INDICO-FNAL (Indico) - Neutrino Physics from the CMB ...Neutrino Physics from the CMB & Large Scale...

Post on 17-Mar-2021

6 views 0 download

Transcript of INDICO-FNAL (Indico) - Neutrino Physics from the CMB ...Neutrino Physics from the CMB & Large Scale...

Neutrino Physics from the CMB & Large Scale Structure

- Report -Topical Conveners:

K.N. Abazajian, J.E. Carlstrom, A.T. Lee

Contributors:K.N. Abazajian, B.A. Benson, J. Bock, J. Borrill, J.E. Carlstrom, C.L. Chang, S. Church,

A. Cooray, T.M. Crawford, K.S. Dawson, S. Das, S. Dodelson, J. Errard, S. Hanany, W.L. Holzapfel, K. Honscheid, M. Kamionkowski, R. Keisler, L. Knox, J. Kovac, C.-L. Kuo, C. Lawrence, A.T. Lee, E. Linder, P. Lubin, A. Miller, M.D. Niemack, C. Pryke, C.

Reichardt, U. Seljak, E. Silverstein, A. Slosar, R. Stompor,A. Vieregg, E.J. Wollack, W.L.K. Wu, K.W. Yoon, and O. Zahn

Paper: http://is.gd/AnSecR [arXiv on Friday (?)]

Cosmic Frontier Snowmass Community Summer Study 2013August 1, 2013

k →

P(k)

?

Perturbations enter horizon:

hori

zon

size

Matter Domination[δΦmat const]

Radiation Domination[δΦrad decays]

The Cosmological Matter Power Spectrum

Inflation:

How does probe neutrinos?

(Assuming thermal equilibrium)

How does probe neutrinos?

k →

P(k)

(Assuming thermal equilibrium)

How does probe neutrinos?

k →

P(k)

Matter Domination Radiation Domination

(Assuming thermal equilibrium)

How does probe neutrinos?

k →

P(k)

Matter Domination Radiation Domination

(Assuming thermal equilibrium)

How does probe neutrinos?

k →

P(k)

Matter Domination Radiation Domination

Is this a coincidence?

(Assuming thermal equilibrium)

How does probe neutrinos?

k →

P(k)

Matter Domination Radiation Domination

Is this a coincidence?

(Assuming thermal equilibrium)

ρν =

∑minνi

E2= p2

+ m2

Ων ≈

∑mνi

93 h2 eV

Distinguishing Features in the Power Spectrum

k →

P(k)

Σmνi= 0.14 eV

Σmνi= 1.4 eV

1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing)

2. Relative Amplitude Information: CMB plus Lyman-alpha Forest, Galaxy Bias

Lesgourgues & Pastor (2006)

P (k)

P (k)= 8

m

Distinguishing Features in the Power Spectrum

k →

P(k)

Σmνi= 0.14 eV

Σmνi= 1.4 eV

1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing)

2. Relative Amplitude Information: CMB plus Lyman-alpha Forest, Galaxy Bias

Galaxy Surveys

Lesgourgues & Pastor (2006)

P (k)

P (k)= 8

m

Distinguishing Features in the Power Spectrum

k →

P(k)

Σmνi= 0.14 eV

Σmνi= 1.4 eV

1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing)

2. Relative Amplitude Information: CMB plus Lyman-alpha Forest, Galaxy Bias

Galaxy Surveys

Lesgourgues & Pastor (2006)Relative Amplitude:CMB+Lya

P (k)

P (k)= 8

m

The Primordial Spectrum: Precision Determination

at Large Scales

Planck 1-Year + WMAP Pol.: (Planck Collab. 2013)

P(k)

k → P (k) = Akn

A = 2.196+0.0510.060 (3%)

n = 0.9603± 0.0073 (0.8%)

CMB

Measuring P(k): from largest to smallest scales

SDSS Ly-α

Upcoming High-Precision Era: Relative Change to P(k)

Ωm & Other Parameter Degeneracy

Ωm

k →

P(k)

For LSS: Perturbations enter horizon at M/R equality

hori

zon

size

Matter Domination[δΦmat const]

Radiation Domination[δΦrad decays]

Cosmological Matter Power Spectrum &CMB Constraints on Neff

For BAO: Extra radiation changes expansion rate from perturbation evolution through baryon decoupling

[Dodelson (SLAC Cosmic Frontiers)]

& Neff

• SDSS BOSS Galaxy Clustering + BAO + WMAP 7 + SNe + H0 (Zhao et. al 2012)

• SPT + WMAP 7 + H0 (Hou et al. 2012)

• ACT + WMAP 7 + BAO + H0(Sievers et. al 2013)

• WMAP 9 + eCMB + BAO + H0 (Hinshaw et al. 2012 v2)

• Planck + high-l CMB + WMAP P + BAO (Planck Collab. 2013)

Summary of Cosmological Neff Measures

...

WMAP

7WM

AP9

68% CLNe↵ = 4.308± 0.794

Ne↵ = 3.71± 0.35

Ne↵ = 3.84± 0.40

Ne↵ = 2.78± 0.55

Ne↵ = 3.30± 0.27

Plan

ck

Estimating Upcoming Cosmological Neutrino Mass Constraints

Hu, Eisenstein & Tegmark 1998

P (k)

P (k) 1% 8

m

Estimating Upcoming Cosmological Neutrino Mass Constraints

Ων ≈

∑mνi

93 h2 eV

Hu, Eisenstein & Tegmark 1998

P (k)

P (k) 1% 8

m

Estimating Upcoming Cosmological Neutrino Mass Constraints

Ων ≈

∑mνi

93 h2 eV

Hu, Eisenstein & Tegmark 1998

P (k)

P (k) 1% 8

m

=) m . (1%/8) m(93h2 eV)

Estimating Upcoming Cosmological Neutrino Mass Constraints

Ων ≈

∑mνi

93 h2 eV

Hu, Eisenstein & Tegmark 1998

P (k)

P (k) 1% 8

m

=) m . (1%/8) m(93h2 eV)

=) m . 20 meV

Estimating Upcoming Cosmological Neutrino Mass Constraints

Kaplinghat et al PRL 2003 (CMB WL)Wang et al PRL 2005 (WL Clusters)De Bernardis et al. 2009 (Opt. WL)Joudaki & Kaplinghat 2011 (LSST)Basse et al. 2013 (Euclid)CF5 Neutrino Report 2013

Ων ≈

∑mνi

93 h2 eV

Hu, Eisenstein & Tegmark 1998

P (k)

P (k) 1% 8

m

=) m . (1%/8) m(93h2 eV)

=) m . 20 meV

Lensing of the CMB

Hu & Okamoto 2001

Lensing of the CMB

Hu & Okamoto 2001

Lensing of the CMB•Higher-order statistics in

CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck)

Hu & Okamoto 2001

Lensing of the CMB•Higher-order statistics in

CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck)

•Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT)

Hu & Okamoto 2001

Lensing of the CMB•Higher-order statistics in

CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck)

•Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT)

•Detailed, high signal-to-noise measurements of arcminute polarization can therefore be used to reconstruct the lensing potential CL

φφHu & Okamoto 2001

Lensing Potential Power: Relative Change over an Integrated P(k)

Σmν: The March of Time

Σmν: The March of Time

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2003

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

2003

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

2003 2006

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003 2006

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

3 +

LSS

2006

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003 2010

WM

AP

3 +

LSS

2006

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

1

Xm

[eV]

2(9

5% C

L)

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

1

Xm

[eV]

2(9

5% C

L)

2012

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

1

Xm

[eV]

2(9

5% C

L)

2012

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

WM

AP

9 +

BAO

1

Xm

[eV]

2(9

5% C

L)

2012

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

WM

AP

9 +

BAO

1

Xm

[eV]

2(9

5% C

L)

2012 2013

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

AC

T +

WM

AP

7 +

BAO

WM

AP

9 +

BAO

1

Xm

[eV]

2(9

5% C

L)

2012 2013

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

AC

T +

WM

AP

7 +

BAO

WM

AP

9 +

BAO

1

Xm

[eV]

2(9

5% C

L)

2012 2013

Plan

ck +

BA

O

Σmν: The March of Time

2dFG

RS

SDSS

Pg +

WM

AP

1

2003

WM

AP

7 al

one

WM

AP

7 +

SDSS

LR

G B

AO

2010

WM

AP

3 +

LSS

2006

SDSS

BO

SS +

WM

AP

7

AC

T +

WM

AP

7 +

BAO

WM

AP

9 +

BAO

1

Xm

[eV]

2(9

5% C

L)

2012 2013

Plan

ck +

BA

O

Oscillations

Cosmological & Laboratory Complementarity

CMB & LSS Complementarity: Parameter Degeneracy

Stage IV CMB + DESI: Σmν vs. Neff

CF5 Neutrino Paper

σ(Σmν) σ(Neff)Forecast Sensitivities

CF5 Neutrino Paper

σ(Σmν) σ(Neff)Forecast Sensitivities

Neutrino Mass from Cosmology: What would break if cosmology and neutrino experiment disagree?

1. Primordial power spectrum P(k) is a simple power law

2. No other prevalent “non-vanilla” cosmological parameters and physics: w, Neff, modified gravity...

P(k)

k →

Summary

Summary

• Cosmology has the strongest inferred experimental sensitivity on the total neutrino mass, and are forecast to maintain that position.

Summary

• Cosmology has the strongest inferred experimental sensitivity on the total neutrino mass, and are forecast to maintain that position.

• CF5 Neutrino group has analyzed all current forecast constraints from cosmology, and forecast that for a Stage IV CMB experiment and DESI galaxy survey 1-σ sensitivities are:

σ(Σmν) = 16 meV &σ(Neff) = 0.020

providing > 3σ sensitivity to the oscillation-required Σmν =58 meV and >2σ sensitivity to Neff

Summary

• Cosmology has the strongest inferred experimental sensitivity on the total neutrino mass, and are forecast to maintain that position.

• CF5 Neutrino group has analyzed all current forecast constraints from cosmology, and forecast that for a Stage IV CMB experiment and DESI galaxy survey 1-σ sensitivities are:

σ(Σmν) = 16 meV &σ(Neff) = 0.020

providing > 3σ sensitivity to the oscillation-required Σmν =58 meV and >2σ sensitivity to Neff

• What if we do not detect the minimal model? If the minimal neutrino sector, with Σmν = 58 meV and Neff = 3.046, is not robustly detected, it would imply something is “broken” in another aspect or aspects of cosmology, including possibly: non-constant dark energy, a non-power-law primordial perturbation spectrum, extra particle or radiation species, non-zero curvature, as well as other possibilities, e.g., a nonthermal cosmological neutrino background.

Backups

• 2dFGRS Shape (conservative but very important limits on ) [Elgaroy et al 2002]:

• SDSS 3D Pg(k) shape + WMAP I[Tegmark et al, 2003]:

• CMB + SDSS 2-point correlation function (nonlinear modeling):[Abazajian et al 2005]:

• WMAP 7 alone [Komatsu et al 2010]:

• SDSS Ly-alpha forest + WMAP 3-year[Seljak et al., 2006]:

• WMAP 7 + SDSS LRG BAO + H0 [Komatsu et al, 2010]:

Summary of Cosmological Neutrino Mass Constraints: 2010

Ωm

Σmνi≤ 1.8 eV

Σmνi≤ 1.8 eV

Σmνi≤ 0.69 eV

Σmνi≤ 0.17 eV

95% CL

...

WMAP

1WM

AP7

Σmνi< 0.58 eV

Σmνi< 1.3 eV

• SDSS BOSS Galaxy Clustering + BAO + WMAP 7 + SNe + H0 (Zhao et. al 2012)

• SPT + WMAP 7 + H0 + SPTCL (Hou et al. 2012) ⇒ See, however, Rozo et al 2012

• ACT + WMAP 7 + BAO + H0(Sievers et. al 2013)

• WMAP 9 + eCMB + BAO + H0 (Hinshaw et al. 2012)

Summary of Cosmological Neutrino Mass Constraints: today

95% CL

...

WMAP

7WM

AP9

mi 0.34 eV

mi 0.44 eV

mi 0.39 eV

0.10 eV mi 0.54 eV