquette, Rheologica Acta, 46, 5, 653-664 2007 51

Effect of Compatibilization

0,01 0,1 1 10 100

101

102

103

104

PMMA/PS (95/05)

F

H

().(

)(P

a.s)

Time () (s)

PS PMMA 95/05 95/05/08 95/05/10

M. Yee, P.S. Calvão, N.R. Demarquette, Rheologica Acta, 46, 5, 653-664 2007 51

Results: Effect of Compatibilization

Interface is not totally covered by compatibilizer

Relaxation of the Shape of the Droplets f

Relaxation of Marangoni Stresses

52

Results: Effect of Compatibilization

64

Polymer grade supplier Viscosity (0)

(Pa.s) at 200

°C PMMA1 DHAF Metacrill 24 000

PMMA2 PLEXIGLASS 6N Evonik 12 000

PS1 N1841 InNova 3 200

PS2 EMPERA 350N INEOS

Styrenics 9 800

Organomodified by

dimethyl dihydrogenated

tallow ammonium

Polystyrene Poly(methyl methacrylate)

Polymer A + Polymer B

Clay Acronym Shape Size Surface Area

(m²/g)

Surfactant Concentration

(mg/m²)

Cloisite Na MMT

150-250 nm 750

0

Cloisite Na modifiée mMMT 0,46

Cloisite 20A C20A 0,95

+ Compatibilizer

Block copolymer Name Mn (g/mol) Mw/Mn

PS-b-PMMA BC1 30 000 <1,2

BC2 104 000 <1,2

n

Materials

0.01 0.1 1 10 10010-1

100

101

102

103

104

0.01 0.1 1 10 10010-1

100

101

102

103

104H

().

(Pa.

s)

(s)

Pure PMMA PS BC1 0.2% BC1 0.5% BC1 1%

H(

). (P

a.s)

(s)

Pure BC2 0.2% BC2 0.5% BC2 1%

54

PMMA2+ PS2 + CB

No change of morphology Decrease of Interfacial Tension Marangoni Stresses

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

Pure BC1 BC2

a (m

N/m

)

% of BC

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

Pure BC1 BC2

Rv (

µm)

% of BC

0.01 0.1 1 10 100102

103

104

105H

().

(Pa.

s)

(s)

Pure BC1 0.2 % BC1 0.5 % BC1 1 % 200 °C

170 °C PMMA & PS

τF τβ τβ

𝜏𝛽 𝐵𝐶1 < 𝜏𝛽(𝐵𝐶2)

𝑴𝒏 𝑩𝑪𝟏 < 𝑴𝒏(𝑩𝑪𝟐)

Results: Effect of Compatibilization

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0

Pure

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0 strain=10 % (3)

Pure

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0 strain=10 strain=25

Pure

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0 strain=10 strain=25 strain=100

Pure

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0 strain=10 strain=25 strain=100 strain=250Pure

0.01 0.1 1 10 100100

101

102

103

104

105

G' (

Pa)

(rad/s)

strain=0 strain=10 strain=25 strain=100 strain=250 strain=1000Pure

66

Shear sequence 200 °C

+300 s +200 s +1500 s +3000 s +15000 s

time (h) 0 1 2 3,3 5 10

strain 10 25 100 250 1000

shea

r

0.05 s-1

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0

Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10

Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25

Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100

Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250

Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 Pure

PMMA & PS

τF

Coalescence tests PMMA2+ PS2

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 Pure

0.01 0.1 1 10 100100

101

102

103

104

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 Pure

PMMA & PS

τF 0.01 0.1 1 10 100

100

101

102

103

104

0.01 0.1 1 10 100100

101

102

103

104

0.01 0.1 1 10 100100

101

102

103

104

0.01 0.1 1 10 100100

101

102

103

104

dc

ba

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 Pure

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 BC1 0.2 %

H(

). (P

a.s)

(s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 BC1 0.5 %

H(t)

*t (P

a.s)

time (s)

strain =0 strain=10 strain=25 strain=100 strain=250 strain=1000 BC1 1 %

67

PMMA & PS

τF τF

τF τF

τF

? ? τβ τβ

τF = 𝑓(η𝑀, 𝑝, Φ𝐼 , α , 𝑅𝑣)

Rv is evaluated at each step

Coalescence tests PMMA2+ PS2 + CB 𝑴𝒏 𝑩𝑪𝟏 < 𝑴𝒏(𝑩𝑪𝟐)

68

BC2 more efficient

=𝛷𝐵𝐶𝛷𝑃𝑆

𝑅𝑣𝜌𝐵𝐶𝑁𝐴6𝑀𝑤𝐵𝐶

A. Adedeji, S. Lyu, and C. W. Macosko, “Block copolymers in homopolymer blends: interface vs micelles,” Macromolecules, vol. 34, no. 25, pp. 8663–8668, 2001.

BC2 is more efficient for same surface coverage

1 10 100 10000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Pure

BC2 1 %

BC1 1 %

Rv (

mm

)

strain

%BC ∑

(chain/nm²)

Covered interface

(%)

BC1 0.2 0.0023 13 0.5 0.0032 18 1 0.0075 43

BC2 0.2 0.0006 11 0.5 0.0009 19 1 0.0030 60

Coalescence tests

𝑴𝒏 𝑩𝑪𝟏 < 𝑴𝒏(𝑩𝑪𝟐)

PMMA2+ PS2 + CB

=𝛷𝐵𝐶𝛷𝑃𝑆

𝑅𝑣𝜌𝐵𝐶𝑁𝐴6𝑀𝑤𝐵𝐶

%BC ∑

(chain/nm²)

Covered interface

(%)

BC1 0.2 0.0023 13 0.5 0.0032 18 1 0.0075 43

BC2 0.2 0.0006 11 0.5 0.0009 19 1 0.0030 60

69

BC2 more efficient

A. Adedeji, S. Lyu, and C. W. Macosko, “Block copolymers in homopolymer blends: interface vs micelles,” Macromolecules, vol. 34, no. 25, pp. 8663–8668, 2001.

Coalescence is prevented by steric hindrance + Marangoni stresses

Coalescence tests

𝑴𝒏 𝑩𝑪𝟏 < 𝑴𝒏(𝑩𝑪𝟐)

PMMA2+ PS2 + CB

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pure C20A

a (m

N/m

)

% of BC

70 J. Genoyer, M. Yee, J. Soulestin, and N. R. Demarquette, “Compatibilization mechanism induced by organoclay in PMMA/PS blends,” J. Rheol. , vol. 61, no. 4, 2017.

90/10 blend (a) without and (b) with 0,8 % C20A

90/10/0,8

-35 %

Rv decreases Clay at interface Decrease of interfacial

tension

PMMA1+ PS1 + C20A

-52 %

Results: Compatibibilization with Clay

10-2 10-1 100 101 102

0.01 0.1 1 10 100

10-2

10-1

100

101

102

103

104

H(

). (P

a.s)

(s)

90/10/0 90/10/1

10-2 10-1 100 101 102

0.01 0.1 1 10 100

10-2

10-1

100

101

102

103

104

H(

). (P

a.s)

(s)

90/10/0 90/10/1 90/10/4

10-2 10-1 100 101 102

0.01 0.1 1 10 100

10-2

10-1

100

101

102

103

104

H(

). (P

a.s)

(s)

90/10/0 90/10/1 90/10/4 90/10/8

71 J. Genoyer, M. Yee, J. Soulestin, and N. R. Demarquette, “Compatibilization mechanism induced by organoclay in PMMA/PS blends,” J. Rheol. , vol. 61, no. 4, 2017.

200 °C

Marangoni stresses with clays

+20 °C

PMMA & PS

τF τF τβ

𝜏𝛽 Concentration en C20A ,

Results: Compatibibilization with Clay PMMA1+ PS1 + C20A

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.01 0.1 1 10 100 1000ω (rad/s)

G' (

Pa)

G' - PS+C15A - solution

G' - PS+C15A - masterbatch

G' - PS+C15A - melt mixing

G' - PS

D.J. Carastan , A. Vermogen, K. Masenelli-Varlot, N. R. Demarquette, Polymer Engineering and Science, 2010, pp 257-267

Déformations larges et rapides

Tout peut arriver !!!

Études théoriques: Comment la morphologie se forme ??

Études rhéologiques

VISCOÉLASTICITÉ NON LINÉAIRE

Coalescence

Breakup

Shape Recovery

Viscoélasticité non linéaire : Déformations larges

Viscoélasticité non linéaire : Déformations larges

0 5 10 15 20 25

0

5

10

15

20

25

30

PP/PS 90/10 PP/PS/SEBS 90/10/5

5 s -1

10 s -1

te

nsão

de

cisa

lham

ento

, kP

a

tempo (t), s

Time, s

She

ar ra

te s-1

5

10

Macaubas P.H.P, Demarquette N.R, Dealy J.M Rheol Acta, vol 44, pp 295-312, 2005

Déformation Contrainte

ijij

ml

kjijijmij PqQ

qqQCq

H

Hags

2

2

.2

322

15.11

Q: Interfacial area; qij: interface tensor, sij: stress tensor ; H: Function of viscosity of both Phases, gij ou ij Strain tensor; m: Matrix viscosity, C2, , m, d Model parameters

mm

m

j,iij

2

jiij

ijijijkmkm

jiijlklkijjkkiikkjij

qq

q)1(QdQqqdtdQ

)qQ(qQqqQ

q)(3Qq

32qq

dtdq

dSV

Q1

dS)ij31

jnin(V1

ijq

Équations constitutives pour prévoir l’évolution de morphologie

t2 Time to t1

Rest (to)

θ2

deformation and re-orientation

(t2) 1

.s10 g

θ1

x

y

z

First shear step

Second shear step

Deformation and orientation

(t1) 1

.s5 g

Paulo H. P. Macaúbas, Nicole R. Demarquette, John M. Dealy, 44, Rheologica Acta 295-312, 2005

5

10

Shea

r ra

te s-1

Time, s

Strain

Stress

Viscoélasticité non linéaire : Déformations larges

Nanodiélectriques

Anhydride maléique

Effet des nanoparticules sur la croissance d’arborescence électrique

Michael G. Danikas, Toshikatsu Tanaka, Nanocomposites―A Review of Electrical Treeing and Breakdown, IEEE Dielectrics &

Electrical Insulation Society.

Anhydride maléique

Argile (améliore la résistance au claquage)

Copolymères Block

SEBS

Sphérique Cylindrique Lamellar

Nanodiélectriques

Extrusion +

soufflage de film

Bi-orienté

Agitation magnétique

Ultra sonication

Évaporation de solvent

Procédé chimique

Isotropique

+ + Nanoparticules SEBS or

SEBS_MA Extrusion

Sheet die Orienté

Nanodiélectriques

SEBS-30+20A (Cylinders)

SEBS-30-MA+20A (Lamellar/Cylinders)

Anhydride maléique

SEBS

Nanodiélectriques

83

La résistance au claquage est améliorée grâce aux argiles orientées.

E. Helal, N.R. Demarquette, L.G. Amurin, E. David, D.J. Carastan, M. Fréchette: Styrenic block copolymer-based nanocomposites: Implications of nanostructuration and nanofiller tailored dispersion on the dielectric properties Polymer, Volume 64, 1 May 2015, Pages 139-152.

Nanodiélectriques

Morphologie

Champs de claquage (kV/mm)

Pertes diélectriques

(à 1 kHz)

Isotropique Orienté Bi-orienté

Pure 60

Composite (5%)

63.6

Pure 56

Composite (5%)

63

Pure 60

Composite (5%)

78

Pure 2.5*10-3

Composite (5%)

2.6*10-2

Pure 2*10-3

Composite (5%)

1.9*10-2

Pure 9.7*10-4

Composite (5%)

4.5*10-3

Champs de claquage plus élevé

Pertes diélectriques plus faibles

Nanodiélectriques

Acknowledgments

85

Collaborators

Guilherme Barra UFSC, Brazil

Michel Fréchette China

Amilton dos Santos USP, Brazil

Danilo Carastan UFABC, Brazil

Ricardo Zednik ÉTS, Canada

Éric David ÉTS, Canada

Jérémie Soulestin École des Mines, France

Jean-Marc Chenal INSA, Lyon,

France

Ram Sharma Chem Eng

Bath University UK

86

Aldo Craievich USP, Brazil

Students

Dr Emna Helal

Dr Scheyla Kuester

Dr Julie Genoyer

87

Dr Rafael Kurusu

Dr Leice Amurin

لكشكرا

Thank you Obrigada

Merci