1 Formulations variationnelles et modèles réduits pour les vibrations de structures contenant des...

Post on 04-Jan-2016

219 views 0 download

Transcript of 1 Formulations variationnelles et modèles réduits pour les vibrations de structures contenant des...

1

Formulations variationnelles et modèles réduits pour les vibrations de structures contenant des fluides compressibles en l’absence de gravité

Cours de Roger Ohayon

référence de baseMorand-Ohayon /Fluid Structure Interaction / Wiley 1995

Conservatoire National des Arts et Métiers (CNAM)Chaire de Mécanique

Laboratoire de Mécanique des structures et des systèmes couplés (www.cnam.fr/lmssc)ohayon@cnam.fr

GDR IFS/jeudi 26 juin 2008/14h - 16h

2

Some local references

H. Morand, R. Ohayon / Fluid Structure Interaction/ Wiley – 1995 (chap. 1, 2, 7, 8, 9)

R. Ohayon, C. Soize / Structural Acoustic and Vibrations,Academic Press, 1998

R. Ohayon / Fluid Structure Interaction problems / Encyclopedia of Computational Mechanics, vol. 2, Chap. 21, Wiley, 2004

3

Vibrations of elastic structures

4

5

6

7

8

9

10

FREQUENCY DOMAIN

Measured Transfer Function

11

12

13

14

15

16

17

18

19

20

REDUCED ORDER MODEL

21

22

23

Non-homogeneous heavy compressible fluid

C h a rt T it le

s lo sh ing

In co m p ress ib leh o m og en eo us

a co u s tic

co m p re ss ib leh o m og en eo us

in te rn a l g ra v ityw a ves

co m p re ss ib len o n-h om o g en eo us

D yn a m ic o f liq u ids

Plane irrotationality

24

25

26

STRUCTURAL ACOUSTIC VIBRATIONS

27

28

29

30

31

32

33

34

35

36

37

STRUCTURAL ACOUSTICS EQUATIONSStructure submitted to a fluid pressure loading

38

Structure submitted to a fluid pressure loading

Mechanical elastic stiffness contribution

Geometric stiffness contribution

Rotation of the normal contribution

39

40

41

42

43

44

45

46

47

48

49

50

51

REDUCED ORDER MODEL

Dynamic substructuring decomposition (Craig-Bampton-Hurty)

• Fixed/free eigenmodes• Static interface deformations

52

Fluid submitted to a wall normal displacement

Linearized Euler equation

Constitutive equation

Kinematic boundary condition

For , we impose

in

in

on

in

53

Static pressure field and normal wall displacement relation

This case corresponds to a zero frequency situation

in which denotes the measure of the volume occupied by domain

54

Local fluid equations in terms of pressure and wall normal displacement

with the constraint

in

on

Helmholtz equation

Kinematic boundary condition

55

Introduction of the displacement potential field

with the uniqueness condition

56

Local fluid equations in terms of displacement potential field and wall normal displacement

on

in

with the uniqueness condition

57

Pressure-Displacement Unsymmetric Variational Formulation

with the constraint

58

Reduced Order Model

First basic problem Acoustic modes in a rigid motionless cavity

Orthogonality conditions:

59

Reduced Order Matrix Model

Second basic problem The static pressure solution

60

Symmetric Matrix Reduced Order Model

Decomposition of the admissible space into a direct sumof admissible subspaces:

Solution searched under the following form:

p and u.n satisfy the constraint

61

Symmetric Matrix Reduced Order Model

where

represents a “pneumatic” operator (quasistatic effect of the internal compressible fluid)

62

Symmetric Matrix Reduced Order Model

Hybrid FE/generalized coordinates representation

with

63

Symmetric Matrix Reduced Order Model

Generalized coordinates representation

64

HEAVY / LIGHT COMPRESSIBLE FLUIDGas or Liquid (with/without free surface)

The SYMMETRIC reduced order matrix models should be employed with

great care:

For a light fluid, structural in-vacuo modes can be used

For a heavy fluid – liquid, structural in-vacuo modes lead to poor convergence and MANDATORY, added-mass effects must be introduced (this now classical aspect can be introduced via a quasi-static so-called correction or, which is exactly the same, via an added mass operator provided the starting variational formulation contains a proper basic static behavior)

65

COMPUTATION-EXPERIMENT COMPARISON

66

Kelvin-Voigt model

Thin interfacedissipative

constitutive equation

Structural-acoustic problemwith interface damping

Particular linear viscoelastic constitutive equation (cf Ohayon-Soize, Structural Acoustics and Vibrations, Academic Press, 1998)

67

absorbing material

Interface wall damping equation

Interface wall damping impedance effects

68

Boundary value problem in terms of (u, p, )

Symmetric formulationof the spectral structural-acoustic problem

69

CONCLUSION – OPEN PROBLEMS

http://www.cnam.fr/lmssc

Appropriate Reduced Order Models for Broadband Frequency Domains

Hybrid Passive / Active Treatments for Vibrations and Noise Reduction

Nonlinearities (Vibrations / Transient Impacts and Shocks)